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Abstract 

Future science missions are envisaged to be demanding 

w.r.t. on-board data processing capabilities, due to the scarcity 

of downlink bandwidth together with the massive amount of 

data which can be generated by next-generation instruments, 

both in terms of data rate and volume. Therefore, new 

architectures for on-board data processing are needed. 

The Scalable Sensor Data Processor (SSDP) is a next-

generation mixed-signal ASIC aiming at fulfilling the 

processing needs of such missions, integrating in the same 

chip a heterogeneous multicore architecture, with two Digital 

Signal Processing (DSP) cores and a general purpose 

processor, together with Input/Output interfaces and data 

acquisition capabilities. 

This paper details the current development of the SSDP 

ASIC, providing an overview of its architecture and 

highlighting the processing capabilities, together with design 

enhancements stemming from previous projects. The project 

status is also documented, both regarding current and future 

activities and milestones. 

I. INTRODUCTION 

Instruments for future space missions are getting more 

capable, offering the possibility of acquiring larger sets of 

data, e.g. higher resolution. However, the on-board data 

storage and downlink bandwidth are not keeping up with such 

capabilities, and are regarded as the bottlenecks for the 

exploitation of the instrument. This constraint is not recent, 

and many techniques for on-board data processing and 

reduction have been introduced in order to overcome it, or at 

least mitigate it: decimation, filtering, down-sampling, 

compression, among others. 

Data processing and reduction algorithms often require 

specialized hardware, in order to be implemented in an 

efficient way. Such hardware can be Field-Programmable 

Gate Arrays (FPGAs) or even Application-Specific Integrated 

Circuits (ASICs), which have a non-negligible impact both in 

terms of cost and development time. Furthermore, such 

processing hardware is usually a companion to control 

hardware, which is in charge of instrument/payload control, 

together with local house- and time-keeping tasks, processing 

and input/output activities. 

The Scalable Sensor Data Processor (SSDP) is a next 

generation on-board data processing mixed-signal ASIC, 

envisaged to be used in future scientific missions requiring 

high on-board data processing capabilities, but without 

neglecting the control functions. It offers a novel 

heterogeneous multicore architecture, combining two high-

performance Xentium Digital Signal Processing (DSP) cores 

[1] together with a LEON3FT general-purpose processor 

(GPP) [2], all integrated in a System-on-a-Chip (SoC) design 

and served by a rich set of Input/Output (I/O) interfaces, 

including on-chip Analogue-to-Digital Converters (ADCs). 

The envisaged domains of applicability of the SSDP are 

future science and robotic exploration missions like JUICE 

[3], easing the development and implementation of data 

processing functions, without neglecting the control 

capabilities offered by a GPP. The main forces driving its 

design are processing power, power consumption and 

radiation tolerance. The focal point of these characteristics 

lies between flexibility and scalability, enabling the usage of 

the SSDP in missions with profiles so diverse as deep-space 

missions or planetary landers. 

The SSDP builds on the experience and expertise gathered 

through the successful Massively Parallel Processor 

Breadboard (MPPB) project [4] commissioned by ESA, 

which aimed at developing a demonstrator of a (scalable) 

heterogeneous multicore DSP platform for Space applications. 

The mapping into ASIC technology will be performed with 

DARE180 digital cells. Development is sustained by a 

consortium led by Thales Alenia Space España, and 

comprising Recore Systems, IMEC, Cobham Gaisler and 

Arquimea, bringing together expertise in the digital, analogue 

and mixed-signal domains. Such diverse expertise is of the 

utmost importance in order to tackle the technical challenges 

posed by integrating the many different components, yet 

achieving the proposed goals. 

This paper is organized in the following manner: Section 

II provides some on-board processing use-cases envisaged for 

future Space applications,  Section III provides an overview 

on the SSDP Architecture, namely its subsystems and I/O 

interfaces; Section IV details the processing capabilities of the 

SSDP, including architectural enhancements introduced; 

Section V presents the current project status and timeline for 

the following stages and milestones, and finally Section VI 

concludes this paper. 
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II. FUTURE SRE DATA PROCESSING NEEDS 

Future data processing needs of Science and Robotic 

Exploration (SRE) missions can be divided in two major 

domains: on-board data reduction; robotics processing and 

control. Each domain has its own specificities regarding 

processing needs, briefly presented in this section. 

Nevertheless, there is a common denominator in both 

domains: processing power, in order to execute sophisticated 

algorithms. 

A. On-board Data Reduction 

Next-generation instruments are capable of generating a 

massive amount of data, which can be orders of magnitude 

higher than the available down-link. A first form of data 

reduction can be achieved by performing digital signal 

processing on the captured samples, with (simple) functions 

like filtering and down-sampling. Nevertheless, more 

sophisticated functions which are currently performed at 

ground segment level can be performed directly on-board. 

Another form of on-board data reduction can be achieved 

by performing compression on the data. Several standards 

exist, both for general data and images, and typically resort to 

transforms and other algorithms which are suitable to be 

implemented by DSPs. 

B. Robotics Processing and Control 

Robotics is a vast yet growing domain, with several 

different disciplines like computer science, algorithms and 

mechanics. Current robotics-based missions are highlighting 

the need for not only powerful processing capabilities, but 

also appropriate I/O interfaces for precise control, including 

exploitation of sensors and actuators. 

1) Image Processing 

A typical application in robotics is image and vision 

processing, which requires a fair amount of processing power. 

Such processing is used by the robotics application to identify 

its surroundings, and then be able to take a decision regarding 

its future state based on what it finds. 

An illustrative example is path-decision algorithms of a 

rover, which requires identifying potential routes – and 

hazards – before moving. Such class of algorithms is 

processing-intensive due to the amount of data and steps 

needed to take a decision. Moreover, they can be time and 

energy consuming if the appropriate processing architecture is 

not used. 

2) Actuator and Drive Control 

Another robotics application deals with the control of 

actuators, e.g. motors. This kind of applications usually 

involves a feedback control loop: gathering information from 

sensors, input it into a control algorithm e.g.  PID
1
, and then 

use the output to control actuators, like wheel motors or 

steering. Such application requires not only processing power 

– in fact the requirements for control are usually modest, with 

loops below the kHz range - but also a set of special-purpose 

input/output interfaces, like general-purpose pins, low-speed 

ADCs and pulse-width modulated (PWM) outputs. 

                                                           
1
 Proportional, Integral, Derivative 

III. SSDP ARCHITECTURE 

Most systems nowadays follow the System-on-a-Chip 

(SoC) paradigm, embedding in the same package processing 

resources together with Input/Output (I/O) interfaces. The 

SSDP is not an exception, aiming at providing in a single chip 

all the resources needed to perform a wide range of tasks 

pertaining to on-board data processing. 

The SSDP architecture can be divided in two major 

subsystems, based on their main scope:  

 Control, with a General-Purpose Processor (GPP) at 

its heart, providing general control tasks including 

Fault Detection, Isolation and Recovery (FDIR) 

functions; 

 Processing, with two Digital Signal Processors 

(DSPs) providing the raw processing power together 

with high-speed I/O. 

A top-level block diagram depicting the two subsystems 

and their interconnection is shown in Figure 1. 

 

Figure 1: SSDP High-level Block Diagram 

Each subsystem has its own internal SoC bus: AMBA for 

Control, a Network-on-a-Chip (NoC) for Processing. The 

subsystems are interconnected via a special-purpose Bridge 

interface, allowing them to exchange information such as data 

and signalling (interrupts and errors). Reception of signalling 

information from the Processing subsystem permits the 

effective implementation on the Control subsystem of FDIR 

handling mechanisms. 

The two subsystems have a set of local and networked I/O 

interfaces: Controller Area Network (CAN), SpaceWire 

(SpW) with RMAP target support, Serial Peripheral Interface 

(SPI), Pulse-Width Modulator (PWM), among others, which 

gives a high degree of flexibility w.r.t. applications. Dynamic 

power saving was not neglected, and a clock gating is used to 

turn-off major IP cores when not in use, enabling significant 

power savings. 

Besides the diverse I/O interface set, the SSDP is also 

capable of performing both on- and off-chip data acquisition 

and conversion, using Analogue-to-Digital (ADCs), and 

Digital-to-Analogue (DAC) converters. On-chip ADCs 

provide both high- and low-speed capabilities, allowing a 

wide spectrum of applications ranging from high-speed sensor 

data acquisition to low-rate house-keeping activities. 
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A. Control Subsystem 

At the heart of the Control Subsystem there is a SoC based 

on the flight-proven Cobham Gaisler LEON3FT, a fault-

tolerant SPARC V8 architecture. The SoC modules are 

interconnected via a shared 32-bit ARM AMBA 2.0 bus, 

yielding a maximum throughput of 3.2 Gbps. A block 

diagram depicting the Control Subsystem and its components 

is shown in Figure 2, with the remaining SoC components, 

also from the Cobham Gaisler GRLIB. 

 

Figure 2: SSDP Control Subsystem Block Diagram 

The following Sections detail some of the features of the 

Control Subsystem depicted in Figure 2. 

1) Input/Output Interfaces 

The Control Subsystem has a rich set of I/O interfaces, 

both local and networked, allowing it to interact with and/or 

control both local and remote devices/systems. Such 

interfaces range from SpW and CAN to local device control 

with SPI or I2C. 

There are interfaces dedicated to directly interface with 

actuators, such as Pulse-Width Modulation (PWM) outputs. 

The provision of such functions in hardware paves the way to 

fine-grained control of actuators, such as brushless motors. 

Analogue I/O interfaces also exist, such as an on-chip low-

speed current DAC. The purpose of such device is to be able 

to measure external temperature via a thermistor such as a 

platinum probe (Pt1000). This interface is complemented by a 

low-speed voltage ADC, intended primarily to be used in 

house-keeping activities, but also capable of being used in 

other applications. 

2) Memory Support 

The storage and execution of software applications is 

supported by a Fault-Tolerant Memory Controller supporting 

both non-volatile (mature PROM, EEPROM and novel 

MRAM) and volatile (SRAM) memory technologies. 

Furthermore, these can be protected by Error Detection and 

Correction (EDAC) mechanisms in order to ensure reliable 

operation in the harsh space environment. These are further 

aided by dedicated and autonomous memory scrubbing 

hardware mechanisms (not shown in Figure 2). 

3) House-keeping and Time-keeping & distribution 

As previously mentioned, house-keeping data can be 

acquired with the on-chip low-speed ADC. The device is 

capable of measuring several parameters, either internal to the 

ASIC or external, e.g. internal supply voltage or temperature.  

Time-keeping services are also provided, and 

complemented by (Spacecraft/Instrument) time distribution is 

managed by the novel SpaceWire Time Distribution Protocol 

(SpW-TDP) [5], whose IP core has been enhanced with time-

keeping and management functions. Besides the presence of 

SpW-TDP, local time distribution and synchronization is also 

possible via dedicated input pins, e.g. Pulse Per Second (PPS). 

4) Operating System and Debug Support 

Operating system (OS) support is provided, via timer 

units, interrupt controller and even a Memory Management 

Unit (MMU). Such components allow running both Real-

Time Operating Systems (RTOS) like RTEMS, or modern 

generic operating systems like Linux. 

A Debug Support Unit is provided for on-ground 

application development, using standard Cobham Gaisler 

tools, together with profiling mechanisms. 

5) Advanced Features 

Although the LEON3FT GPP is envisaged to be mostly in 

charge of SSDP control activities, its processing features were 

not neglected, being endowed with advanced features such as: 

 High-performance IEEE-754 compliant Double 

Precision Floating Point Unit (FPU); 

 Separate 4-way set-associative 16 kB Data and 

Instruction cache memories. 

Furthermore, it is possible to lock lines of instruction 

cache, allowing to speed-up the execution of some portions of 

code by reducing latency, e.g. fast interrupt-handling routines. 

6) Summary 

The Control Subsystem offers many resources which 

enable its exploitation as a fully capable On-Board Computer 

(OBC) component, without neglecting processing tasks: 

 Networked I/O: CAN, SpW 

 Local I/O : GPIO,  SPI, I2C, among others 

 EDAC-protected Memory Storage 

 Timer Units, IRQ Controller, MMU 

 House-keeping, Time-keeping and distribution 

 FPU and Cache Memories 

The architecture of the Control Subsystem is intended to 

be highly compatible with the commercially available 

GR712RC GPP from Cobham Gaisler [6], which is also based 

on the LEON3FT. The objective of such compatibility is to 

allow the reuse in the SSDP of code, tools and procedures 

already developed for the GR712RC and its applications. 
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B. Processing Subsystem 

The Processing Subsystem is powered by a multicore SoC 

based on the novel Recore Systems’ Xentium Processor [1], a 

VLIW
2
 fixed-point DSP architecture. The DSPs are connected 

to the remaining SoC components via a high-performance 

Network-on-a-Chip (NoC) interconnect. The SSDP 

Processing Subsystem is depicted in Figure 3 through a block 

diagram, showing how the SoC components are connected via 

the NoC. 

 

Figure 3: SSDP Processing Subsystem Block Diagram 

SoC elements are connected via Network Interfaces (NI) 

to NoC routers with 32-bit full-duplex links, yielding a 

maximum throughput of 3.2 Gbps each way. Each router has 

five ports: one for the NI, and four to connect to other 

adjacent routers (see Figure 3). The following sections detail 

the characteristics of the SoC components. 

1) Xentium Processor 

The Xentium Processor is a 32-bit fixed-point high-

performance parallel Processing Element (PE) capable of 

executing multiple instructions on multiple data (MIMD). The 

Xentium Processor is depicted in Figure 4, showing its main 

components: Tightly Coupled memory (TCM), providing a 

high-bandwidth connection to the NoC for data input/output; 

Datapath, with the computing resources used for processing; 

Instruction Cache for speeding-up the execution of 

application program code.. 

 
Figure 4: Xentium Processor 

The Datapath is composed by functional units (FUs), 

providing the data computing resources, and register files 

                                                           
2
 Very-Large Instruction Word 

(RFs), providing temporary data storage. There are ten FUs, 

which are grouped based on the different operations they can 

perform: arithmetic, logical, multiplication and load/store. 

Execution can be controlled through external status signals, 

e.g. synchronization (wait on bit).  

There are five RFs, each with two read and write ports 

each, allowing two simultaneous operations. Datapath data 

input and output is managed by the load/store FUs, which are 

connected via 64-bit ports to the Tightly-Coupled Memory 

(TCM), running at system speed and organized in four 

independent banks, thus allowing the programmer to design 

the application in order to avoid FU contention upon memory 

access.  

The Xentium Processor is capable of performing the 

following operations per clock cycle: 

- 4x 16-bit Multiply-Accumulate Operations (MACs) 

- 2x 16-bit Complex MACs 

- 2x 32-bit MACs 

- 2x 64-bit load/store operations 

2) Input/Output and Data Acquisition 

I/O interfacing was not neglected on this subsystem, 

despite having as main scope the processing of massive 

amounts of data. Two SpW interfaces with RMAP target are 

available to be used directly by the Xentium Processors. 

These interfaces are capable of exchanging data with a data 

rate up to 200 Mbps. 

Data acquisition and conversion is also a feature of the 

Processing Subsystem, with both on- and off-chip acquisition 

(ADCs). On-chip acquisition is envisaged to be capable of 

acquiring 16-bit samples at 100 Mega-samples per second, 

(re)using an ADC design developed under previous ESA 

contracts. Off-chip acquisition has been designed to interface 

with already existing radiation-hardened ADCs. The sample 

rate of this interface allows up to 50 Mega-samples per 

second acquisitions, with a sample width up to 16-bit. 

3) Memory Hierarchy 

Efficient exploitation of memory hierarchy is the crux of 

effective processing algorithms’ implementations, often the 

application’s bottleneck resides in the rate at which data can 

be put and retrieved to/from the processing element or system. 

The SSDP has a full-fledged memory hierarchy in place, 

listed here from high latency to low latency: 

 High capacity SDRAM Memory, up to 512 MB 

 Internal low-latency 64 kB SRAM Memory Tile 

 Local TCMs, 32 kB per Xentium Processor 

The Memory Tile provides a large SRAM accessible via 

the NoC at full system speed, which can be used to store large 

chunks of data which will then be transferred either to the 

TCMs, SDRAM or any available I/O interface. This allows 

the implementation of a software-based cache memory.  

Memory addressing is performed in little-endian, i.e. the least 

significant byte is stored in the lowest address. 
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4) System Scaling 

The scaling of SSDP-based systems has been envisaged, 

and with that purpose a Chip-to-Chip (CtC) interface has been 

introduced. This full-duplex parallel interface has a 16-bit 

width, and is capable of exchanging data at a speed up to 50 

MWords per second, yielding a maximum throughput of 800 

Mbps. The interface has hardware-based flow-control 

mechanisms, thus enabling reliable communication support. 

The CtC interface allows data exchange between one or more 

SSDP devices, or the exploitation of companion devices, 

including functions supported by FPGAs (see Figure 5). 

 

Figure 5: Chip-to-Chip Interface Usage Examples 

The bi-directional interconnection of the SSDP with a 

companion FPGA is depicted in Figure 5a, in a star topology: 

the FPGA is at the centre, and can be used with a specific 

purpose (companion device), and/or be used to route data 

between the SSDP devices. A single-device topology would 

be a star with a single SSDP. Another topology is shown in 

Figure 5b, where the devices are connected in a ring topology. 

These topologies enable a powerful processing chain, with 

each device being in charge of a given task, or subset of tasks, 

or even being connected to multiple different 

instruments/acquisition devices. 

5) Summary 

The Processing Subsystem provides a high-performance 

multicore DSP SoC, with data acquisition capabilities. Its 

most striking features are: 

 Multicore 32-bit fixed-point VLIW DSP (x2) 

 Internal 64 kB SRAM, external SDRAM 

 SpW I/F with RMAP target, up to 200 Mbps (2x) 

 On-chip ADC up to 100 Msps 

 Off-chip ADC and DAC up to 50 Msps 

 Chip-to-Chip Interface, up to 800 Mbps 

These features can be efficiently exploited by application 

designers through compilers and a graphical Software 

Development Environment, with debugging capabilities. 

IV. SSDP ADVANCED FEATURES 

The SSDP draws heavily from the MPPB platform, 

inheriting most of its architecture and components. Building 

on this heritage, improvements and features were introduced, 

based on MPPB usage and evaluation activities performed 

both by industry and academia. This section details some of 

the advanced features, and how they can enable the design 

and implementation of sophisticated systems and algorithms. 

A. Efficient DMA Transfers 

The availability of DMA transfers allows the exchange of 

data autonomously, without needing processor intervention. 

The SSDP Processing Subsystem provides a DMA Controller 

which is capable of performing stride-based transfers, where 

data which is not stored in contiguous positions can still be 

efficiently accessed without paying a severe penalty. The 

same feature can be used for sub-sampling / decimation 

without consuming processor/DSP resources. 

The availability of DMA transfers (both 2D and stride-

based) enables creative – and efficient - uses of the memory 

hierarchy. An example is implementing an effective software-

based cache, with the DMA controller being used to transfer 

data between the SDRAM, Memory Tile and TCMs, for 

ensuring that the Xentium processors would always be 

working on data, i.e. they would not suffer data starvation. 

B. Endianness Conversion 

Memory accesses performed by most of Processing 

Subsystem modules are done in little endian, i.e. the least-

significant byte is stored at the lowest memory address. Such 

access fashion clashes with the one used by the Control 

Subsystem, whose modules inherit the big-endian addressing 

from the LEON3FT architecture. 

The issue of endianness conversion is addressed on the 

SSDP at the points where information has to cross a so-called 

“endianness domain crossing”, i.e the bridges between the 

two subsystems. At these points there are specially crafted 

mechanisms to provide automatic and transparent conversion. 

Transparency is achieved by having different memory maps 

for big- and little-endian information exchange, which will 

determine if there should be a conversion or not. 

C. Application Profiling 

Profiling an application is the logical step to be taken after 

its (initial) implementation and validation, and it should be 

performed before attempting to introduce any optimization. 

The Xentium Processors have been enhanced w.r.t. profiling 

support, with new performance monitoring mechanisms 

added. A new set of counters is provided, which can be used 

to assess the performance of an application in a non-intrusive 

manner: read and write cycles, latency, cache misses and hits, 

among others. 

D. Fault Detection, Isolation and Recoveryl 

Space-based applications must provide FDIR functions in 

order to be able to cope with errors induced by the harshness 

of the Space environment. Such function must be built on top 

of hardware-based mechanisms, providing the capability of 

detecting errors, which may trigger faults. 

In the SSDP the Control Subsystem is in charge of dealing 

with FDIR functions. In order to provide effective FDIR, the 

NoC and modules of the Processing Subsystem have been 

enhanced w.r.t. error detection and signalling capabilities. 

Such capabilities allow the hardware based detection of 

errors. Error  notifications are forwarded to the Control 

Subsystem in order to trigger the execution of appropriate 

handlers. 

 
(a) Star/Single 

 
(b) Ring 
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V. DEVELOPMENT & STATUS 

The SSDP is being developed through an industrial 

consortium led by Thales Alenia Space España (ES), and 

encompassing several partners across Europe with different 

domains of expertise: 

 Recore Systems (NL), providing the multicore DSP 

and components of the Processing Subsystem, 

together with the Software Development Environment 

(SDE) and support;  

 Cobham Gaisler (SE), with the LEON3FT SoC and 

support 

 IMEC (BE), providing specific IP cores, DARE180 

cell library, and also the layout services, package, 

assembly support, foundry interface and manufacture 

testing;  

 Arquimea (ES), with the on-chip fast ADC. 

The SSDP is now at its development and validation stage, 

including FPGA-based prototyping. The SSDP development 

will result in a CQFP-352 mixed-signal ASIC, built in UMC 

180 nm technology with DARE180 digital cell technology 

[6]. Engineering Models (EMs), Flight Models (FMs) and 

evaluation boards will be commercialized by Cobham Gaisler. 

A. Prototyping, Testing and Validation 

The prototyping and testing activities are being carried out 

on a custom board based on a Xilinx Kintex Ultrascale FPGA, 

providing enough resources to accommodate both SSDP 

subsystems. The schematic was captured internally at TAS-E, 

and the manufacture commissioned to Pender Electronics. 

This board will provide all the I/O interfaces needed by the 

SSDP, thus allowing their validation. 

The SSDP testing and validation activities are being 

carried out with support of a National Instruments PXI 

testbench comprising both hardware and LabView software. 

The SSDP runs small pieces of software to support the 

validation procedures. Such a setup allows a simple yet 

powerful validation loop, which can be used at all levels of 

the validation procedures, from interfaces to full system. 

Benchmarking will be performed throughout the 

development cycle, in order to characterize the SSDP from a 

processing point of view. For that purpose, the NGDSP 

benchmark suite [8] will be used. 

B. Development Milestones 

The SRR was successfully closed out in October 2015, 

and the current activities related to development and 

subsystem integration will culminate with a PDR in 2016. The 

current schedule for the following (major) milestones is the 

following: 

 Q1 2017 – CDR 

 Q2 2017 – Prototypes Manufacturing 

 Q3/Q4 2017 – Prototypes (EM) Available 

 2018 – FM Available 

Evaluation boards with EMs are expected also during 

Q3/Q4 2017, after the testing and validation campaign. 

VI. CONCLUSIONS 

The Scalable Sensor Data Processor (SSDP) is a next-

generation data processing mixed-signal ASIC, providing in a 

single package a sophisticated architecture with a Processing 

Subsystem with powerful multicore DSP processing 

capabilities, together will a Control Subsystem using well-

established general-purpose processing resources capable of 

delivering fast and reliable control and house-keeping. Each 

of these is a full System-on-a-Chip (SoC) on its own, with 

Input/Output capabilities besides the processing resources. 

The Control Subsystem offers a general-purpose 

LEON3FT with a floating-point unit, together with 

SpaceWire, CAN and local I/O such as SPI and I2C, being 

highly compliant with the LEON3FT-based Cobham Gaisler 

GR712RC SoC, thus allowing the porting to the SSDP of 

applications developed for such platform.  

Besides the powerful Xentium Processors, the Processing 

Subsystem is supported by a high-performance Network-on-

Chip (NoC), interconnecting the processing resources, 

SDRAM storage, I/O such as SpW and on- and off-chip data 

acquisition for ADCs and DACs. A Chip-to-Chip interface is 

also provided, allowing scaling a system with other devices, 

such as additional SSDP ASICs, FPGAs or others. 

The SSDP RTL is currently being integrated, tested and 

validated, supported by a custom FPGA-based prototyping 

board. The next step after validation will be to perform the 

ASIC layout. The SSDP ASIC will be implemented in UMC 

180 nm technology, using DARE180 digital cells, providing a 

high degree of SEE tolerance which is in line with envisaged 

future science and robotic exploration missions. The first 

prototypes for testing and validation are expected to be 

delivered during the second half of 2017, with evaluation 

boards being made available by Cobham Gaisler. 
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Abstract 

RC64 is a rad-hard manycore DSP combining 64 

VLIW/SIMD DSP cores, lock-free shared memory, a 

hardware scheduler and a task-based programming model. 

The hardware scheduler enables fast scheduling and 

allocation of fine grain tasks to all cores.  

I. INTRODUCTION 

Multiple core architectures are divided into multi-cores and 

many-cores. Multi-cores, ranging from rad-hard Gaisler/ 

Ramon Chips’ LEON3FT dual-core GR712RC to 

commercial ARM Cortex A9 and Intel Xeon, typically 

provide some form of cache coherency and are designed to 

execute many unrelated processes, governed by an operating 

system such as Linux. In contrast, many-cores such as Tilera 

TilePro, Adapteva’s Epiphany, NVidia GPU, Intel Xeon Phi 

and Ramon Chips’ RC64, execute parallel programs 

specifically designed for them and avoid operating systems, 

in order to achieve higher performance and higher power-

efficiency. 

Many-core architectures come in different flavors: a two-

dimensional array of cores arranged around a mesh NoC 

(Tilera and Adapteva), GPUs and other manycores with 

clusters of cores (Kalray), and rings. This paper discusses 

the Plural architecture [12]—[16] of RC64 [17], in which 

many cores are interconnected to a many-port shared 

memory rather than to each other (Figure 1).  

Many cores also differ on their programming models, 

ranging from PRAM-like shared memory through CSP-like 

message-passing to dataflow. Memory access and message 

passing also relate to data dependencies and 

synchronization—locks, bulk-synchronous patterns and 

rendezvous. RC64 architecture employs a strict shared 

memory programming model. 

The last defining issue relates to task scheduling—allocating 

tasks to cores and handling task dependencies. Scheduling 

methods include static (compile time) scheduling, dynamic 

software scheduling, architecture-specific scheduling (e.g., 

for NoC), and hardware schedulers, as in RC64, in which 

data dependencies are replaced by task dependencies in  

 

 

 

order to enhance performance and efficiency and to simplify 

programming. 

As a processor designed for operation in harsh space 

environment, RC64 is based on rad-hard technology and 

includes several mechanisms to enhance its fault tolerance, 

such as EDAC, and to handle fault detection, isolation and 

recovery (FDIR). 

 

 

 

Figure 1. RC64 Many-Core Architecture. 64 DSP cores, 

modem accelerators and multiple DMA controllers of I/O  

interfaces access the multibank shared memory through a 

logarithmic network. The hardware scheduler dispatches fine 

grain tasks to cores, accelerators and I/O.  
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II. RELATED WORK 

GR712RC, an early dual-core rad-hard space processor was 

introduced by Ramon Chips and Cobham Gaisler [1][2]. 

Other multi-core architectures, not intended for space, 

include ARM Cortex A9 [3] and Intel Xeon. Many core 

architectures include the mesh-tiled Tilera [4][5] and 

Adapteva [6], NVidia GPU [7], Intel ring-topology Xeon 

Phi [8] and dataflow clusters by Kalray [9]. The research 

XMT manycore [10] is PRAM-inspired and employs 

hardware scheduling, similar to RC64. It employs 

declarative parallelism to direct scheduling [11]. The Plural 

architecture and its RC64 incarnation are discussed 

in [12]—[17] and is the subject of the MacSpace European 

FP7 research project [18]. An early hardware scheduler is 

reported in [19]. The baseline multistage interconnection 

network has been introduced in [20]. Example of SDR 

modem implementation on RC64 and simulated 

performance results are given in [26]. 

Other efforts to introduce rad-hard manycores for space 

include the FPGA-based AppSTAR at Harris [22], Maestro 

at Boeing [23] and RADSPEED at BAE Systems [24]. 

III. RC64 ARCHITECTURE 

This section presents the Plural architecture of RC64 

(Figure 1). RC64 architecture defines a shared-memory 

single-chip many-core. The many-core consists of a 

hardware synchronization and scheduling unit, 64 DSP 

cores, and a shared on-chip memory accessible through a 

high-performance logarithmic interconnection network. The 

cores contain instruction and data caches, as well as a 

private ‘scratchpad’ memory. The data cache is flushed and 

invalidated by the end of each task execution, guaranteeing 

consistency of the shared memory. The cores are designed 

for low power operation using ‘slow clock’ (typically 

slower than 500 MHz). Performance is achieved by high 

level of parallelism rather than by sheer speed, and access to 

the on-chip shared memory across the chip takes only a 

small number of cycles. 

The on-chip shared memory is organized in a large number 

of banks, to enable many ports that can be accessed in 

parallel by the many cores, via the network. To reduce 

collisions, addresses are interleaved over the banks. The 

cores are connected to the memory banks by a multi-stage 

many-to-many interconnection network. The network 

detects access conflicts contending on the same memory 

bank, proceeds serving one of the requests and notifies the 

other cores to retry their access. The cores immediately retry 

a failed access. Two or more concurrent read requests from 

the same address are served by a single read operation and a 

multicast of the same value to all requesting cores. As 

explained in the next section, there is no need for any cache 

coherency mechanism. 

The CEVA X1643 DSP core comprises the following parts. 

The computation unit consists of four multiplier-

accumulators (MAC) of 16-bit fixed point data, supporting 

other precisions as well, and a register file. Ramon Chips 

has added a floating point MAC. The data addressing units 

includes two load-store modules and address calculation. 

The data memory unit consists of the data cache, AXI bus 

interface, write buffers for queuing write-through 

transactions and a scratchpad private memory. The program 

memory unit is the instruction cache. Other units support 

emulation and debug and mange power gating. Thus, the 

DSP core contains three memories: an instruction cache, a 

write-through data cache and a scratchpad private memory. 

Implemented in 65nm CMOS and designed for operation at 

300 MHz, RC64 is planned to achieve 38 GFLOPS (single 

precision) and 76 GMAC (16-bit). With 12 high speed serial 

links operating at up to 5 Gbps in each direction, a total 

bandwidth of 120 Gbps is provided. Additional high 

bandwidth is enabled for memories (25 Gbps DDR3 

interface of 32 bit at 800 Mword/s with additional 16 bits 

for ECC) and for high performance ADC and DAC (38 

Gbps over 48 LVDS channels of 800 Mbps). The device is 

planned to dissipate less than 10 Watt in either CCGA or 

PBGA 624 column or ball grid array packages. 

IV. RC64 PROGRAMMING MODEL 

The Plural PRAM-like programming model of RC64 is 

based on non-preemptive execution of multiple sequential 

tasks. The programmer defines the tasks, as well as their 

dependencies and priorities which are specified by a 

(directed) task graph. Tasks are executed by cores and the 

task graph is ‘executed’ by the scheduler.  

In the Plural shared-memory programming model, 

concurrent tasks cannot communicate. A group of tasks that 

are allowed to execute in parallel may share read-only data 

but they cannot share data that is written by any one of 

them. If one task must write into a shared data variable and 

another task must read that data, then they are dependent—

the writing task must complete before the reading task may 

commence. That dependency is specified as a directed edge 

in the task graph, and enforced by the hardware scheduler. 

Tasks that do not write-share data are defined as 

independent, and may execute concurrently. Concurrent 

execution does not necessarily happens at the same time—

concurrent tasks may execute together or at any order, as 

determined by the scheduler. 

Some tasks, typically amenable to independent data 

parallelism, may be duplicable, accompanied by a quota 

that determines the number of instances that should be 

executed (declared parallelism [11]). All instances of the 

same duplicable task are mutually independent (they do not 

write-share any data) and concurrent, and hence they may 

be executed in parallel or in any arbitrary order. These 

instances are distinguishable from each other merely by 

their instance number. Ideally, their execution time is short 

(fine granularity). Concurrent instances can be scheduled for 
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execution at any (arbitrary) order, and no priority is 

associated with instances. 

Each task progresses through at most four states (Figure 2). 

Tasks without predecessors (enabled at the beginning of 

program execution) start in the ready state. Tasks that 

depend on predecessor tasks start in the pending state. Once 

all predecessors to a task have completed, the task becomes 

ready and the scheduler may schedule its instances for 

execution and allocate (dispatch) the instances to cores. 

Once all instances of a task have been allocated, the task is 

All allocated. And once all its instances have terminated, the 

task moves into the terminated state (possibly enabling 

successor tasks to become ready). 

Terminated
All

Allocated
ReadyPending

 

Figure 2. Task State Graph 

Many-flow pipelining facilitates enhanced core utilization in 

streamed signal processing. Consider the task graph 

examples for executing JPEG2000 image compression and 

the processor utilization charts of Figure 3. In (a), five tasks 

A-E are scheduled in sequence. Tasks B and D are 

duplicable with a large number of instances, enabling 

efficient utilization of 64 cores. Tasks A,C,E, on the other 

hand, are sequential. Execution time of compressing one 

image is 160 time units, and overall utilization, reflected by 

the ratio of colored area to the 64×160 rectangle, is 65%. 

The core utilization chart (on the right) indicates the number 

of busy cores over time, and different colors represent 

different tasks. In the many-flow task graph (Figure 3b), a 

pipeline of seven images is processed. During one iteration, 

say iteration k, the output stage sends compressed image k, 

task E processes image k+1, task D computes the data of 

image k+2, and so on. Notice that the sequential tasks A,C,E 

are allocated first in each iteration, and duplicable instances 

occupy the remaining cores. A single iteration takes 95 time 

units and the latency of a single image is extended to five 

iterations, but the throughput is enhanced and the core 

utilization chart now demonstrates 99% core utilization. 

Data dependencies are expressed (by the programmer) as 

task dependencies. For instance, if a variable is written by 

task tw and must later be read, then reading must occur in a 

group of tasks {tr} and tw{tr}. The synchronization action 

of completion of tw prior to any execution of tasks {tr} 

provides the needed barrier. 

 

Figure 3. Many-flow pipelining: (a) task graph and single 

execution of an image compression program, (b) many-flow task 

graph and its pipelined execution 

V. RC64 HARDWARE SCHEDULER 

The hardware scheduler assigns tasks to cores for execution. 

The scheduler maintains two data structures, one for 

managing cores (Figure 4) and the other for managing tasks 

(Figure 5). Core and task state graphs are shown in Figure 6 

and Figure 2, respectively. 

The hardware scheduler operates as follows. At start, all 

cores are listed as Idle and the task graph is loaded into the 

first three columns of the Task Management Table. The 

scheduler loops forever over its computation cycle. On each 

cycle, the scheduler performs two activities: allocating tasks 

for execution, and handling task completions.  

 

Core # State Task # Instance # … … 

0      

1      

2      

…      

Figure 4. Core Management Table 
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Task # 
Duplication 

quota 
Dependencies State 

# 

allocated 

instances 

# 

terminated 

instances 

0      

1      

2      

…      

data from task graph    

Figure 5. Task Management Table 

BusyIdle

 

Figure 6. Core State Graph 

To allocate tasks, the scheduler first selects ready tasks from 

the Task Management Table. It allocates each such task to 

idle cores by changing the task state to All Allocated (if the 

task is regular, or if all duplicable instances have been 

dispatched), by increasing the count of allocated instances in 

the Task Management Table, and by noting the task number 

(and instance number, for duplicable tasks) in the Core 

Management Table. Finally, task/instance activation 

messages are dispatched to the relevant cores. The 

activation message for a specific core includes the code 

entry address and (in case of a duplicable instance) the 

instance ID number. 

To handle task completions, the scheduler collects 

termination messages from cores that have completed task 

executions. It changes the state of those cores to Idle. For 

regular tasks, the task state is changed to Terminated. For 

duplicable tasks, the counter of terminated tasks in the Task 

Management Table is incremented, and if it has reached the 

quota value then the state of that task is changed to 

Terminated. Next, the scheduler updates the Dependencies 

entry of each task in the table which depends on the 

terminated task: the arrival of that token is noted, the 

dependency condition is recomputed, and if all precedencies 

of any task have been fulfilled then the state of that task is 

changed to Ready, enabling allocation and dispatch in 

subsequent scheduler computation cycles. 

The scheduler capacity, namely the number of simultaneous 

tasks which the scheduler is able to allocate or terminate 

during each computation cycle, is limited. Any additional 

task allocations and task termination messages beyond 

scheduler capacity wait for subsequent cycles in order to be 

processed. A core remains idle from the time it issues a 

termination message until the next task allocation arrives. 

That idle time comprises not only the delay at the scheduler 

(wait and processing times) but also any transmission 

latency of the termination and allocation messages over the 

scheduler-to-cores network.  

The allocation and termination algorithms are shown in 

Figure 7. 

Scheduling efficiency depends on the ratio of scheduling 

latency (reflected in idle time of cores) to task execution 

time. Extremely fine grain tasks (e.g., those executing for 

1~100 cycles) call for very short scheduling latencies (down 

to zero cycles) to be efficient. Alternatively, speculative 

advanced scheduling may fill queues attached to each core 

so that the core can start executing a new instance once it 

has completed a previous instance (see [16] for such an 

analysis). However, typical tasks tend to incur compiled 

overhead (prologue and epilogue code sequences generated 

by even the most efficient optimizing compilers), and 

typical programming practices of parallel tasks tend to avoid 

the shortest tasks, resulting in average task duration 

exceeding 100 cycles. With average scheduling latency of 

only 10-20 cycles, enabled by hardware implementation, we 

obtain execution efficiency close to 99%. 

The hardware scheduler is implemented as custom logic in 

RC64. Two other possibilities will be considered in future 

generations, one based on two content-addressable memory 

(CAM) arrays implementing the two management tables, 

and another implementation as software executing on a 

dedicated fast core with its dedicated high throughput 

memory. 

 

 

Figure 7. Allocation (top) and termination (bottom) algorithms 

ALLOCATION 

1. Choose a Ready task (according to priority, if 

specified) 

2. While there is still enough scheduler capacity and 

there are still Idle cores 

a. Identify an Idle core 

b. Allocate an instance to that core  

c. Increase counter of allocated task 

instances  

d. If # allocated instances == quota, change 

task state to All Allocated and continue to 

next task (step 1)  

e. Else, continue to next instance of same 

task (step 2) 

TERMINATION 

1. Choose a core which has sent a termination 

message 

2. While there is still enough scheduler capacity 

a. Change core state to Idle 

b. Increment # terminated instances  

c. If # terminated instances == quota, change 

task state to Terminated 

d. Recompute dependencies for all other 

tasks that depend on the terminated task, 

and where relevant change their state to 

Ready 
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A special section of the scheduler schedules High Priority 

Tasks (HPTs), which are designed as ‘interrupt handling 

routines’ to handle hardware interrupts. As explained in 

Section VII, all I/O interfaces (including interfaces to 

accelerators) are based on DMA controllers that issue 

interrupts once completing their action. The most urgent 

portion of handling the interrupt is packaged as a HPT, and 

less urgent parts are formulated as a normal task. HPT is 

dispatched immediately and pre-emptively by the scheduler. 

Each core may execute one HPT, and one HPT does not 

pre-empt another HPT. Thus, a maximum of 64 HPTs may 

execute simultaneously. RC64 defines fewer than 64 

different HPTs, and thus there is no shortage of processors 

for prompt invocation of HPTs. 

VI. RC64 NETWORKS ON CHIP 

RC64 contains two specialized Networks on Chip (NOCs), 

one connecting the scheduler to all cores and other 

schedulable entities (DMA controllers and accelerators), and 

a second NOC connecting all cores and other data sources 

(DMA controllers) to the shared memory. 

A. Scheduler NOC 

The scheduler-to-cores NOC employs a tree topology. That 

NOC off-loads two distributed functions from the scheduler, 

task allocation and task termination. 

The distributed task allocation function receives clustered 

task allocation messages from the scheduler. In particular, a 

task allocation message related to a duplicable task specifies 

the task entry address and a range of instance numbers that 

should be dispatched. The NOC partitions such a clustered 

message into new messages specifying the same task entry 

address and sub-range of instance numbers, so that the sub-

ranges of any two new messages are mutually exclusive and 

the union of all new messages covers the same range of 

instance numbers as the original message. The NOC nodes 

maintain Core and Task Management Tables which are 

subsets of those tables in the scheduler (Figure 4 and Figure 

5, respectively), to enable making these distributed 

decisions. 

The distributed task termination process complements task 

allocations. Upon receiving instance terminations from 

cores or subordinate nodes, a NOC node combine the 

messages and forwards a more succinct message specifying 

ranges of completed tasks. 

B. Shared Memory NOC 

The larger NOC of RC64 connects 64 cores, tens of DMA 

controllers and hardware accelerators to 256 banks of the 

shared memory. To simplify layout, floor-planning and 

routing, we employ a Baseline logarithmic-depth multistage 

interconnection network [20], symbolically drawn in Figure 

1. Some of the NOC switch stages are combinational, while 

others employ registers and operate in a pipeline. Two 

separate networks are used, one for reading and another one 

for writing. The read networks accesses and transfers 16 

bytes (128 bits) in parallel, matching cache line size and 

serving cache fetch in a single operation. The write network 

is limited to 32 bits, compatible with the write-through 

mechanism employed in the DSP cores. Writing smaller 

formats (16 and 8 bits) is also allowed. 

VII. RC64 ACCELERATORS AND I/O  

Certain operations cannot be performed efficiently on 

programmable cores. Typical examples require bit level 

manipulations that are not provided for by the instruction 

set, such as used for error correction (LDPC, Turbo code, 

BCH, etc.) and for encryption. RC64 offers two solutions. 

First, several accelerators for pre-determined computations 

(such as LDPC and Turbo Coding, useful in DVB-S2 and 

DVB-RCS for space telecommunications) are included on 

chip. They are accessible only through shared memory, as 

follows. First, the data to be processed by the accelerator are 

deposited in shared memory. Next, the accelerator is 

invoked. Data is fetched to the accelerator by a dedicated 

DMA controller, and the outcome is sent back to shared 

memory by a complementing second DMA controller. This 

mode of operation decouples the accelerator from the cores 

and eliminates busy waiting of cores. 

The second possibility is to employ an external acceleration 

on either an FPGA or an ASIC. High speed serial links on 

RC64 enable efficient utilization of such external 

acceleration. This mode offers scalability and extendibility 

to RC64. 

All input / output interfaces operate asynchronously to the 

cores. Each interface is managed by one DMA controller for 

input and a second DMA controller for output. Many 

different types of I/O interfaces are available in RC64, 

including slow GPIO and SpaceWire links, high rate 

DDR2/DDR3 and ONFI flash EDAC memory interfaces 

(error detection and correction is carried out at the I/O 

interfaces, offloading that compute load from the cores), 

high speed serial links (implementing SpaceFibre [25], 

serial Rapid IO and proprietary protocols) and 48-link 

LVDS port useful for ADCs, DACs and other custom 

interfaces. 

All DMA controllers are scheduled by the scheduler, submit 

interrupt signals to the scheduler (as explained in Section V 

above), and read and write data directly to the shared 

memory through the NOC (see Section VI above). The 

system software required for managing I/O is described in 

Section VIII below. 

VIII. RC64 SYSTEM SOFTWARE 

The system run-time software stack is shown schematically 

in Figure 8. The boot sequence library is based on the boot 

code of the DSP core. It is modified to enable execution by 

many cores in parallel. Only one of the cores performs the 

shared memory content initialization. The boot code 
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includes DSP core self-test, cache clearing, memory 

protection configuration and execution status notification to 

an external controlling host.  

The Runtime Kernel (RTK) performs the scheduling 

function for the DSP core. It interacts with the hardware 

scheduler, receives task allocation details, launches the task 

code and responds with task termination when the task is 

finished. The RTK also initiates the power down sequence 

when no task is received for execution. 

The first task allocated by the scheduler is responsible for 

loading the application task graph into the scheduler. This 

code is automatically generated during a pre-compile stage 

according to the task graph definition. Application tasks are 

allocated after the initialization task is finished. 

Certain library routines manage EDAC for memories, 

encapsulate messaging and routing services to off-chip 

networking (especially over high speed serial SpaceFibre 

links), respond to commands received from an external host 

(or one of the on-chip cores, playing the role of a host), 

perform FDIR functions, and offer some level of 

virtualization when multiple RC64 chips are employed in 

concert to execute coordinated missions. 

 

 

Figure 8. RC64 Run Time Software. The kernel enables boot, 

initialization, task processing and I/O. Other services include 

execution of host commands, networking and routing, error 

correction and management of applications distributed over 

multiple RC64 chips 

Other components of the RTK manage I/O and accelerators. 

Configuring the interfaces requires special sequences such 

as link detection and activation, clock enabling, DMA 

configuration, etc. Each interface has its own set of 

parameters according to the required connectivity, storage 

type, data rate and so on. 

Figure 9 demonstrate the hardware-kernel-application 

sequence of events in the case of an input of a predefined 

data unit over a stream input link. The DMA controller, 

previously scheduled, stores input data into a pre-allocated 

buffer in memory (step 1). Upon completion, it issues an 

interrupt (step 2). A HPT is invoked (step 3, see Section V) 

and stores pointers and status in shared memory, effectively 

enqueuing the new arrival (step 4). It ends up by issuing a 

‘software event’ to the scheduler (step 5). Eventually, the 

scheduler dispatches a task that has been waiting for that 

event (step 6). That task can consume the data and then 

dequeue it, releasing the storage where the data was stored 

(step 7). Other I/O operations are conducted similarly. 

 

 

Figure 9. Event sequence performing stream input 

IX. RC64 SOFTWARE DEVELOPMENT TOOLS 

RC64 SDK enables software development, debug and 

tuning, as shown in Figure 10. The IDE tool chain includes 

a C/C++ compiler for the DSP core, an assembler, a linker, 

and a library of DSP functions customized for the core, 

taking full advantage of its VLIW capability (computing 

and moving data at the same time) and SIMD (performing 

several multiply and accumulate operations in parallel). 

RC64 Parallel programming is supported by the task 

compiler, which translates the task graph for the scheduler, a 

many-task emulator (MTE) that enables efficient 

development of parallel codes on personal computers, and a 

many-core debugger, which synchronizes debug operations 

of all cores. The RC64 parallel simulator is cycle accurate, 

fully simulating the cores as well as all other hardware 

components on the chip. 

The profiler provides complete record of parallel execution 

on all 64 cores. The event recorder generates traces with 

time stamps of desired events. The kernel and libraries are 

described in Section VIII above. 
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X. RC64 RADIATION HARDNESS AND FDIR 

RC64 will be implemented in 65nm CMOS using 

RadSafe™ rad-hard-by-design (RHBD) technology and 

library [21]. RadSafe™ is designed for a wide range of 

space missions, enabling TID tolerance to 300 kRad(Si), no 

latchup and very low SEU rate. All memories on chip are 

protected by various means and varying levels of error 

correction and detection. Special protection is designed for 

registers that hold data for extended time, such as 

configuration registers. The two external memory interfaces, 

to DDR2/DDR3 and to ONFI flash memories, implement 

several types of EDAC. For instance, ten flash memory 

chips can be connected for eight byte wide datapath and two 

flash devices for storing Reed Solomon ECC. 

  

Figure 10. RC64 Software Development Kit.  

RC64 implements extensive means for fault detection, 

isolation and recovery (FDIR). An external host can reset, 

boot and scrub the device through dual RMAP SpaceWire 

ports. RC64 contains numerous error counters and monitors 

that collect and report error statistics. Trace buffers, 

allocated in shared memory as desired, enable rollback and 

analysis (in addition to helping debug). Faulty sub-systems 

may be shut down and the scheduler is designed to operate 

with partial configurations.  

XI. CONCLUSIONS 

RC64 is a many core architecture suitable for use in space. 

It is designed for simplified PRAM-like shared memory 

programming and high performance at low power. RC64 

goal is to enable future software-defined satellites in all 

space endeavors. RC64 is presently under design and all 

performance figures reported herein and in [26] are based on 

simulations. RC64 is planned for availability before the end 

of the decade. RC64 R&D project is funded by Israel Space 

Agency and by the European Union. 
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Abstract 

The European Space Components Coordination (ESCC) 

system offers opportunities for the recognition of established 

performance, product maturity and independent Space 

qualification of advanced microelectronics products aimed at 

high reliability in their operation as part of critical equipment 

on-board long-life Space systems. This has been achieved for 

decades with older microcircuit products and, after some 

recent developments, is enabled now as well for the latest 

devices. 

I. ESCC AS AN EXAMPLE OF SUPPLIER-USER 

COOPERATION 

 

ESCC is established with the objective of harmonising the 

efforts concerning the various aspects of EEE space 

components by ESA, European national public space 

organisations, the component manufacturers and the user 

industries. The goal is to improve the availability of strategic 

EEE space components with the required performance and at 

affordable costs for institutional and commercial space 

programmes. ESCC aims at achieving this goal by 

harmonising the resources and development efforts for space 

components in the ESA Member States and by providing a 

single and unified system for the standardisation, product 

specification, evaluation, qualification and procurement of 

European EEE space components and for the certification of 

components and component manufacturers. ESCC is end-

product oriented, so it must be noted that the ESCC system 

does not provide a standard methodology for technology 

development activities which start at very low Technology 

Readiness Levels (TRL 3 or below). Similarly, the ESCC 

system does not address systematically the actual design flow 

of EEE components, nor does it prescribe the specifics of their 

actual implementation (assembly processes, bias circuits) in 

the context of a particular mission or application. However, 

some of these application-related topics (like mission-specific 

Radiation Hardness Assurance, or soldering of components on 

a PCB, of Surface Mount assembly techniques and associated 

requirements) are addressed in Working Groups which 

function under the “umbrella” of coordination and 

cooperation provided by the ESCC system. This ensures, for 

instance, that components are only qualified in package types 

which are compatible with existing and approved board level 

assembly processes All public outputs of ESCC are posted 

online at https://escies.org 

  

As mentioned, the ESCC system is based on the technical 

collaboration among its partners (manufacturers, users, space 

agencies). This cooperation is effective in addressing 

technology harmonization and the development of standards. 

Such standards support the evaluation, procurement and 

qualification of components and technologies. The actual 

implementation of these standards in the context of 

qualification activities is primarily the responsibility of 

manufacturers, with the help and support of National Space 

Agencies (NSAs) and ESA as certifying authority.  

 

The various activities which happen in the scope ESCC can 

therefore be grouped in two main categories: Harmonisation 

tasks and Executive tasks. When ESCC delivers technology 

road-maps, annual qualification plans, technical reports or 

assessments, draft specifications, test methods, proposals or 

endorsement of technical development activities, we talk 

about Harmonisation work. When ESCC results in published 

specifications, certifications of qualification, actions related to 

Quality Assurance, we talk about Executive work. Of course 

most activities are interrelated with each other and there are 

obvious overlaps. 

 

The main actor in Europe in space components Harmonisation 

is the ESCC Component Technology Board (CTB). The CTB 

coordinates the work of technology-specific Working Groups 

(WG). One of them, the CTB Silicon WG has mixed-signal 

and advanced CMOS components in their scope of activities. 

The CTB Silicon WG advices ESA and other European 

national space agencies on activities (and priorities) which 

should be supported and funded for such components, in 

terms of technology development, technology 

characterisation, space evaluation and ESCC Qualification. 

The ESCC Harmonisation Task includes maintaining strategic 

plans areas. These are considered proprietary to the ESCC 

membership. The development activities are harmonised by 

the ESCC members within the CTB to maximise the use of 

funds and to prevent duplication of effort. As regards 

participating in the ESCC Harmonisation Task, this implies 

joining one or more of the standing and ad-hoc working 

groups. A willing European organisation (or company) may 

well be accepted to contribute and would be expected to 

appoint members of staff to represent the organisation in one 

or more of the working groups. A contribution of this nature 

will in general be welcomed but will have to be agreed with 

the ESCC preeminent body, the Space Components Steering 

Board (SCSB). This is in part to maintain the appropriate 

balance, as required by the ESCC Charter, between the 

different interest groups. 

 

The ESCC Executive task is carried out by various National 

Space Agencies and ESA. The publicly visible outputs of this 

shared task are the ESCC specifications, the ESCC Qualified 
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Parts List (QPL), the ESCC Qualified Manufacturers List 

(QML) and the European Preferred Parts List (EPPL). The 

ESCC Executive is also responsible for ensuring the 

implementation (by manufacturers) of ESCC requirements on 

Quality Assurance. 

 

A better understanding of the ESCC system can be achieved 

by checking the information published at the mentioned 

website (https://escies.org), through the reading of ESCC 

20000, by sending specific questions or requests to 

secretariat@escies.org or by attending an ESCC training 

session, such as those organised periodically by ESA at its 

ESTEC establishment periodically, which are free of charge. 

II. ESCC SPECIFICATIONS – THE SKELETON OF THE 

SYSTEM 

ESA can only provide certification of ESCC Qualification 

when the pertinent requirements have been verified. Such 

requirements are defined in a number of specifications. The 

ESCC system is supported by some 600+ published 

specifications. 

For example, in the case of integrated circuits, the ESCC 

requirements can be found in various specifications, which 

can be grouped as follows: 

A. Basic specifications 

Table 1: Basic Specifications (methodology) 

Subject ESCC Number 

Component Qualification 20100 

Component Evaluation 22600 + 2269000 

Capability Approval Qualification 24300 + 2439000 

Technology Flow Qualification 25400 + 2549000 

Table 2: Basic Specifications (test methods) 

Subject ESCC Number 

Internal Visual inspection 20400 + 2049000 

External Visual inspection 20500 + 2059000 

SEM inspection 21400 

Total Dose Steady-state irradiation 22900 

EDS Sensitivity Test Method 23800 

Resistance to solvants 24800 

Table 3: Basic Specifications (system and Quality Assurance) 

Subject ESCC Number 

Preservation, packaging, dispatch 20600 

Terms, definitions, symbols, units 21300 

Marking 21700 

Leads materials and finishes 23500 

Quality System requirements 24600 

Non-conformance management 22800 

B. Generic specification 

ESCC 9000, Monolithic and Multichip Microcircuits, 

wire-bonded, hermetically sealed AND flip-chip monolithic 

microcircuits, solder ball bonded, hermetically and non-

hermetically sealed. 

C. Detail specification 

This will be a device-specific procurement specification, 

issued by ESA upon a review of a manufacturer-provided 

initial draft. In principle, such review will include the ESCC 

Executive only. 

 

Probably, the best starting point to become familiar with the 

ESCC qualification concept is the generic specification ESCC 

9000. This specification will set the basic rules for Flight 

microcircuits screening, periodic testing and qualification 

(initial qualification and maintenance) and is most relevant for 

manufacturers and users. Incidentally, it may be noted that 

some space system projects may be ready to accept the use of 

unqualified components on the basis of their capability to 

conform to ESCC 9000 requirements for production control 

and screening.  

 

The ESCC qualification concept is based on a two-step 

approach consisting of an evaluation and a qualification test 

phase. Evaluation test requirements are defined in ESCC 

2269000 and the evaluation of the manufacturer itself, which 

is carried out in the form of an audit by the ESCC Executive 

(ESA and/or national agencies) is defined in ESCC 2029000.  

 

Finally, customers will need to refer to a procurement 

specification in their Purchase Orders for Devices. The ESCC 

Detail specification serves that purpose. The ESCC Executive 

readily supports manufacturers and users in the preparation 

and publication of ESCC Detail specifications. The process 

can be started by a manufacturer at any time, using the 

spacecomponents.org website. The ESCC Detail 

specification, as a supplement to ESCC 9000, will define the 

product in its basic constituents and absolute limits (package 

drawing, pin-out, power dissipation, Operating 

temperatures…) as well as the acceptance limits for electrical 

testing of the microcircuits and the bias conditions for 

endurance and radiation evaluation testing.  It must be 

highlighted that the ESCC Detail specification does not 

replace the product data sheet and associated application notes 

in what refers to typical performances, application-specific 

instructions or recommended bias circuits or load conditions. 
 

The rest of the specifications mentioned earlier in this 

paragraph contain more detailed requirements and ESCC 

Quality Assurance system provisions which the manufacturer 

needs to understand and implement in his own processes. The 

adoption of such requirements is rarely problematic and can 

normally and gradually be achieved, with the support of the 

ESCC Executive, in the early phases of Evaluation. It may be 

noted in this respect that the use of alternative test methods or 

manufacturer’s own procedures may well be agreed at that 

stage or early evaluation. In such cases, for ESCC Qualified 

components, the agreed deviations are described publicly in a 

manufacturer-specific agreed deviations annex to the ESCC 

Detail specification. When a component is not qualified, even 

if available in accordance with an ESCC Detail specification, 

no agencies’ monitoring nor supervision of compliance to 
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ESCC requirements can be assumed and customers may need 

to decide on their own on the best strategy for verification of 

such requirements (if the manufacturer’s self-certification is 

not enough) in the context of their own supplier’s evaluation 

or rating. 

III. ESCC QUALIFICATION SCHEMES 

The ESCC system supports the procurement and qualification 

of EEE Components suitable for use in most space systems. 

However, additional evaluation or tests during procurement 

may be required for use in projects with exceptional 

application conditions (e.g. extended temperature range or 

Radiation Hardness Assurance). 

 

Various schemes of qualification co-exist in the ESCC 

system, and all have been used over the years to achieve 

qualification of microelectronics products and manufacturer's 

technology flows and capability domains. The ESCC 

Secretariat has recently published a very detailed brochure 

which provides details and insight into the various schemes of 

ESCC Qualification. This brochure is available for download 

at the ESCIES website. 

 

In addition, it may be noted that several standardization 

initiatives have been developing and running, since some 

years ago, to build an alternative certification scheme in order 

to address non-integrated supply chains. This was reported 

already at AMICSA in 2012. The new scheme is called 

Process Capability Approval (PCA) and is described in ESCC 

25600 specification. The first implementation of this scheme 

has been achieved with hermetic hybrid products. Further 

developments in this context may address assembly and test 

houses and, possibly, other services related to the production 

of space components. 

 

All three schemes of Qualification share a basic underlying 

structure which includes an evaluation stage (product and 

manufacturer) and a qualification testing stage, all 

accompanied by the production of a certain amount of 

documentation aimed at establishing a verified baseline of 

product configuration and performance which would then be 

exercised in procurement during the validity of the 

qualification. Even when overlapping these two stages is not 

necessarily forbidden in the system, it rarely happened as it 

was usually understood that proceeding to Qualification 

testing without the product knowledge and other assurances 

obtained in the Evaluation stage might actually lead to a failed 

exercise, or the Qualification results might still be impaired at 

the last minute by unexpected evaluation outputs requiring a 

resolution or a change to the product. A typical example of 

this could be a product which does not perform as expected 

when evaluated in a radiation facility in a Total Dose test. It 

may be noted however that, in an effort to expedite and 

simplify the access to Qualification, the ESCC system has 

decided to start in 2016 an exercise aimed at merging, in a 

single test stage, the previously established two stages. This 

optional “fast track” to full Qualification is to be developed 

for microcircuits, among some other families of components. 

It is understood that a unified flow may reduce time and cost 

by eliminating any possible repetition of tests (hence less test 

samples would be used up in the total exercise) and creating 

additional opportunities for concurrent test implementations.  

 

Another interesting area of recent development in the ESCC 

system is the already-started re-writing of specifications in 

order to enable the ESCC Qualification of integrated circuits 

in DIE form. This additional possibility, perhaps in 

combination with the expected PCA of Assembly and Test 

Houses, might enable the “concatenation” of certifications in 

fragmented microcircuits’ supply chains involving various 

suppliers. In this respect, even when there are no explicit 

ESCC documents that define requirements/restrictions in the 

area of IP ownership and/or subcontracting, a legal entity that 

has no design, production (incl. test) tool of any kind could 

only achieve an ESCC qualification if they could verifiably 

demonstrate to have full control and effective authority over 

their supply chain just as if they were an almost self -

sufficient designer/producer (materials, utilities, etc. 

excluded) with beginning to end (comprehensive) product 

competence. In practice, this would require nearly perfect 

management and technical competence, and a lot of 

“interfaces verifications” by the ESCC Executive. As the 

primary added value of a qualification is a manufacturer's 

credible commitment to the customer that he is effectively 

capable of resolving product issues (within the specification) 

of almost any kind and implement the necessary corrective 

actions within a reasonably limited time, the more fragmented 

a supply chain is, the more difficult this demonstration will 

become. So far, only moderately-fragmented microcircuit 

manufacturers have really achieved ESCC qualification. 

Typical examples include fabless manufacturers or 

manufacturers with an established partnership with external 

assembly house for packaging operations. 

 

Finally, it should be noted that significant efforts have 

transformed already the ESCC 9000 specification during the 

last two years. These reforms have reshaped the specification 

so that its present (issue 8 of February 2016) scope for 

procurement and qualification includes MONOLITHIC AND 

MULTICHIP MICROCIRCUITS, WIRE-BONDED, 

HERMETICALLY SEALED AND FLIP-CHIP 

MONOLITHIC MICROCIRCUITS, SOLDER BALL 

BONDED, HERMETICALLY AND NON-

HERMETICALLY SEALED. So the specification is not any 

more addressing simpler constructions with a single 

monolithic chip wire-bonded in a hermetic enclosure as it now 

also includes useful requirements for the screening and 

qualification of much more advanced and complex devices. 

 

IV. BENEFITS OF QUALIFICATION 

What would a manufacturer obtain in return for his efforts in 

pursuing ESCC Qualification? ESCC qualified components 

come with added value as potential users will see advantages 

such as simplified procurement effort, robust components -

ESCC qualified components hold an impressive record of 

faultless operation in thousands of space systems and, if any 

faults do appear, national space agencies and ESA commit 

their resources to address and fix the problems together with 

the manufacturer and any affected customers, high product 
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maturity and low rate of obsolescence, a simplified parts 

approval process – for projects complying with ECSS-Q-ST-

60C ESCC qualified products are, in the majority of cases, 

pre-approved, solid performance - very high repeatability 

between manufacturing lots and across manufacturers 

(multiple sources may be qualified to a common standard), 

proven supply chains - periodic testing and audit are inherent 

to the system. In addition, qualified manufacturers operate an 

open-books policy with the qualifying agencies and ESA, so 

their cooperation in any problems’ resolution is guaranteed. In 

terms of Quality Assurance, ESCC qualification implies third-

party independent monitoring of the manufacturer’s 

operations, performed by impartial space agencies and ESA 

and the ESCC Executive approves the full industrial 

configuration of qualified components. In summary, a valid 

ESA certificate is perceived by most space system customers 

as a strong endorsement of performance and quality, which in 

fact supports the customers' high level of trust and offers them 

a reduced cost of ownership - as quality problems are very 

infrequent with ESCC components. ESCC qualified 

components are acceptable for use in all ESA satellite 

missions and meet as well the requirements of most 

commercial and scientific space missions. 

V. SUMMARY AND ADDITIONAL CONSIDERATIONS 

The ESCC system continues to adapt itself to a changing 

industrial landscape and to enable the qualification of 

advanced technologies and components. The activities 

performed under the ESCC represent a successful example of 

systematic partnership and cooperation among European 

private and public entities with interests in the field of EEE 

components for Space applications. 

Even for cases where Qualification is not suitable or possible, 

the ESCC system provides the relevant specifications which 

may enable procurement, inspections and various other 

Quality Assurance actions aimed at producing and testing 

Space grade components. To provide recognition of 

intermediate achievements on the way to full space 

qualification the European Preferred Parts List (EPPL) offers 

the possibility to list components which have successfully 

completed an ESCC evaluation programme. 
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Abstract 

The Scalable Sensor Data Processor (SSDP) is a next-

generation heterogeneous multicore mixed-signal ASIC for 

on-board data processing, embedding in the same chip 

resources for high-performance data processing and control. 

These resources are organized as a System-on-a-Chip (SoC) 

together with generic and specialized interfaces for 

Input/Output (I/O), as well as interfaces for data acquisition. 

Test and validation of such diversity requires an adequate 

prototyping platform connected to flexible Electrical Ground 

Support Equipment (EGSE), which are exploited with 

representative use-cases and applications. This paper details 

the test and validation activities of the SSDP, ranging from 

low-level interface testing up to benchmarking. 

I. INTRODUCTION 

Heterogeneous computing architectures are poised to be 

part of next-generation on-board processing systems, due to 

their appealing properties, such as flexibility and power 

efficiency. The flexibility conferred by mixing different 

computing architectures is undeniable, allowing the co-

existence of processing and control in the same package. 

These are further enriched by a complete set of input/output 

(I/O) peripherals, in a System-on-a-Chip (SoC) fashion. The 

Scalable Sensor Data Processor (SSDP) is an example of such 

devices, having resources for processing, control and data 

acquisition in the same package. Furthermore, it has local and 

networked I/O, and the capability of being connected to other 

SSDP devices to scale a system towards higher performances. 

Testing and validation of such devices encompasses many 

different tasks, stemming from their very SoC nature. For 

example, there are several I/O interfaces which require 

testing, and at the same time, the interaction between these 

and the processing elements must be validated. Such test and 

validation requires specialized hardware in the form of 

Electrical Ground Support Equipment (EGSE), with the 

appropriate interfaces and test execution support. 

This paper is organized in the following manner: Section 

II broadly presents the SSDP architecture, its main blocks and 

I/O interfaces; Section III and IV describe the prototyping 

support required by the SSDP and the planned test and 

validation work; Section V explains the support needed by the 

testing and validation activities, as well how these are being 

carried out, both at hardware and software level; and Section 

VI concludes this paper. 

II. SSDP ARCHITECTURE 

The SSDP is a next-generation mixed-signal ASIC for on-

board data processing, with a heterogeneous multicore SoC 

architecture. It embeds specialized Digital Signal Processors 

(DSPs) together with a General-Purpose Processor (GPP), 

being capable of delivering high-performance processing 

together with reliable control. The SSDP architecture can be 

divided in two major subsystems, based on their main scope: 

- Processing, with the multicore DSP, large memory 

and data acquisition interfaces; 

- Control, with the GPP and I/O interfaces, both local 

and networked 

These subsystems are connected via bidirectional bridges, 

translating signalling and data between them. A block 

diagram depicting the subsystems and their modules is shown 

in Figure 1. 

 

Figure 1: SSDP Architecture Block Diagram 
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The Processing Subsystem is based on Recore Systems 

multicore DSP IP, containing two Xentium® fixed-point DSP 

cores [1] connected to I/O interfaces and SDRAM memory 

via a high-speed Network-on-Chip (NoC) interconnect. This 

subsystem is oriented to data processing and contains an 

internal 64 kB SRAM (Memory Tile) as well as a DMA 

Controller which can be exploited to efficiently move data 

between the several components. On- and Off-chip data 

acquisition is possible, via dedicated bridges. Furthermore, 

the ADC/DAC Bridge can double as a high-throughput 16-bit 

Chip-to-Chip interface, capable of reaching 800 Mbps and 

supporting flow-control mechanisms. 

The Control Subsystem is based on the well-known 

Cobham Gaisler LEON3 System-on-a-Chip (SoC) [2], with a 

LEON3FT fault-tolerant SPARC V8 GPP connected to 

SRAM and EEPROM memories and several I/O interfaces via 

an AMBA bus interconnect. The I/O interfaces provided by 

this subsystem are more oriented towards control, with local 

I/O like SPI, I2C, PWM and GPIO among others, and 

networked I/O like SpaceWire (SpW) and CAN. Furthermore, 

it provides many advanced functions: house-keeping data 

acquisition (HK ADC); time-keeping and distribution and 

memory scrubbing, to name a few. 

III. PROTOTYPING SUPPORT 

The major challenge regarding prototyping the SSDP 

stems from its sophisticated nature, and is related to the 

amount of FPGA resources needed to integrate the two 

subsystems. In order to tackle this issue, a state-of-the-art 

Xilinx Kintex Ultrascale XCKU060 FPGA [3] is used, which 

offers enough fabric for the SSDP machinery. The FPGA is 

mounted together with all the I/O interfaces on a custom 

board whose block diagram is shown in Figure 2. 
 

 

Figure 2: SSDP Prototyping Board Block Diagram 

The prototyping board supports all the peripherals and I/O 

interfaces envisaged in the SSDP architecture. Additionally, 

connectors based on the FMC standard were added, enabling 

the expansion of the board functions with modules such as an 

ADC or DAC devices, as well as allowing the probing of 

internal signals. The architecture presented in Figure 2 was 

mapped into a printed-circuit board named SSDP Prototyping 

Board (SSDP-PROB), and shown in Figure 3. 
 

 

Figure 3: SSDP-PROB - SSDP Prototyping Board 

The specification and schematic capture of the SSDP-

PROB was performed by TAS-E. The fabrication, assembly 

and test were performed by Pender Electronics. 

IV. TESTING AND VALIDATION ACTIVITIES 

Testing activities of the SSDP can be divided in three 

classes
1
, based on the objective of the activities:  

 Interface testing, where one or more interfaces are 

tested, in order to assess their status of compliance to 

the (individual) specification;  

 Validation testing, where an application is used to 

validate a system or subsystem, usually using several 

interfaces; 

 Benchmark testing, where an application or procedure 

is used to assess the performance of a specific 

component or set of components (function). 
 

Each of these classes requires different approaches to the 

testing, including different abstraction levels when designing 

and implementing the test itself. However, all have a common 

denominator: the need of some sort of testing support, both at 

hardware and software level. 

1) Interface 

The testing of interfaces is a task requiring a very low 

level of abstraction, for it usually deals with the hardware 

itself directly. Such activities are usually characterized by 

activities including configuration and status registers (read 

and write operations). 

Appropriate software support is crucial for this particular 

activity, for it is the key to increase the level of abstraction of 

                                                           
1
 Radiation testing was left out on purpose, although it can be 

seen as a particular case of validation. 
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testing activities. For example, having a software routine 

which may perform several operations, such as a 

configuration routine, may enable the design of more 

powerful tests, and at the same time decrease the amount of 

test steps needed. 

2) Validation 

A software application is executed in the SSDP, e.g., 

filtering, for validation testing activities. The resulting output 

is then verified to be compliant with a reference model, e.g. 

output of the same application in a modelling tool like Matlab. 

Some of the envisaged validation tests are: 

 Image processing, with edge-detection algorithms; 

 Compression, with algorithms such as CCSDS 122; 

 Operating System support, like RTEMS. 

These shall be compared against known reference models 

or golden results, coming from widely accepted reference 

implementations or standards. 

3) Benchmarking 

Assessing the performance of a specific component or 

function is achieved by performing benchmarking. A 

benchmark is a procedure or application which can be used 

across several different platforms or systems, yet allowing 

having a common basis for result comparison. In benchmark 

testing, an application is executed and the time it takes to 

complete is evaluated. The results can be used to assess the 

performance of the tested system, and compare it with others 

systems. An example of a benchmark is the amount of time 

needed to perform a given operation on a set of data, e.g. the 

FFT
2
 on a set of 1024 samples. In the SSDP scope, the set of 

benchmarks used for the NGDSP [4] will be used, in order to 

assess the performance figures of the processing block. 

V. TESTING AND VALIDATION SUPPORT 

Testing and validation is usually performed by having a 

test bench driving the testing activities, providing stimuli to a 

Unit Under Test (UUT) and then observing the outputs. 

Correctness is assessed by comparison with a given reference, 

which can be based either on specifications of I/O interfaces, 

or output of reference applications and algorithms. 

With the SSDP prototyped on hardware and being the 

UUT, some sort of Electrical Ground Support Equipment 

(EGSE) is needed as the Test Bench, in order to provide the 

necessary stimuli (I/O activities), and capture the outputs for 

verification. This architecture is depicted in the block diagram 

of Figure 4. 

From the test bench perspective, such architecture requires 

the provision of both hardware and software components, to 

(electrically) interface with the UUT and at the same time to 

(logically) drive the execution of the tests. From the UUT 

perspective, both hardware and software support is needed: 

the former is embodied by the SSDP-PROB; the latter in the 

form of routines to support testing activities, which are 

described later in this section, or fully-fledged validation 

applications, described in the following section. 

                                                           
2
 Fast Fourier Transform 

 

Figure 4: SSDP Testing Architecture Block Diagram 

A. Test Bench Hardware 

The test setup for the SSDP requires an integrated and 

flexible EGSE platform, given the diversity of I/O interfaces 

(see Figure 1). A suitable candidate is the PXI platform from 

National Instruments (NI) [5], which offers the possibility to 

embed in a single chassis several modular I/O interfaces, 

together with the computational resources needed to support 

the execution of the testing activities. A photo of the current 

setup is shown in Figure 5. 
 

 

Figure 5: SSDP EGSE Setup for Testing 

All the (digital) I/O interfaces of the SSDP architecture are 

connected to the test bench. Mixed-signal interfaces, such as 

data acquisition, are emulated by resorting either to on-chip 

mechanism such as a ROM memory, or to an external digital 

reconfigurable I/O NI PXI module with an FPGA device. 

Such module allows the emulation of mixed-signal 

component’s digital interface, e.g. the digital word of an 

ADC, together with the control signals. Furthermore, this 

module is also used to control the UUT, by issuing signals 

such as reset. 

B. Software 

Software support is crucial for the execution of testing and 

validation activities, as can be inferred from the architecture 

depicted by Figure 4. Support is required from two different 

sides: test bench, with the logic driving test execution (stimuli 

and UUT control); UUT, with the logic that responds to the 

stimuli and control signalling, and generates output or actions 

accordingly. 
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1) Test bench 

The software driving the tests must provide several levels 

of abstraction for the design and implementation of the tests. 

A platform that provides such feature and at the same time is 

capable of fully exploiting the chosen EGSE hardware 

platform is NI LabView, an industry standard software w.r.t. 

test design and execution. 

With LabView, tests can be modelled as applications at a 

high(er) abstraction level and provide support for advanced 

validation scenarios, based on high-level descriptions, e.g. 

emulation of a system component, like a mass memory. Such 

abstraction, however, is based on low-level interfacing with 

the test components, following a component-based approach, 

with functions modelled as boxes being instantiated inside 

other boxes (functions), as shown in Error! Reference 

source not found.. 

2) UUT 

As pointed out earlier, the UUT software will mainly 

provide support for test execution, i.e. control of the UUT 

hardware and stimuli response. Such support comes in the 

form of the ability to process and exchange telecommands 

(TCs), which are provided by the Test Bench. A diagram 

depicting the modelling of a sequence of actions triggered by 

a TC from the test bench down to the UUT software is shown 

in Figure 7. 

Despite having a seemingly simple function, the UUT 

software is also capable of performing sophisticated 

functions, such as data manipulation and peripheral 

initialization and configuration, needed by the higher-level 

functions required by the Test Bench application. 

C. Resulting  Architecture 

The resulting test and validation architecture, including 

hardware and software, is depicted in Figure 8, with some of 

I/O interfaces represented. Although not depicted, the 

reconfigurable I/O is also responsible for the (hardware) 

control of the test activities, e.g. reset. 
 

 

Figure 8: SSDP Testing and Validation Architecture 

Such architecture enables the effective test of all the interfaces 

of a system. Furthermore, this architecture can be reused for 

Engineering Model (EM) and Flight Model (FM) testing and 

validation activities, including radiation tests. 

Figure 6: LabView Software Test Design and Entry 

Figure 7: UUT Software Sequence Chart 
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VI. CONCLUDING REMARKS 

The Scalable Sensor Data Processor (SSDP) is a next-

generation mixed-signal on-board processing ASIC, with a 

heterogeneous multicore architecture for processing and 

control activities, having local & networked Input/Output 

(I/O) and data acquisition and conversion capabilities. 

Testing of sophisticated devices like the SSDP requires an 

appropriate test setup and environment, capable of providing 

flexibility for the several types of testing activities. Test 

activities have to be performed at several levels of abstraction, 

ranging from the hardware low-level modules up to validation 

as a system, and including also benchmarking activities. 

SSDP prototyping is supported by a custom FPGA-based 

board, with all the needed I/O interfaces, emulation of the 

digital end of mixed-signal components, like ADCs. Testing 

and validation activities of the SSDP are supported by a Test 

Bench architecture based on National Instruments PXI 

hardware and LabView software. 

The same setup is used for all testing, validation and 

benchmarking activities, with varying software support at the 

SSDP level, thus encompassing all the required levels of 

abstraction. Furthermore, Engineering and Flight Model 

testing and validation can reuse the same architecture for their 

activities, including radiation testing. 
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Abstract 
Architectural solutions for improving robustness of space 
computers with regard to radiations effects enables the 
development of high performance computers based on 
commercial grade digital processing devices. The ESA 
study HiP-CBC (High Performance COTS Based 
Computer) has validated the radiation mitigation concept 
to soft errors with a TRL5/6 DSP demonstrator. This 
concept is now being applied for a new range of payload 
processing applications such as digital signal processing 
on regenerative telecom missions. 

Index terms- Digital Signal Processing, Reconfigurable 
FPGA, COTS based computers, Payload Data Processing, 
Space radiations effects mitigation technique, HiP-CBC, 
SmartIO, SCOC3 

I. CONTEXT AND MOTIVATION 
Commercial and scientific returns of satellite missions are 

closely linked with the on-board processing capabilities of a 
spacecraft. Higher on-board processing performance 
capability allows for more data to be acquired and processed 
in real time, thus increasing both the efficiency and the range 
of applications of satellite missions.  

Among the main benefits, it allows to reduce the amount 
of information to be transferred to the ground segment for 
exploitation, which is typically done for science or earth 
observation missions. Higher processing capability also 
increases on-board autonomy of a spacecraft, reducing the 
need of a distant mission operation planning as well as the 
delay for delivering space data products to the final customer. 
At last, it enables on-board direct usage of the processed data 
for advanced applications such as autonomous vision based 
navigation and regenerative telecom payloads, opening the 
door to new opportunities and innovations.  

Using commercial off the shelf (COTS) components for 
space application is a long standing idea for the space industry 
[1][2][3]. Its main purpose is to take benefit from an increased 
processing performance and from a better power efficiency 
driven by the mass production of electronic markets, in which 
the competition is fierce. With the constantly increased 
performance gap between state of the art space and ground 
technologies, standard COTS reprogrammable processing 
devices such as multi-core processors or FPGAs achieve 
today better performance than the latest space qualified 
ASICs.  

That is why the use of COTS based computers for high 
payload processing applications has become an interesting 
alternative to fully space-grade systems. However, they 
generally do not fulfil space mission’s expectations mainly in 
terms of radiation tolerance and thermal dissipation.  

II. PROCESSING DEVICES RADIATION TOLERANCE 
Radiation tolerance is usually divided into three main 

categories; Total Ionizing Dose (TID) and hard errors which 
result in a permanently faulty device, and soft errors resulting 
in temporary faulty behaviour that can be recovered. 

Over time an accumulative dose of radiation degrades the 
transistors of circuits; tolerance to TID effects is therefore a 
first aspect to be taken into account when using COTS 
devices and must be in line with the mission requirements 
(duration, orbit, shielding thickness which is constrained by 
both the weight and the size of the payload budget). 

Then, hard errors such as Single Event Latch-up (SEL), 
Single Event Burnout (SEB), and Single Event Gate Rupture 
(SEGR) may not be reversed by resetting or power cycling the 
system and can lead in the worst case to the destruction of the 
device. As a consequence, immunity to such effects is a 
fundamental prerequisite to enable the use of COTS for space 
applications. 

At last, soft errors such as Single Event Upset (SEU), 
Single Event Transient (SET), and Single Event Functional 
Interrupt (SEFI) can be mitigated by various methods 
reviewed in [4]. In this way, by using such methods for 
monitoring and control of soft errors, selected COTS devices 
may deliver extreme processing performance with an overall 
level of reliability and availability which is fully acceptable 
for a given mission.  

The traditional way for implementing space on-board 
computers is to achieve robustness through radiation 
mitigation techniques inherent to the EEE component 
technology and the processor design thus making them robust 
to all radiation effects. We call these devices “rad-hard”. 
But this approach induces a long and costly development 
process which duration also increases the technology gap 
w.r.t. commercial devices given the fast micro-electronic 
technology evolution. The proposed alternative is to use 
selected COTS processing devices which technology ensures 
a sufficient robustness to radiation destructive effects (e.g. 
TID and hard errors). We call these devices “rad-soft”. 
External mitigation mechanisms for monitoring and control of 
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the device w.r.t. non-destructive radiation effects (e.g. soft 
errors) are then built within the computer system itself. There 
are currently many rad-soft devices that can achieve much 
higher processing performance than existing rad-hard devices. 

  

Figure 1:  “Rad-hard” and COTS “rad-soft” processing devices 
features and examples. 

 
Figure 2: COTS “rad-soft” devices can achieve much higher 

performance than currently existing “rad-hard” devices. 

III. SMARTIO MITIGATION CONCEPT 

A. High Performance COTS based Computer  
Within the framework of ESA TRP/GSTP studies devoted 

to the development of High Performance COTS Based 
Computers (HiP-CBC) in space applications, a generic 
architecture has been defined by Airbus Defence and Space to 
efficiently mitigate the erratic behaviour of commercial grade 
processing devices such as DSPs, general purpose micro-
processors, or FPGAs when they are submitted to the space 
radiation environment [5]. 

Functions for detection and management of the sporadic 
errors induced by the radiation effects are developed with 
standard space-grade device - called SmartIO - interfacing 
with one or several high performance data processing boards 
implemented with commercial processing devices.  

SmartIO ranks among macro-mitigation techniques that 
tackle all types of soft errors (SEU, SET, and SEFI). It is 
based on an external radiation hardened unit that monitors the 
execution of COTS units called Processing Modules (PMs). 
The checking of the execution is performed at the I/O level, 
which is used as a coarse synchronization point to facilitate 

the implementation of the mitigation strategy. For that 
purpose, input data are divided into processing batches, are 
sent for computation of the COTS units, and results from 
COTS are finally checked. In this scheme, SmartIO is always 
a master while PMs are acting as slaves. 

SmartIO

Processor 
Module

From instrument

To platform

Memory Processor 
Module

Processor 
Module

COTSRad-Hard
 

Figure 3: HiP-CBC generic architecture using 3 processor modules 
implementing the Triple Modular Redundancy (TMR) mitigation 
strategy to mask potential faults/failures into one of the channels. 

Voting strategy is flexible and depends on the availability 
requirement of the mission:  
 Hardware triplication (TMR) that allows to mask 

potential faults/failures without interrupting the 
processing; 

 Hardware duplication (DMR) in which the duplicated 
components work in parallel and allow to only detect 
faults/failures;  

 Time redundancy that performs the same operation 
multiple times on one component to compare and 
detect faults/failures.  

Following this approach, the analysis of faults/failures is 
straightforward. Indeed, only three scenarios have to be taken 
into account: 
 The PM gives an incorrect result (data corruption); 
 The PM does not accept input data; 
 The PM does not provide output data. 
For the first case, error checking is achieved by simple 

comparisons of each of the result data sets, or by computing 
and comparing the digital signature (typically a CRC) of each 
of the result data sets to relax memory constraints. For the 
latter cases, the correctness of the execution is achieved by a 
configurable watchdog timeout.   

SmartIO is also linked to a fast memory used as an 
intermediate buffer to support pipeline processing on a large 
number of data as well as to enable a replay mode in case of 
detected faults/failures.  

Finally, SmartIO also brings the reconfigurable unit that is 
required to safely restore the context after a soft error. 
Recovery phase requires re-synchronizing the faulty channel 
with healthy ones in case of hardware redundancy, which is 
relatively simple for most payload applications using a coarse 
synchronization at the I/O level.  
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B. HiP-CBC Concept Validation 
Through the HiP-CBC study, a TRL 5/6 prototype 

implementation with a SmartIO based on a SCOC3 
component (SCOC3 is a Spacecraft Controller on a Chip 
including a LEON3 processor with several interfaces such as 
1553, CAN bus, and SpaceWire) and COTS based processing 
board made around Texas Instrument TMS320C6727 DSPs 
has been designed and manufactured within the frame of this 
ESA project [6]. 

 

 
Figure 4: HiP-CBC SmartIO prototype is implemented with a 

SCOC3ASIC. 

This demonstrator has validated the concept and the 
maturity of the so called Generation 1 of SmartIO (i.e. based 
on fully mature 2015 existing technologies) which remains 
limited to the coverage of applications with moderate needs in 
term of data processing due to the limited bandwidth of 
SpaceWire (up to 200 Mbps) and processing performance of 
the SCOC3 (80 MIPS). Higher rates will be required for e.g. 
on-board image, radar, or telecom signal processing with a 
support of serial links in the 1-10 Gbps range such as Serial 
RapidIO or the SpaceFibre currently in development. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5: DSP board developed by OHBCGS with Texas Instrument 
TMS320C6727 DSPs.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The full HiP-CBC demonstrator. 

IV. APPLICATION TO REGENERATIVE TELECOM 
MISSION 

A. Context 
In this paper, we introduce a typical architecture of COTS 

based computers that mitigates soft errors for regenerative 
telecom payload applications, in which digital signal 
processing needs are strongly increasing and lead to a 
“technological breakthrough” for on-board payload 
processing architectures. 

Indeed, telecom satellites were historically mostly used as 
transparent repeaters (also known as “bent-pipe” repeaters), 
which only amplify uplink signals without processing. 
Nowadays, telecom satellites are often made of regenerative 
payloads that implement on-board demodulation, decoding, 
encoding, and modulation, allowing to process incoming data 
with advanced network functions such as scheduling and 
packet routing, short-term and long-term storages as well as 
acknowledgement and control flow features. These new 
functions induce a high level of complexity in the 
development of the last generation of telecom rad-hard 
regenerative Digital Signal Processors. This is a typical case 
for which advanced on-board processing architecture based on 
the use of COTS components could help to save time to 
market and overall cost with an increased flexibility. 
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B. Machine-to- Machine communications 
Machine-to-Machine (M2M) communications, serving the 

broader Internet-of-Things (IoT), are receiving increasing 
interest. They have a very large market and growth potential, 
with increasing needs in the low-cost, low data rate segment. 
Complementing the ground networking through satellites is 
the only solution to provide global continuous coverage 
including remote and desert areas, with growing interest in 
low altitude satellite constellations embarking Software 
Defined Radio (SDR) payloads. 
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Figure 7: Overview of a M2M hybrid system with a 

satellite/terrestrial solution. 

However, current space technologies are not adequate to 
offer a competitive solution for commercial services with a 
satisfactory level of quality of service. To be commercially 
successful, flexible and regenerative payloads, delivering very 
high performances under severe cost, size, and energy 
constraints are mandatory. This is where the HiP-CBC 
concept and its SmartIO comes in; “enabling access” to the 
processing performances of latest COTS components based 
on more power efficient silicon technologies, which is 
identified as the most promising strategy. Many other 
applications related for instance to data collection, spectrum 
survey or air-traffic control could also benefit of such 
development. 

C. Generation 2 of the SmartIO 
Exploring this promising technical path, Airbus Defence 

and Space is currently working on an innovative architecture 
of a generic Radio-Digital Processing Module (R-DSP) based 
on COTS components with the Generation 2 of the SmartIO. 
This development is performed with the support of ESA 
through an ARTES program and CNES through the “Machine 
DSP à base de FPGA COTS” R&T study. 

To fulfil the requirements of a typical SDR payload, a 
preliminary analysis has shown that the SmartIO function 
developed in the frame of the HiP-CBC – a spacecraft 
controller - is not best fitted for SDR processing. For such 
applications, the instrument is actually a single or even a 
multi-port RF front-end providing one or several ADC and 
DAC LVDS interfaces, with a resolution of samples greater 
than or equal to 8 bits. Furthermore, the nature of the 
processing, with independent input and output data stream of 
samples, promotes the use of a pipelined streaming 
architecture for implementing the SmartIO. To achieve this, a 

Radiation-Tolerant (RT) FPGA offering a sufficient number 
of I/O pins and bandwidth capacity to be interconnected with 
a RF front-end has been identified as the most effective 
solution. 

Another fundamental aspect is related to the DSP 
performance of COTS devices. The PHY layer of the SDR 
protocol developed for M2M communications (ranging from 
low to medium data rates) requires a theoretical capacity of at 
least 50 GMAC/s to process 20 MHz of cumulated 
bandwidth. To satisfy these needs, COTS FPGAs have been 
selected since they offer a good trade-off between 
performance and flexibility. 

Among the different types of FPGA technologies, SRAM-
based FPGAs – in which both the configuration and the 
application layers are based on SRAM cells – have been 
chosen for several reasons. As summarized in Table 1, each 
FPGA technology comes with its strengths and weaknesses. 
SRAM-based FPGAs provide the most powerful devices in 
terms of throughput and capacity and are the only type of 
FPGAs to support online reconfiguration feature. In the 
context of SDR payloads, flexibility to support multi-missions 
and upgrades being a major asset, this technology is obviously 
the most promising.  

However, SRAM-based FPGA is also the most sensitive 
technology to soft errors, mostly because of the nature of the 
configuration memory based on SRAM cells. On the contrary, 
flash and anti-fuse based FPGAs provide better intrinsic 
resistance since their configuration memory is soft error 
immune, but lack behind in performance and capacity due to 
the use of old CMOS processes; respectively 65 nm and 150 
nm compared to 16 nm for latest SRAM-based FPGAs. A 
significant gap in the electronic world! 

Nevertheless, this weakness can largely be compensated 
by the efficiency of the SmartIO mitigation technique, in 
which the availability is scalable and can be adapted by 
choosing the appropriate voting strategy thanks to a modular 
architecture.        

Table 1: Comparison of FPGA technologies (2016) 

Feature Anti-fuse Flash SRAM 
Reprogrammable No Yes but 

limited Yes 

Volatile 
Configuration No No Yes 

Online 
Reconfiguration No Not 

Recommended Yes 

Capacity Low Medium Very High 

DSP Performance Low 
(125 MHz) 

Medium 
(350 MHz) 

Very High 
(700 MHz) 

Soft Error 
Sensitivity 

Low to Very 
Low 

Medium to 
Low High 

TID Tolerance High Low to 
Medium High 

 
The resulting architecture for COTS based computer for 

regenerative telecom payload is depicted in the following 
picture (Figure 8). 
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Figure 8: R-DSP architecture based on RT-FPGA for the SmartIO 
and 3 SRAM FPGAs for PMs. 

In this scheme, SmartIO function is implemented using a 
RT anti-fuse FPGA while commercial SRAM FPGAs are 
used to implement the high processing layer of the R-DSP 
module. A non-volatile memory is used to store multiple 
bitstreams that contain necessary information for the 
configuration of SRAM FPGAs for a given mission. Since the 
SRAM FPGA configuration memory is volatile, this is 
required each time the R-DSP is activated. This is also 
necessary for the recovery phase when a soft error has been 
detected by the SmartIO. The configuration port of PMs is 
driven by the SmartIO FPGA, to ensure the correctness of the 
programming. At last, a SpaceWire link is also part of the 
design to provide a standard interface between the SmartIO 
and the rest of the payload network.  

V. CONCLUSION 
The use of commercial electronic components in space 

avionics is becoming an attractive solution for high 
performance payload processing applications, in which 
availability and reliability requirements can be achieved 
through the use of different design mitigation schemes. The 
growing performance gap between the commercial electronic 
components and the space grade components suggests that 
COTS based computers are a strategic research topic for space 
on-board data processing and avionics. Several studies with 
ESA, CNES, and other national agencies have explored this 
way at computer architecture level as well as for high 
performance processing COTS devices and technologies. This 
paper has introduced the development by Airbus Defence and 
Space of an advanced COTS based computer architecture 
based on FPGA technologies enabling flexible and high 
performance SDR data processing in future space 
applications. A TRL 5/6 demonstrator is expected at the end 
of the 2016 year. 
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Abstract 

STAR-Dundee with the University of Dundee has recently 

designed several high performance DSP units each using 

SpaceWire or SpaceFibre interfaces to provide an input/output 

performance in-line with the capabilities of the specific DSP 

processor. 

The first DSP unit is for the High Processing Power 

Digital Signal Processor (HPPDSP) project, which is an ESA 

funded project led by AirbusDS with STAR-Dundee Ltd and 

CG Space. It aims to build a high performance, programmable 

DSP processor suitable for spaceflight applications. STAR-

Dundee was responsible for the hardware, FPGA and low 

level software development. The HPPDSP is designed around 

the TI TMS320C6727B processor which is available as a 

space qualified part. The DSP processor connects to external 

SDRAM via its EMIF (external memory interface) bus. 

Peripherals that are directly controlled by the DSP processor 

are attached to the EMIF bus via an FPGA. Other peripherals 

that are able to access DSP memory and registers in parallel 

with the DSP processor are attached to the UHPI (Universal 

Host Processor Interface) bus of the DSP processor via the 

FPGA. A board has been designed incorporating the 

TMS320C6727 processor, SDRAM memory and a Xilinx 

Virtex 4 FPGA. The FPGA includes EDAC for the SDRAM 

memory, memory management, SpaceFibre and SpaceWire 

interfaces, and other general purpose interfaces. A high 

sample rate ADC/DAC interface is also included. 

The second DSP project is a high performance FFT 

processor for a THz Radiometer. Implemented in various 

FPGA technologies this Wideband Spectrometer (WBS) is 

able to perform 2k point complex FFTs at a sample rate of 

around 2.4 Gsamples/s in radiation tolerant technology, a total 

processing power of more than 200 GOPS. Each FFT board 

processes a 2 GHz wide band to a resolution of around 3 

MHz. SpaceWire is used to gather the data from several of 

these spectrum analysers to handle up to 12 GHz bandwidth. 

The third DSP project is the Ramon Chips RC64 Many 

Core DSP processor, where STAR-Dundee provided the 

SpaceWire and SpaceFibre technology for this very powerful 

programmable DSP processor. 

The paper focuses on the HPPDSP architecture, the FPGA 

design and the board design. It will give an overview of the 

WBS system and present the latest implementation of this 

high performance DSP system. A brief summary of the RC64 

processor will be provided. In each case the role of SpaceWire 

and SpaceFibre in the different systems will be described. 

I. SPACEFIBRE 

SpaceFibre [1] [2] is a very high-speed serial data-link and 

data-handling network technology designed by the University 

of Dundee (UoD) and STAR-Dundee (STAR), which 

supports high data-rate payloads. SpaceFibre operates over 

fibre-optic and electrical cable and provides data rates of 2.5 

Gbits/s in current radiation tolerant technology. It aims to 

complement the capabilities of the widely used SpaceWire 

on-board networking standard [3][4][5]: improving the data 

rate by a factor of 12, reducing the cable mass by a factor of 

two and providing galvanic isolation. Innovative multi-laning 

improves the data-rate further to tens of Gbits/s. SpaceFibre 

provides a coherent quality of service (QoS) mechanism able 

to support priority, bandwidth reservation and scheduling. It 

also provides fault detection, isolation and recovery (FDIR) 

capabilities. SpaceFibre enables a common on-board network 

technology to be used across many different mission 

applications resulting in cost reduction and design reusability. 

SpaceFibre uses the same packet format as SpaceWire, 

enabling simple connection between existing SpaceWire 

equipment and SpaceFibre. The SpaceFibre interface is 

designed to be implemented efficiently, requiring 

substantially fewer logic gates than other interface 

technologies like Gigabit Ethernet and Serial RapidIO. 

SpaceFibre is currently being prototyped and designed into a 

range of on-board processing, mass memory and other 

spacecraft applications by international prime, equipment and 

chip manufacturers. 

II. HPPDSP 

The HPPDSP processor board is shown in Figure 1 and a 

block diagram of the board and FPGA is given in Figure 5 at 

the end of this paper. 

 

Figure 1: HPPDSP Prototype Unit 
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A. HPPDSP Overview 

The HPPDSP board uses the TI TMS320C6727B DSP 

processor [6], which is Texas Instruments' high-performance 

32-/64-bit floating-point digital signal processors. It has on-

chip RAM and ROM as unified program/data memory, and 

for external memory it has External Memory Interface 

(EMIF) which supports a single bank of SDRAM and a single 

bank of asynchronous memory. The Universal Host-Port 

Interface (UHPI) is a parallel interface through which an 

external host, i.e. Control FPGA, can access memories on the 

DSP. The Control FPGA is a Virtex-4 device. 

The DSP can boot either directly from a FLASH-based 

boot PROM, or over a SpaceWire/SpaceFibre interface 

accessing other resources on a network. The PROM stores the 

boot and DSP program data, which can be uploaded from a 

SpaceWire/SpaceFibre network. A simple Error Detection and 

Correction (EDAC) technique is utilised to protect data in the 

PROM. These functionalities are covered by the Boot 

Management module. 

For fast access to program and data, a 32-bit wide large 

SDRAM memory block is attached to the EMIF interface. An 

EDAC function is also included, inside Memory Management 

module, to protect data integrity in the SDRAM memory, 

which is susceptible to SEU events. The Memory 

Management also controls which SDRAM regions are 

allowed for a task to access. When a task performs an access 

to a region which is not allowed, the SDRAM data masks are 

turned on to prevent further data access. 

The Memory Management module has control over the 

DMA Bus B, from which it can access DSP memory via a 

DMA controller. It also can access the DSP peripheral Bus, 

which allows the DSP processor to access various memory 

mapped registers, along with Slave Access and Checker 

modules. The Slave Access and Checker Modules are used to 

exchange information and share memory data between the 

primary HPPDSP unit and the redundant HPPDSP unit when 

necessary. Both the Slave Access and Checker modules have 

access to an RMAP Initiator attached to SpaceFibre 

Master/Slave interface, so can start a RMAP transaction to the 

other unit of the Master/Slave pair. 

SpaceFibre interface 1 and SpaceFibre interface 2, each 

have four Virtual Channels (VCs). VC0, connected to a 

RMAP Target accessing the Configuration Bus, is used to 

configure/control all modules attached to this Bus, which 

includes configuring the SpFi and SpW operating parameters. 

The rest of VCs, from VC1 to VC3, are connected to DMA 

Bus A for DMA data in-to/out-of DSP memory via the DMA 

controller. These two SpaceFibre interfaces can be configured 

to work as a prime/redundant pair to achieve dual redundancy.  

The SpaceFibre Master/Slave interface has eight VCs. 

VC0 is used for configuration/control purposes. The rest of 

the VCs, from VC1 to VC7, are connected to DMA Bus A for 

sending a copy of any incoming IO data stream to the slave 

HPPDSP unit. 

All these SpaceFibre interfaces use STAR-Dundee 

SpaceFibre Codec IP, which has direct interface to connect 

with an external serialiser/de-serialiser (SerDes) device, i.e. 

TI TLK2711[7] in this design.  

There is a five port SpaceWire Router on the Control 

FPGA, with two external SpaceWire ports and three internal 

ports. Two of the internal ports are connected to DMA Bus A 

for DMA data in-to/out-of DSP memory, and the other 

internal port is connected to an RMAP Target accessing the 

Configuration Bus so that it can configure or control modules 

attached to this Bus. 

There are many occasions where the Control FPGA needs 

to interrupt the DSP processor, for instance when a data error 

is detected by the EDAC circuit for SDRAM data and the 

error is not a one-bit error i.e. not self-correctable. All 

interrupts are gathered from their sources and then an 

interrupt signal is connected to a pin of UHPI interface which 

can be configured as an interrupt input pin to the DSP 

processor. 

B. SpaceWire Router 

A five port SpaceWire router is provided on the HPPDSP 

unit. It has two SpaceWire ports (ports 1 and 2), two ports 

connected to the DMA Bus A inside the Control FPGA (ports 

3 and 4) and a configuration port (port 0) connected to the 

Configuration bus inside the Control FPGA. If nominal and 

redundant ports are required the two SpaceWire ports may 

each be given a nominal and redundant external LVDS 

driver/receiver. The SpaceWire Router is illustrated in Figure 

2. 

 

Figure 2:  SpaceWire Router 

The two SpaceWire interfaces are connected to a routing 

switch as ports 1 and 2. Ports 3 and 4 are attached to pairs of 

VCBs which are connected to the DMA Bus A. Port 0 is 

attached to an RMAP Target attached to the Configuration 

Bus. Configuration of the SpaceWire interfaces (e.g. link 

speed) and router (e.g. routing tables) is performed over the 

Configuration Bus. They can therefore be configured by any 

of the SpaceFibre or SpaceWire interfaces. 

C. SpaceFibre Interfaces 

There are three SpaceFibre interfaces on the HPPDSP. 

Two of them, SpFi 1 and SpFi 2, are for connecting to 

instruments or other HPPDSP units operating in parallel. Each 

of these SpaceFibre interfaces has three VCs that can be used 

for data transfer to/from DSP memory. These VCs are 

connected to the DMA Bus A. A fourth VC is used for 

configuration/control purposes and is connected to an RMAP 

Target that is attached to the configuration bus. The VC 
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attached to the RMAP Target provide a means of configuring 

the HPPDSP system remotely over SpaceFibre.  

The SpaceFibre interfaces use external SerDes devices (TI 

TLK2711) which are available in space qualified version.  

A block diagram of the SpaceFibre interfaces is given in 

Figure 3. 

 

 

Figure 3: SpaceFibre Interface Block Diagram 

D. DMA Controller 

The DMA Bus interface connects the DMA Bus A to the 

input and output VCBs in the SpaceFibre interface. When 

writing to a SpaceFibre interface the output VCBs are 

addressed. When reading the input VCBs are addressed. The 

output VCBs are multiplexed by the MUX into a single 

stream of SpaceFibre data frames into the SpaceFibre 

CODEC. The SpaceFibre CODEC encodes the data frames, 

adding any link control characters that are required and passes 

the resulting symbol stream to the external SerDes for 8B/10B 

encoding and transmission. Symbols received from the 

SerDes device are passed to the SpaceFibre CODEC and the 

data frames are extracted and passed to the DEMUX for 

writing into the appropriate input VCB. The data in the input 

VCBs are taken out when the DMA Controller reads the 

VCB. 

There is an input and output pair of VCBs that are not 

attached to the DMA Bus A. These are connected to an 

RMAP Target and used for configuring and controlling the 

HPPDSP unit. 

SpFi 1 and SpFi 2 each have four pairs of VCBs (three 

attached to the DMA Bus A and one pair to an RMAP Target) 

and SpFi M/S has eight pairs (seven attached to the DMA Bus 

A and one pair to an RMAP Target). 

The DMA Controller takes DMA requests from DMA Bus 

B, for a small amount of data access at any memory location. 

The DMA Controller also manages transfer of data from 

the SpaceFibre, SpaceWire, to and from DSP memory. It does 

this under control of the DSP i.e. the DSP processor 

determines where in DSP memory the data is to be placed and 

how much data is to be read in a burst. 

In a Master HPPDSP unit, the DMA Controller copies the 

data being read to the SpaceFibre master/slave interface. This 

is done at the same time as the data is being read out of one of 

the interface by the DMA controller by providing a concurrent 

write strobe and IO write address that specifies where the data 

is to be copied to. In this way the data is read from one of the 

interfaces, written to DSP memory and concurrently written to 

the SpaceFibre master/slave interface for transferring to the 

slave HPPDSP. 

For Slave unit, the DMA Controller accesses the 

SpaceFibre master/slave interface in place of the SpaceFibre, 

and SpaceWire interfaces. It DMAs data from VCBs in the 

SpaceFibre master/slave interface as if it were coming from 

VCBs in the SpaceFibre, SpaceWire interface. For slave unit, 

if the DSP processor requests to write data to a SpaceFibre or 

SpaceWire interface via the DMA Controller it simply 

discards the information. 

The DMA Controller contains several channels each 

channel may be programmed by the DSP processor to perform 

the required data transfer. 

III. FFT PROCESSOR 

In this section the FFT Processor being developed for the 

THz Radiometer is described. A block diagram of the FFT 

Processor is provided in Figure 4. The FFT Processor system 

comprises a Control Processor board and one or more FFT 

Processor boards. 

A Control Processor which is responsible for controlling 

the FFT Processor, gathering data from the FFT boards 

formatting that data and sending it to the downlink telemetry 

system. The control processor board uses an ARM Cortex-M1 

processor chip implemented on a Microsemi RTG4 FPGA. 

This FPGA comprises an ARM Cortex-M1 processor, on-chip 

memory, an off-chip memory interface, three SpaceWire 

protocol engines which offload the processor from 

communication intensive tasks, a SpaceWire router with eight 

external ports, and various other input/output interfaces 

including SPI. EDAC protected DDR memory will be 

provided on the processor board. A reference clock generator 

and reset distributor will be included on the Control 

Processor. The reference clock will be a 10 MHz low jitter 

reference clock. The reference clock generator will be 

configured by the ARM processor on the RTG4 FPGA via an 

SPI interface. The processor board is connected to each FFT 

board via separate SpaceWire link, reference clock and reset 

for each FFT board.  

One or more FFT boards that take in analogue signals 

sampled by two ADC chips at 2.4 Gsamples/s and compute 

the power spectrum of those signals. This board is controlled 

by the control processor via a SpaceWire link and passes 

accumulated power spectra back to the control processor via 

that SpaceWire link. Each FFT board can be programmed to 

process 2 GHz bandwidth signals acquired using the two 

ADCs as an in-phase and quadrature pair, or to process 1 GHz 

bandwidth signals acquired separately as real signals from 

each ADC. Each FFT board contains its own voltage 

controlled crystal oscillator (VCXO) and clock 

generation/distribution chip. This allows for very low jitter 
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clock generation with the ADC clocks being locked to the 10 

MHz reference signal from the Control processor board. 

The number of FFT board can be adjusted to help trade-off 

bandwidth vs power consumption. The prototype system will 

have one FFT board owing to the cost of components. 

IV. RC64 

The RC64, is a novel rad-hard 64-core digital signal 

processing chip, with a performance of 75 MACS, 150 GOPS 

and 38 GFLOPS (single precision) and low power 

consumption, dissipating less than 10 Watts. The RC64 

integrates sixty-four advanced DSP cores, a hardware 

scheduler, 4 MBytes of multi-port shared memory, a 

DDR2/DDR3 memory interface, and twelve 3.125 Gbps full-

duplex, high-speed SpaceFibre serial links, four of which can 

also support serial Rapid IO.  

The RC64 architecture is illustrated in Figure 6. A central 

scheduler assigns tasks to processors. Each processor executes 

its task from its cache storage, accessing the on-chip 4MByte 

shared memory only when needed. When task execution is 

done, the processor notifies the scheduler, which subsequently 

assigns a new task to that processor. Access to off-chip 

streaming channels, DDR2/DDR3 memory, and other 

interfaces happens only via programmable DMA channels. 

This approach simplifies software development and it is found 

to be very useful for DSP applications, which favour 

streaming over cache-based access to memory. Hardware 

events, asserted by communication interfaces, initiate 

software tasks through the scheduler. This enables high event 

rates to be handled by the many cores efficiently. 
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Figure 4: RC64 Architecture (only 8 DSP processors are shown) 

The RC64 is implemented as a 300 MHz integrated circuit 

on a 65nm CMOS technology, assembled in a hermetically 

sealed ceramic CCGA624 package and qualified to the 

highest space standards. Supported communication 

applications include frequency multiplexing, digital beam 

forming, transparent switching, modems, packet routing and 

higher-level processing. 

V. CONCLUSIONS 

This paper described the use of SpaceWire and SpaceFibre 

to provide input and output facilities for high performance 

DSP systems. Three examples are provided: the ESA funded 

High Processing Power DSP (HPPDSP) which uses a 

radiation tolerant DSP from TI, a spectrometer which 

implements a high performance FFT in an FPGA, and the 

Ramon Chips RC64 Many Core programmable DSP which 

incorporates 12 SpaceFibre interfaces. 
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Figure 5: Block Diagram of HPPDSP FPGA Architecture 
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Figure 6: WBS V Architecture 
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Abstract 

Microcontrollers and DSPs are key components of 
embedded systems for most applications (space, 
avionics, industry…). The reliability of these 
components has to be asserted to ensure the correct 
working of the system for the duration of its mission 
while preserving its performances.  

Designers are currently greatly tempted to use 
commercial components for their applications; they are 
easier to use and buy while providing higher 
calculation performances. However, these components 
generally have not been tested in extreme 
environments.  

From these facts, it seems mandatory to consider the 
importance of testing microcontrollers and DSPs 
before employing them in space applications, or any 
other application that comes with an extreme 
environment. That is the reason why the electrical test 
and reliability team of THALES Communications & 
Security worked on the subject.  

THALES holds a partnership with CNES in regards to 
expertise and failure analysis of electronic components. 
They share the ITEC-laboratory at the Toulouse Space 
center.  

This document summarizes test methods and shows 
some results in regards to testing and qualification of 
microcontrollers and DSPs in high temperatures. 

 

 

 

 

 

I. Characterization 

A. TEST METHOD 

Characterization tests were performed on a few 
components to quantify performance and behavior 
drifts relatively to temperature. In order to obtain the 
most precise and repeatable measurements, the part 
under test is mounted on a daughter board plugged into 
an ATE (Automatic Test Equipment). High 
temperature environment is achieved using an air 
stream temperature forcing system (see picture below).  

 

 

 

 

 

 

 

 

Figure 1: Mutest ATE with ThermoStream to characterize 
components  

A firmware including several test scenarios is 
programmed into the device. The ATE then orders the 
component to perform the various test scenarios with 
voltage, clock frequency, and temperature variations. 
More exactly, the following parameters can be tested: 
 

• Core functionalities (boot sequence, multi-
core communication, voltage supervisor, 
interruption) 

• Clock structure (internal clocks, external 
clocks, PLL, timers) 

• Processing modules (ALU, FPU, TMU) 
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• Internal memory (volatile and non-volatile, 
user and program memory) 

• Peripheral communication modules (ex: 
UART, SPI, I2C, CAN, Ethernet) 

• Analog blocks (ADC, DAC, comparator, 
PWM) 

• Operating and low power consumption modes 
• I/O characteristics (leakage current, input and 

output voltage) 
 

B. PARAMETERS EVOLUTION 

1) ELECTRICAL CHARACTERISTICS 

A) CURRENT LEAKAGES 

 
This type of parameter is an image of the evolution of 
package & chip materials along with temperature. 
There are actually four parameters to monitor:  
 

• IIL: Input leakage current (low) 
• IIH: Input leakage current (high) 
• IOZL: Output leakage current (low) 
• IOZH: Output leakage current (high) 

 
The chart below shows these variations according to 
temperature. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Leakage Currents against Temperature 

On this particular part, leakages show a considerable 
increase between 25°C and 150°C. It indicates serious 
internal modifications that could affect the 
component’s performances (consumption, maximal 
frequency, voltage threshold). 
 

B) OUTPUT VOLTAGES 

 
The output voltage of the component can vary too. 
Typically, Output Low Voltage (VOL) increases with 
temperature while Output High Voltage (VOH) 
decreases.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3: Output Voltages against Temperature 

This behavior can be accentuated depending on the 
load current of the output pin. In this example, Output 
Low Current (IOL) and Output High Current (IOH) 
were set to 100uA; which explains why the relative 
voltage variations are low (45mV).  
 
In the end, with small enough current loads on the 
DSP’s output pins, this part should remain able to drive 
data to other digital chips on the same system (external 
memory, different processor, communication driver 
…).  
 

C) INPUT VOLTAGES 

 
To communicate with other digital chips, it is 
important to determine whether the DSP is able to 
understand a correct data on its inputs.  
 
The behavior of electronic cells voltage threshold in 
regards to temperature is well known; the threshold 
values are expected to rise as temperature increases. 
 
That is why Input low Voltage (VIL) and Input High 
Voltage (VIH) parameters are to be monitored too. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Input Voltages against Temperature 

In this case, variations are relatively small, which 
indicates that the DSP studied should be able to 
correctly understand data on IO pins.   
 
However, the study of input and output voltages isn’t 
sufficient to ensure that the DSP can communicate 
properly with external systems. 
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D) IO FREQUENCY 

 
The highest frequency at which the chip’s output pins 
can function has its importance in regards to the use of 
its communications modules. To determine if there has 
been any degradation, a comparison is made between 
one IO pin set to a given frequency and another IO pin 
set to a division of the first frequency. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Output frequencies of two DSP IOs against 
Temperature 

The frequency of the output with division does not 
vary, while the one without division is not able to drive 
the proper frequency over 100°C. It means that the 
reference clock used does not change with temperature 
but the highest output frequency of an IO decreases as 
temperature goes up.  
 
This fact means that the effective communication rate 
of the DSP with other digital chips is affected by 
temperature. This information is critical for the global 
design space systems because DSPs have to 
communicate before processing (to get data to 
compute) and after processing (to save data on external 
memories or transfer it to other units). 
 

E) CURRENT CONSUMPTION 

One of the most critical parameter very sensitive to 
temperature is current consumptions 

 

 

 

 

 

Figure 5: Current consumption of tested 
microcontroller in low power mode against 

Temperature 

 

The chart above shows component consumptions in a 
low-power mode at different power supply voltages 
(2.5V and 3.3V) across temperature. 
 
The high increase around 200°C corresponds to a low 
power mode functionality break, with currents reaching 
normal run mode levels. 
 
This result can lead designers to choose one specific 
supply voltage level (here 3.3V rather than 2.5V) in 
order to get best robustness versus temperature. 
 

F) INTERNAL VOLTAGE 
REGULATOR 

 
Several component characterizations have confirmed 
an increase of the minimum operating supply voltage at 
high temperature. 
.  
This phenomenon can be linked with the negative trend 
of regulator outputs across temperature, as shown on 
the graph below. 
 
The application report “Understanding the Terms and 
Definitions of LDO Voltage” [2] mentions this 
particular behavior relative to voltage regulators. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Regulator output voltage vs output current 
draw 

This phenomenon is also observed on internal 
“Analog-to-Digital” module characterization. 
 
The graph below plots the ADC output code converted 
from a stable input voltage (VCC/2), using the internal 
voltage regulator as voltage reference: 
 
 
 
 
 
 
 
 
 

Figure 7: ADC measurements with internal reference 
against Temperature 
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On the other hand, performing the same test with an 
external reference gives stable result up to at least 
190°C. In the case of the internal reference, the ADC 
output code increase at high temperature comes from a 
negative drift of the voltage reference. What’s more, 
the higher the voltage supply, the higher the ADC code 
gets. 
 
It goes without saying that these examples are only a 
few among other parameters to show both functional 
and parametric behavior changes along with 
temperature. 
 

2) CLOCK ARCHITECTURE 

 
A good processor’s clock architecture is important to 
ensure equal performances in each environment 
relative to the application.  
 
The core clock has to remain stable (particularly so for 
DSPs) in order to maintain homogeneous calculation 
performances. Peripheral clocks also need to remain 
stable so as to allow communications modules to work 
properly. 
 

A) INTERNAL OSCILLATORS 

 
DSPs and microcontrollers often integrate on chip 
oscillators. They can be used to generate clocks for the 
cores and the various peripherals.  
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Low Frequency Internal Oscillator against 
Temperature 

The figure above displays the results of a study 
performed on a 32.7 kHz low frequency internal 
oscillator. The part was submitted to two voltage 
polarization settings and various temperatures. 
 
A lower voltage clearly leads to a slightly lower 
frequency and a steeper degradation curve of the 
generated frequency as temperature goes up. 
 
The performance degradation due to temperature being 
similar for both configurations, it can be inferred that 
internal oscillators are not stable with temperature and 

that it may be safer to use dedicated external oscillators 
providing better performances.  
 

B) PLL 

 
PLLs are often integrated on processors to allow 
designers to improve timing performances. A 
degradation of a PLL’s characteristics with temperature 
would then considerably impact the performances and 
functionalities of its associated processor. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: PLL multiplication factor against 
Temperature 

In a given DSP, a PLL was set to generate a clock 
multiplied by 2920 while monitoring the real 
multiplication value. A little difference can be 
observed between expected and real multiplication 
factor as the component voltage varies. A degradation 
(-0.1%) is also noticeable as temperature increases.  
 
Even though the variation does not look so significant 
in this case, this behavioural change of a PLL element 
could very well prove to be more important for 
different processors.  
 

3) INTERNAL FLASH MEMORY 

 
Internal user flash memories inside microcontrollers 
can be used to save data without using an external 
memory and to protect it against unplanned chip 
reboots. However, as for other specific flash memories, 
the ones embedded in DSPs show decreases of timing 
performances with temperature, as shown in the chart 
below. 
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Figure 10: Integrated flash memory timings against 
Temperature 

Performed with 1kB data packets, this test shows a 
clear increase of the time needed to write or erase a 
sector of the embedded flash memory.  
In this light, the use of the flash memory could have an 
effect on the maximum time needed by the DSP to treat 
data, even if its calculation modules were to maintain 
their performances at all temperatures.  
 
Given that the processor’s instructions are mainly 
stored inside this memory, the program’s execution 
may not be safe if the core is fed a clock frequency too 
high for the high temperature flash memory timings.  
 

II.  Qualification 

A. AGEING METHOD  

 
Assessing the functional configurations of the device 
under test is one thing, ascertaining its ability to remain 
in working conditions for the duration of its application 
is yet another. 
 
As for the characterization, several scenarios are 
implemented into the embedded firmware. A digital 
sequencer outside the oven continuously and 
sequentially calls all scenarios executed by the devices 
under test inside the oven. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: SANSA architecture 
 
This homemade system is named SANSA, which 
stands for Solution to Activate Numerical Systems for 
Ageing. Its aim is to simulate as well as possible the 

working conditions of the devices under test (extreme 
environment for thousands of hours). 
 
Such a testing methodology allows the quantification 
of drifts over time of both parametric and functional 
performances of the tested parts. 
 

B. POSSIBLE FAILURES 

1) PROGRAM MEMORY RETENTION 

 
A critical parameter to monitor during such an ageing 
test is the complete retention of the program memory 
embedded in the DSP. Data corruption might reach 
error rates that cannot be compensated by correction 
algorithms such as ECC.  
 
The JEDEC standard JESD218 [3] defines the decrease 
in retention time capabilities of a typical FLASH 
memory in regards to temperature by using models 
from the JEDEC standard JEP122G [4].  For example, 
the Arrhenius equation can be used to compute the 
acceleration factor due to a temperature increase, and 
to get an estimation of the retention degradation caused 
by temperature. 
 
 
 
 
 
 
 
 
 
 

2) INTERMETALLIC BREAKING 

 
Gold-Aluminum intermetallics are compounds used in 
semiconductors to connect bonding wires to chips. 
Those connections can be seriously damaged by 
sudden temperature changes, which, by instance, can 
happen in some space environments. It is then 
important to ensure a component’s robustness before 
selecting it. 
 
This type of phenomenon can be successfully 
reproduced by performing thermal shocks in ovens (for 
example, between -55°C and +125°C). The picture 
below features a semiconductor which, after a couple 
hours of cycling test, shows intermetallic compounds 
failures. 
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Figure 12: Intermetallic failure on a chip’s pad 
 
On this picture, compound is formed between the wire-
bond and the pin, and may cause the failure. It 
happened after 2000 hours at 225°C. 
 

3) DEEP-SUBMICRON TRANSISTOR 
FAILURES 

 
After stress activation on DSPs during a few hours in 
extreme temperature conditions, it is possible to 
observe several kinds of failure on its MOS transistors: 
 

• HCI (Hot Carrier Injection): In MOSFETs, 
this phenomenon occurrs when electrons are 
trapped into the gate dielectric after their 
injection from substrate. This induces changes 
in the transistor’s characteristics, such as 
voltage threshold, current leakage and 
maximal switch frequency, so it impacts 
considerably a DSP’s performances and its 
mission. 
 

• TDDB (Time Dependent Dielectric 
Breakdown): It occurs when a short-circuit 
appears between the transistor’s gate oxide 
and the substrate. It causes transistor 
breakdown, and may impact the workings of 
all of the DSP’s sub-modules along with its 
cores. 

 
• NBTI (Negative Bias Temperature 

Instability): This phenomenon is observed on 
P-MOS transistors. The apparition of interface 
traps and oxide charges is due to a negative 
gate bias. The result is an increase of the 
absolute threshold voltage, a degradation of 
mobility, drain current and transconductance. 
The list type of failure also impacts the chip’s 
performances. 

 
 
Symptoms of these failures may be observed by 
analyzing characteristics drifts during the ageing 

process, but visual inspections are necessary in order to 
be sure.  
 

III.  Conclusion 

 
This document summarizes test methods to ensure 
performance and reliability of a microcontroller or a 
DSP in high temperatures, and shows test results. 
 
The main information to remember is the importance 
of testing DSPs in order to assert by how much their 
electrical parameters and performances drift with 
temperature but also to determine which of their 
modules are or are not in working order when in the 
environment specified by the mission.  
 
Ensuring that their internal structure will not lead to 
what can be called a premature failure is equally as 
important, especially if designers are going for 
commercial grade parts.  
 
In addition, this methodology can also be applied to 
test devices’ behaviors in a radiation environment, 
especially to test internal memory resiliency.  
 
To finish, this qualification process can just as well be 
implemented to qualify FPGA devices for space 
applications, and to compare their performances with 
DSPs’.   
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Abstract 
A radiation intelligent memory controller (RIMC) IP core 

is proposed to work with a specific DDR2 SDRAM structure 
to reach a Radiation Hardened (RH) DDR2 SDRAM Solution. 
The IP core provides protection against Single Event Upset 
(SEU) and Single Event Functional Interruption (SEFI), 
combines the TID and SEL guarantee from the memory die to 
reach a hardened solution. This high performance RH DDR2 
solution is suitable for all space applications such as 
commercial or scientific geo-stationary missions, earth 
observation, navigation, manned space vehicles and deep 
space scientific exploration. 

I. INTRODUCTION 
DDR2 SDRAM is a very attractive technology for space 

application thanks to its high density and high speed. 
However, o move it into space application, it is quite 
complicated to handle it because of the following reasons: 

 

• Complex behaviour under radiation – No Rad Hard 
device available 

• Volatile – Data loss risk if any functional issue 
• Difficult to handle Micro-BGA for Space 

applications 
• Short life cycle –  new device every 6 months 
   
That is the motivation to develop a RIMC IP core 

provided a full protection against the DDR2 radiation soft 
effects such as SEFI and SEU. From user point of view, all 
radiation protections are transparent, and the RIMC provides a 
standard AMBA/DFI compatible interface to targeted most 
space FPGAs. Figure1 shows the solution’s architecture 
overview. 

 
 
 

 

 

 
Figure 1: Overview 

II. RIMC ARCHITECTURE 
The RIMC is defined by 2 interfaces (see Figure 2): 
• The user interface, AMBA compliant. This interface 

contains at least one AHB bus, and may contain an 

optional APB bus for user dynamic configuration. 
These busses are compatible to AMBA 2.0 

• The DDR PHY interface, compliant to DFI 2.1 
(depends on different FPGAs). This interface is used 
to send commands and data to the DDR components 
through the DDR PHY. 

 
The RIMC controller can be configured by the core logic 

using 2 different AMBA interfaces: 
 

• Slave AHB interface with specific address mapping 
(1 area dedicated to DDR memory array and 1 area 
dedicated to internal registers) 

• Slave APB interface dedicated to internal registers 
 

 
Figure 2: RIMC Interface 

The RIMC is highly configurable to be compatible with 
most of user designs: 

 

• User data width (from x8 to x128) 
• Hamming or Reed-Solomon(RS) ECC selectable 
• Configurable up to 8 AHB slave interfaces 
• Configurable DDR2 ranks to increase memory 

capacity 
• Clock & ODT setting compatible with 3D PLUS 

modules 
• Capability to manage memory redundancy design 
 
The RIMC first version is to address FPGA development, 

and it is fully commercial available.  
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III. PAGE NUMBERS MEMORY RADIATION ERRORS & 
IP CORE PROTECTIONS 

The DRAM radiation errors can be simply classified as 
below in 2 categories: Hard Errors and Soft Errors. The Hard 
Errors create irreversible errors when the threshold or limit 
have been passed. 3D PLUS propose a radiation tolerant 
DDR2 memory die with the guarantee of TID>100Krad(Si) 
and SEL>60Mev.cm²/mg. This paper will not present detail 
results on TID & SEL guarantee of the memory die.  

On the other hand, as semiconductor feature size scaling 
down, the soft errors (SEU and SEFI in case of DDR2) easily 
can be dominated events, especially SEFI, to DDR2 memories 
under radiation environment. However, each semiconductor, 
even each DDR2 Part Number from same semiconductor, will 
bring totally different SEU & SEFI results. To reach a real 
Rad-Hard DDR system, a well-evaluated specific DDR2 
memory and its tailored controller, for example: identify 
memory different types of SEFI and select the correspondent 
mitigation strategies to guarantee no data loss, are mandatory.  

 
A. IP Core SEU Mitigation 
The RIMC can be configured at different types of ECC 

based on error rate tolerance, and here is an example of Reed-
Solomon code as in figure 3 for 32b data and 50% overhead 
[RS(12;8), m=4, Global Bus = 48bits].          

 
 
 
 
 
 
 
 
 
 
                                           
 

Figure 3: Example of data path with RS code, component            
Data Bus = 8 and DDR Data Bus = 32 

  As this RS ECC structure, The RIMC IP core(3D PLUS 
P/N: 3DIPMC700) can correct up to 8 bits error (row error) in 
one die per 48b, and 2 SEUs in the same address of different 
die per 48b. In case of scrubbing applied, the worst case (one 
particle create 2 upsets in 2 dice) in correctable error rate will 
be 3.8E-9 upset/day/module. Please note that 3DIPMC700 
provides several different types of ECCs, and here is the error 
rate with Figure 3 data structure. The other ECCs (ex: 
Hamming) or other structures will bring other results. 

 
B. IP Core SEFI Protection 
Single Event Functional Interruption (SEFI) - a condition 

which causes a temporary non-functionality or interruption of 
normal operation induced by an energetic particle in the 

affected device, are very critical to space design. Mentioned at 
the beginning of this chapter, as feature size scaling down, the 
modern DRAM components have lower SEFI threshold and 
bigger cross section, which makes the SEFI easily becoming 
the dominated event. Moreover, unlike the SEU correctable 
by ECC, SEFI can easily bring system interruption or data 
loss and damage the whole sub-systems. 

Traditionally, SEFI mitigation is to power cycle or reset 
the component after SEFI happened, which means to restore 
or recover the component from a SEFI; However, power 
cycling will lead data loss, and in most case power lines are 
merged together, so not only the SEFI die data lost, but also 
all the dice managed by same power lines will have data loss.  

To avoid all these negative impacts from SEFI, a patent-
pending SEFI protect technique has been designed and 
embedded in RIMC IP Core to prevent SEFI to replace 
traditional “after SEFI happened and recover” strategy. This 
SEFI protection is transparent to user and integrated in the 
RIMC IP core. Verification test had been performed at 
Radiation Effects Facility, University of Jyväskylä, Finland 
(RADEF) to confirm the protection, here below is the result: 

Table 1: 3D PLUS DDR2 Memory module SEFI results under 
RIMC Protection [1] 

Ion LET  
[MeV/mg/

cm2] 

Rang 
[micron

s] 

Fluence  
[p/cm²] 

Sample 
 /Runs 

SEFI 

20Ne+6‡ 3.63 146 >1E6 1 No 
40Ar+12‡ 10.2 118 >1E6 5 No 
56Fe+15 18.5 97 >1E6 5 No 
82Kr+22 32.2 94 >1E6 >10 No 

131Xe+35 60.0 89 >1E6 6 No 
 
No SEFI observed till LET>60Mev-cm2/mg. 
As a general use purpose controller IP core, RIMC is 

designed for any JEDEC standard DDR2 SDRAM. But please 
note that this patent-pending SEFI protection technique is not 
a universal solution, and only can be used to the die 
embedded in 3D PLUS DDR2 modules. On the other words, 
RIMC IP core can be used with any other DDR2 die, and the 
SEFI protection should be deactivated.  

IV. CONCLUSION 
A RIMC IP core has been proposed to reach a radiation 

hardened DDR2 solution. The solution includes the radiation 
tolerant DDR2 module with SEL immune and TID guarantee 
and RIMC IP core to specifically manage the SEU and SEFI 
of the DDR2 module to reach: 

 

TID>100Krad(Si) 
SEL  immune > 80Mev.cm2/mg 
SEU immune by design (3.8E-9 upset/day/module) 
SEFI immune by design (LET>60Mev-cm2/mg) 

V. REFERENCES 
RADEF Cyclotron cocktail information: https://www.jyu.fi/ 
fysiikka/en/research/accelerator/radef/cocktail 
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Abstract 

This paper describes high performance implementation of 

DVB-S2 modem on the rad-hard manycore RC64 DSP. 

Multi-level simulation and development methodologies are 

described. Modem algorithms are specified, together with 

implementation details. Efficient parallel processing is 

enabled by the shared memory architecture, by PRAM-like 

task oriented programming and by dynamic allocation of 

tasks to cores. The modem achieves in excess of 2 Gbps 

transmission and 1 Gbps reception. 

I. INTRODUCTION 

RC64 is designed as a high performance rad-hard manycore 

DSP processor for space applications [1][8]. The architecture 

is shown in Figure 1. 64 DSP cores (CEVA X1643) are 

integrated together with hardware accelerators, a hardware 

scheduler, multi-bank shared memory, a logarithmic network 

on chip connecting the cores to the memories, and multiple 

I/O interfaces.  

RC64 is designed for space applications. Software Defined 

Radio (SDR) and modems constitute very demanding 

applications. This paper investigates the implementation of 

DVB-S2/DVB-S2x modems on RC64. An LDPC hardware 

accelerator is included in RC64 to support efficient modems, 

and as a result RC64 achieves in excess of 2 Gbps transmit 

rate and 1 Gbps receive rate. Earlier works in this area 

include [6] and [7]. 

The RC64 DVB-S2 modem has been developed using a 

multi-level methodology and simulators. The development of 

a modem on a manycore processor combines communication 

theory, parallel algorithm design, parallel programming and 

profiling, and software engineering.  

The paper presents the simulator, the modem algorithms, 

implementation details, parallel programming of the model, 

and performance evaluation. 

 

 

 

 

 

 

Figure 1. RC64 Many-Core Architecture. 64 DSP cores, 

modem accelerators and multiple DMA controllers of I/O  

interfaces access the multibank shared memory through a 

logarithmic network. The hardware scheduler dispatches fine 

grain tasks to cores, accelerators and I/O.  

II. RC64 DVB-S2 SIMULATOR 

Figure 2 depicts the RC64 DVB-S2 simulator structure. The 

data generator creates baseband frames. The transmitter 

encodes and modulates the frames according to DVB-S2 and 

DVB-S2X standards. The channel simulator adds noise and 

impairments. The receiver demodulates and decodes the 

signal, and the analyzer compares the sent and received 

signals.  

The simulator enables testing and performance optimization 

regarding modem quality (bit error rate for a range of channel 

impairments, signal to noise ratio and bandwidth), modem 
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bitrate (performance of RC64 executing the modem 

application), bottleneck analysis (identify required 

accelerator(s) for the modem) and hardware accelerators type 

and capacity (validation before hardware integration).  

RC64 TX 
simulator

Channel 
simulator

RC64 RX 
simulator

Data generator
and 

Analyzer

Transmit data Receive data

 

Figure 2. RC64 DVB-S2 Simulator 

Modem development is carried out through six levels of 

refinement, as shown in Table 1. Algorithm development 

starts by coding in Matlab a high level model of the modem, 

and proceeds through stages until finally parallel C code is 

employed to program the actual RC64. We start with an 

unrestricted algorithm, implemented in Matlab (level 1). The 

accelerators code is replaced by a Matlab executable (mex) 

file generated from RTL descriptions of the accelerators. 

Level 1 serves as golden model, to which subsequent level 

models may be compared.  

Level 2 takes into account architectural restrictions of RC64 

such as limited memory and real-time constraints. For 

instance, receiver input samples are processed in pre-defined 

sample groups rather than in frame size sample groups. In the 

third level, Matlab floating-point computations are replaced 

by Matlab fixed point at a word precision of 16 bits, 

compatible with high-speed arithmetic on the DSP cores of 

RC64. Accelerator models are replaced by more precise ones 

driven from RTL. Outputs are carefully compared with the 

results of the floating-point models, to assure minimal signal 

degradation.  

At level 4, Matlab code is replaced by code in the C language, 

compatible with the compiler for the DSP cores in RC64. The 

Matlab simulator models of the transmitter and receiver are 

replaced by models for the cycle accurate simulator of RC64, 

executing the compiled C code. The output must be exactly 

the same as produced in level 3. The accelerator code is a 

function in C representing the hardware accelerator, 

embedded in the cycle accurate simulator of RC64.  

At level 5, the code is parallelized to execute on RC64 and 

further optimizations are performed to take advantage of 

specific hardware features of the DSP cores. The accelerators 

function is executed as a separate task, in parallel with other 

tasks. In level 6 the entire modem is executed on RC64 

hardware 

 

Table 1. Levels of Simulation and Modem Development 

Level Level Name Language Precision Style Accelerators  

1 High Level Modem Matlab Float Virtual unlimited architecture FloatC-to-mex 

2 Matlab DSP Modem Matlab Float Restricted to real-time DSP of RC64 

Restricted memory sizes 

Translate input frames to samples on TX, input 

sample stream to frames on RX. 

FloatC-to-mex 

3 Fixed Point Matlab 

DSP Modem 

Matlab Fixed 16 Rounding and saturated computation 

Use CEVA lib functions 

RTL-to-mex 

4 C-Fixed Modem C Fixed 16 Bit-exact to Level 3 C function 

5 C-Parallel Modem C Fixed 16 Compliant to Plural shared-memory programming 

model [8] 

C function as a 

separate task 

6 RC64 Modem C Fixed 16  Task on accelerator 

hardware 

 

 

III. RC64 DVB-S2 MODEM ALGORITHMS 

In this section we describe the algorithms of the transmitter, 

the communication channel, the receiver and the data 

generator and analyzer. 

A. Transmitter 

The DVB-S2 and DVB-S2X transmitter includes the 

following functional blocks to modulate input streams, as 

specified and recommended in [2][3][4] (Figure 3): CRC-8 

encoder, baseband (BB) header insertion and stream 

adaptation, BB Scrambling, FEC encoding (comprising BCH 

and LDPC encoders and bit interleaver), bit mapping into 

constellations, physical layer framing (PL header insertion, 

followed by pilot adding and scrambling) and BB shaping 

(up-sampling and low-pass filtering). Output I/Q samples are 

provided to two DACs, generating I and Q baseband signals. 

This series of functional blocks can be clustered into Pre-

LDPC stage, the LDPC encoder, and Post-LDPC stage. 
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Figure 3. Functional block diagram of the DVB-S2 transmitter (following [3]) 

 

 

 

 

Figure 4. Channel simulation model  
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B. Communication Channel Simulation 

Physical layer impairments in the communication channel 

include those introduced by the channel, such as reflections 

and interference, as well as those induced by various 

components in the system, such as tuner I/Q imbalance and 

amplifier non-linearity. These impairments degrade the 

received SNR and may in some cases affect the convergence 

behavior of various computation loops in the receiver.  

In order to test the demodulator performance, different 

realistic conditions that can affect the quality of received 

signals are simulated. Physical layer impairments in DVB-S2 

receivers are discussed in [4]. A simpler channel model is 

implemented in Matlab (Figure 4 ). Every noise source is set 

independently, allowing flexible channel simulation. 

C. Receiver 

The functional block diagram of DVB-S2 receiver according 

to DVB-S2 guidelines [2] is depicted in Figure 6. The 

Receiver application includes the following functional 

blocks. 

Signal Processing Chain 

 Adjacent Channel Filtering using BB FIR. 

 I/Q imbalance compensation, an iterative algorithm to 

estimate I, Q and compensate for imbalance. 

 DC offset removal, using a simple IIR.  

 Frame Synchronization, using a 25 taps correlator and a 

peak detector. 

 Symbol Timing Recovery, using a Farrow cubic 

interpolator and a Gardner detector. 

 Decimator and Matched Filter.   

 Carrier Frequency Recovery (coarse and fine recovery) 

based on a pilot. Coarse recovery employs a second order 

feedback loop based on a delay-and-multiply frequency 

error detector. Fine recovery employs a feed-forward (FF) 

estimation algorithm, derived from the L&R (Luise and 

Reggiannini) technique.  

 Phase Recovery (coarse and fine recovery), using FF ML 

estimator.  

 Digital AGC, based on a pilot assisted vector tracker 

mechanism. 

 LMS Equalizer, employing DFE with a small number of 

taps. 

Decoder Chain 

 Descrambler, identical to the TX scrambler 

 LLR calculation, finding the logarithm of the distance 

between the soft symbol and the nearest hard symbol.  

 De-interleaver, identical to the TX interleaver. 

 LDPC Decoder, BCH Decoder, BB Descrambler and BB 

Header CRC Decoder.  

Similar to the transmitter, the receiver, too, may be clustered 

into Pre-LDPC, LDPC and Post-LDPC stages. The RF Front 

End, ADC and AGC blocks are not implemented in the 

simulator. Figure 5 describes the state machine of the 

receiver. Steady-state is entered when acquisition stages 

complete successfully. The main computation during this 

state consists of filtering, PHY descrambling, de-mapping 

and de-interleaving. The FEC LDPC decoder is implemented 

as a hardware accelerator. The rest of the computation 

includes BCH decoding (in some cases), descrambling and 

header decoding. In parallel, tracking is performed for the 

next incoming frame, enabling fast reaction to channel 

impairment changes, modulation changes and end-of-stream 

detection.  

 

Figure 5. Receiver state machine  

The performance of the DVB-S2/DVB-S2X link (consisting 

of transmitter, channel and receiver) is evaluated by the 

signal analyzer (Figure 2). The signal analyzer compares 

reconstructed bits with transmitted bits and calculates Frame 

Error Rate (FER), Packet Error Rate (PER) and Bit Error Rate 

(BER). In a communication chain without channel 

impairments, the reconstructed data should be exactly the 

same as transmitted. The DVB-S2 standard defines the 

expected error performance for different modes. PER is the 

ratio between the useful transport stream packets (188 bytes) 

correctly received and affected by errors, after forward error 

correction.  
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Figure 6. Functional block diagram of DVB-S2 Receiver 

 

 

IV. MODEM IMPLEMENTATION 

Details of modem implementation are described in this 

section. We first discuss hardware accelerators, followed by 

data streaming, scheduling and mitigation of overhead.  

A. Accelerators 

A major computation bottleneck was identified during 

profiling of the fourth level of simulation (C-Fixed modem). 

Forward error correction (LDPC encode/decode) was found 

to limit the throughput of the modem when executed by the 

cycle accurate simulator.  

The bottleneck can be eliminated using hardware 

acceleration, implemented either by a dedicated on-chip 

accelerator or by an external accelerator (ASIC or FPGA). 

RC64 was extended with on-chip LDPC encode/decode 

hardware accelerator that is capable of 1 Gbps receive rate 

and 2 Gbps transmit rate. A second accelerator was added for 

turbo coding, required for DVB-RCS modem. Other types of 

accelerators are supported by dedicated parallel interfaces to 

external FPGA or ASIC.  

B. Data Streaming  

Early analysis of the shared memory capacity required for the 

transmitter and receiver algorithms showed that special care 

should be taken regarding buffers for intermediate data. The 

transition between bit-stream representation and symbol and 

sample representations of the data requires minimizing 

buffering of symbol and sample representation of data frames 

in favor of bit-stream representation when possible. 
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Figure 7. Modem data flow 

 

 

Buffering structure, modeled within the fourth level of 

simulation (Table 1), define the partitioning of parallel 

activity of the transmit and receive applications as described 

in Figure 7, indicating buffering in shared memory. Bit-

stream representation of the data enables the most efficient 

storage in shared memory, accessed as byte stream by the 

DMA and DSP cores. A normal size frame is about 8 Kbyte 

long. LLR-stream employs 16 bits to represent each data bit, 

accessed as word stream by the DMA and the DSP cores. 

Thus, a normal size frame occupies 128 Kbyte. Sample-

stream representation requires 16 bits per sample. Sample 

representation depends on symbol count (due to different 

possible constellations) and interpolation factor. A normal 

size frame, in sample representation, occupies between 128 

Kbyte (QPSK) and 32 Kbyte (256APSK). Memory allocation 

is optimized by minimizing the buffer size for the sample-

stream. 

C. Scheduling  

The compute sequence for both transmitter and receiver is 

driven by the transmit/receive sample rate. A continuous 

sample stream must be transmitted to the DAC or received 

from the ADC using DMA. Figure 8 presents the iterative 

task graph used for scheduling the tasks (initial and final parts 

are eliminated for clarity).  When fully utilized, the modem 

iteratively performs the following steps. 

 Get-data through input interface (ADC for receive, digital 

interface for transmit). 

 Pre-LDPC compute stage, processing multiple frames 

each iteration. The number of frames is limited by frame 

size, data rate, available storage and available incoming 

data. 

 LDPC stage that encodes or decodes data from the Pre-

LDPC stage. 
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 Post-LDPC compute stage processing multiple frames 

each iteration. 

 Put-data through output interface (DAC for transmit, 

digital interface for receive).  

Figure 9 presents the double buffer queues used for 

supporting parallel operation during each iteration of the 

transmitter. The input stream DMA stores data into one of the 

two queues dedicated for input frames. The Pre-LDPC tasks 

process concurrently the queue of input frames from the 

previous iteration and store the results into one of the two Pre-

LDPC queues. The LDPC encoder accelerator processes the 

data in its input queue and stores the result in one of its output 

queues. The Post-LDPC tasks process concurrently the post-

LDPC queue of the previous iteration and store the results 

into one of the two output sample queues. Finally, the output 

stream DMA reads samples data and outputs the samples. By 

the end of each iteration, input queues becomes output queues 

(double buffers are switched), and the next iteration may start 

 

Get Data
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LDPC

LDPC
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LDPC

Put Data

Iteration
control

 

Figure 8. Task map for transmit/receive application 
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Figure 10. Alternative schedules for load balancing 
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Figure 10 presents load balance scheduling alternatives for 

the three types of tasks using available processing resources 

(LDPC accelerator and DSP cores). In (a), four cores execute 

Pre-LDPC tasks and four other cores execute Post-LDPC 

tasks, in parallel with the LDPC encoder. The Post-LDPC 

tasks constitute a bottleneck. In (b), the Post-LDPC tasks are 

broken up into 32 instances of fine grain tasks. Once Pre-

LDPC jobs are completed, Post-LDPC instances are allocated 

to all eight cores and computation is accelerated. In (c), 36 

cores are made available, all instances are allocated at the 

same time, and Pre-LDPC becomes the bottleneck. Last, in 

(d), the Pre-LDPC tasks are split into eight smaller tasks and 

additional cores are made available. Consequently, 

computation time is shortened.  

D. Overhead mitigation 

Ideal modem implementation, when execution is most 

efficient and iteration time is minimized, depends on the 

following architectural aspects. 

Scheduling overhead minimized—When a many-core 

solution is required to perform fine grain tasks to accelerate 

computation such as in Figure 10 (d), the time between task 

executions on cores must be negligible compared to tasks 

duration. RC64 scheduler offloads this activity from run-time 

software, and provides minimal overhead for task switching 

time. The overhead relates to both allocating multiple 

available tasks to many cores, as well as to recognition of task 

terminations. Task terminations enable new task allocations, 

which happens every iteration in such iterative task graphs.   

Shared memory access efficiency—Dynamic scheduling of 

tasks to cores, requiring cores to perform different code with 

different data along each iteration, makes shared memory 

access latency and throughput critical. Shared memory 

phenomena such as data read hot-spots call for special care, 

to prevent serialization in memory access. In some cases, 

when data handling is interface dependent, queue 

management requires critical section handling for inter-core 

synchronization. The RC64 multi-bank and network on chip 

optimize memory access by cores. The memory appears as a 

flat address space, flexible for any type of data-set allocation 

very similar to the PRAM model, significantly simplifying 

the programming model.  

Shared memory coherency—The programming model and 

non-preemptive run-to-completion tasks enable keeping 

shared memory with coherent data available for next task 

allocation. Each core is responsible for storing all its 

computational results into shared memory (using write-

through cache) before the task terminates. It then invalidates 

its data caches automatically before starting a new task that 

may accidently use the wrong data content in its cache. This 

storing activity is supported in RC64 by its write-through 

cache configuration of the DSP cores, together with the 

minimal invalidation overhead at task terminations. 

Local core computing efficiency—Processing cores 

computing efficiency may suffer due to low compute-to-data 

ratio or due to inefficient cache behavior. A major efficiency 

factor is using the VLIW and SIMD capability to achieve 

peak performance. RC64 cores are optimized for DSP 

computations, having four multiply-accumulate functional 

units along with two load/store units and two additional 

general purpose instruction units. A main compute-intensive 

part of the modem is the filters. Each DSP can perform a 

complex multiplication every cycle continuously, as long as 

the memory system can deliver the data. The local data 

memory (cache and scratchpad) supports 16Kbyte data and 

8Kbyte program memory, sufficient for many algorithms.    

Data streaming efficiency—Data in shared memory should 

be available for parallel memory read access to any of the 

cores during each iteration. Output data queues in shared 

memory should be accessible efficiently and concurrently by 

any of the cores for writing during each iteration. Streaming 

data to and from shared memory queues must not degrade the 

computing throughput. RC64 DMA controllers are optimized 

for this purpose, both for memory buffer management in 

shared memory and for very high throughput to and from 

shared memory, without degrading memory access rate by 

the cores. Many DMA controllers can operate concurrently 

to serve many different I/O activities.  

Programming model simplicity—Programming a many-core 

processor can become a very complex undertaking, requiring 

deep knowledge of the micro-architecture and the special 

mechanisms for solving the above challenges. RC64 task 

oriented programming model emphasize parallel code 

decomposition for application acceleration, in accordance 

with algorithm and memory capacity requirements. Other 

issues, such as shared memory access efficiency, coherency 

and streaming may incur only minor effect on performance, 

while the application developer enjoys a PRAM-like 

abstraction, similar to a single core program design.  

V. PERFORMANCE 

This section reports performance results as computed with 

the RC64 DVB-S2 simulator and cycle-accurate simulations 

of RC64 [8]. 

A. Transmitter Performance 

When simulating transmission of short frames using 32APSK 

modulation and LDPC code of 8/9, the Pre-LDPC stage 

requires 16,000 cycles, LDPC encoding takes 560 cycles, and 

Post-LDPC is 100,000 cycles. Since there are 3402 32APSK 

symbols in a short frame, Post-LDPC can be considered as 

incurring 30 cycles per symbol. As shown in Figure 11, a 

useful balance between pre-LDPC and post-LDPC can be 

achieved with nine frames per iteration for pre-LDPC, 

generating a total of 3402×9=30,618 symbols. Parallel 

processing of these symbols in Post-LDPC tasks is achieved 

by the remaining 55 cores. Each Post-LDPC task processes 

30,618/55=557 symbols, taking 557×30=16,710 cycles. This 

schedule translates to a data rate of 

14232 [𝑏𝑖𝑡]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 2.3 𝐺𝑏𝑝𝑠 . 

56



Each symbol contains two samples, and there are 6,804 

samples per frame. The sample output rate is 

6804 [𝑠𝑎𝑚𝑝𝑙𝑒𝑠]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1.1 𝐺𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 . 

Another way of estimating performance is based on 

considering that 116,000 cycles are required to process 

14,232 data bits at 300M cycles/sec, and 64 cores are 

available, or: 

64 ×
14,232 [𝑏𝑖𝑡]

116,000 [𝑐𝑦𝑐𝑙𝑒]
×

300𝑀 [𝑐𝑦𝑐𝑙𝑒]

[𝑠𝑒𝑐]
= 2.3 𝐺𝑏𝑝𝑠 

The accuracy of these performance estimates is expected to 

be within 30% of actual performance, based on simulator 

accuracy and code optimization. 

B. Receiver Performance 

When receiving short frames in a steady state, the receiver 

spends 220,000 cycles in the Pre-LDPC stage, 4,000 cycles 

on average in the LDPC decoder, and 32,000 cycles  in Post-

LDPC. The schedule of Figure 12 shows 8,000 cycles per 

iteration, receiving two frames per iteration, using 54 DSP 

cores to perform Pre-LDPC, eight DSP cores to perform Post-

LDPC. The resulting bitrate is 

14,232 [𝑏𝑖𝑡] ∙ 2 [𝑓𝑟𝑎𝑚𝑒𝑠] ∙ 300 [𝑀𝐻𝑧]

8,000 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1 𝐺𝑏𝑝𝑠. 
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Figure 11. Transmit performance (32APSK, LDPC 8/9) 
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Figure 12. Receive performance (32APSK, LDPC 8/9) 

VI. CONCLUSIONS 

We have described a high-performance implementation of 

DVB-S2 transmitter and receiver on RC64, predicted to 

exceed 2Gbps transmission and 1Gbps reception. A six-

levels development and simulation process has been 

described. Dynamic scheduling of tasks to cores, using the 

hardware scheduler and based on task oriented programming, 

resulted in a flexible solution that can easily be adapted to 

other modem parameters and other standards. 

ACKNOWLEDGEMENT 

Funding has been provided in part by Israel Space Agency 

and by the European Union's Seventh Framework Program 

for research and demonstration under grant agreement no. 

607212 (MacSpace) 

REFERENCES 

[1] Ran Ginosar and Peleg Aviely, RC64 – Many-Core 

Communication Processor for Space IP Router. In Proceedings 

of International Astronautical Conference, pp. IAC-15-B2.6.1. 

Jerusalem, Israel, Oct. 2015. 

[2] DVB (2005). User guidelines for the second generation system 

for Broadcasting, Interactive Services, News Gathering and 

other broadband satellite applications (DVB-S2). User 

guidelines ETSI TR 102 376 V1.1.1 (http://www.etsi.org).  

[3] Morello, Alberto, and Vittoria Mignone. "DVB-S2: The second 

generation standard for satellite broad-band services." 

Proceedings of the IEEE, vol. 94, no. 1, pp. 210-227. IEEE, 

2006. 

[4] Nemer, Elias. "Physical layer impairments in DVB-S2 

receivers." In Second IEEE Consumer Communications and 

Networking Conference, CCNC, pp. 487-492. IEEE, 2005. 

[5] Savvopoulos, Panayiotis, Nikolaos Papandreou, and Th 

Antonakopoulos. "Architecture and DSP Implementation of a 

DVB-S2 Baseband Demodulator." In Digital System Design, 

57

http://www.etsi.org/deliver/etsi_tr/102300_102399/102376/01.01.01_60/tr_102376v010101p.pdf


Architectures, Methods and Tools, 2009. DSD'09. 12th 

Euromicro Conference on, pp. 441-448. IEEE, 2009 

[6] Beadle, Edward R., and Tim Dyson. "Software-Based 

Reconfigurable Computing Platform (AppSTAR TM) for 

Multi-Mission Payloads in Spaceborne and Near-Space 

Vehicles." In International Conference on Reconfigurable 

Systems and Algorithms. ERSA 2012. 

[7] Dalio, B. A., and K. A. Shelby. "The implementation of OFDM 

waveforms on an SDR development platform supporting a 

massively parallel processor." In SDR'09: Proceedings of the 

Software Defined Radio Technical and Product Exposition. 

2009. 

[8] Ginosar, Ran, Peleg Aviely, Tsvika Israeli and Henri Meirov. 

“RC64: High Performance Rad-Hard Manycore.” DSP Day, 

2016. 

 

 

58



 
 
 
 
 
 
 
 
 
 
 
 

Session 5: 
 

DSP Software and Applications 
 

59



 DSP Benchmark Results of the GR740 Rad-Hard Quad-Core LEON4FT

Topics: Status and results of DSP related ESA contracts, Space qualified DSP components

Javier Jalle, Magnus Hjorth, Jan Andersson
Cobham Gaisler, Kungsgatan 12, SE-411 91, Göteborg, Sweden

Tel: +46 31 775 86 50
{javier.jalle,magnus.hjorth,jan.andersson}@gaisler.com

Roland Weigand, Luca Fossati
European Space Agency, Keplerlaan 1 – PO Box 299, 2220AG Noordwjik ZH, 

The Netherlands, Tel: +31 71 565 65 65
{roland.weigand,luca.fossati}@esa.int

ABSTRACT

The GR740 microprocessor device is a SPARC V8(E)
based multi-core architecture that provides a significant
performance increase compared to earlier generations of
European space processors. The device is the result the
European  Space  Agency's  initiative  to  develop  a
European Next Generation Microprocessor (NGMP).

Engineering  models  have  been  manufactured  in  2015
and  tested  during  the  first  quarter  of  2016.  Space
qualification of flight models is planned to start in the
second half of 2016. GR740 is the highest performing
European space-grade  general  purpose  microprocessor
and, due to the presence of four powerful floating-point
units, it is suitable for executing DSP applications. This
abstract  provides  an  overview  of  the  GR740  and  a
subset of the benchmarks used within the ESA activity's
functional validation effort. 

BACKGROUND

The LEON project was started by the European Space
Agency in late 1997 to study and develop a high-perfor-
mance processor to be used in European space projects.
Following the development of the TSC695 (ERC32) and
AT697 processor components in 0.5 and 0.18 μm tech-
nology respectively, ESA initiated the Next Generation
Microprocessor (NGMP) activity targeting a European
Deep Sub-Micron (DSM) technology in order to meet
increasing requirements on performance and to ensure
the  supply  of  European  space  processors.  Cobham
Gaisler was selected to develop the NGMP system that
is centred around the new LEON4FT processor.

Throughout  2014  and  2015,  the  architecture  was  de-
signed  and  manufactured  in  the  C65SPACE  platform
from  STMicroelectronics  [4].  This  chip,  now  called
GR740, constitutes the NGMP Engineering Model. Be-
sides  the chip development,  the existing SPARC soft-
ware development environment has been extended with
support for the GR740.

Figure 1: GR740 Block diagram
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ARCHITECTURAL OVERVIEW

Figure 1 shows an overview of the GR740 architecture.
The  four  LEON4FT  processors  are  connected  to  a
shared bus which connects to a 2 MiB EDAC protected
Level-2 cache before reaching external EDAC protected
SDRAM.  Each  LEON4FT processor  has  a  dedicated
pipelined  IEEE-754  floating-point  unit.  While  the
GR740 implementation of LEON4FT lacks support for
dedicated  multiply-and-accumulate  instructions  this  is
mitigated  by  the  presence  of  the  large  number  of
processor  registers,  L1  cache  memory  and  high
operating frequency.

The  main  communication  interfaces  of  the  device
include eight external SpaceWire ports connected to an
on-chip  SpaceWire  router,  two  10/100/1000  Mbit
Ethernet ports, MIL-STD-1553B and 32-bit PCI.

The design makes use of extensive clock gating for the
communication interfaces and the processors,  that can
be put in a power-down mode to conserve power when
some or all cores are unused. 

The four parallel  CPU /  FPU cores,  each running on
dedicated  separate  instruction  and  data  L1  caches
(Harvard architecture), at 250 MHz clock frequency, can
theoretically provide up to 1 Gflop/s in single or double
precision.  Together  with  the  multiple  Spacewire  and
Ethernet interfaces, this makes the GR740 suitable for
DSP  applications,  provided  that  the  application
implementation  succeeds  in  making  an  efficient
parallelisation and streaming of data across the shared
on-chip  buses.  This  can  be  demonstrated  with  the
implementation  of  dedicated  DSP benchmarks,  as  for
example those suggested in [1].

The NGMP architecture has already been evaluated in
an effort where the GAIA VPU application was adapted
to  take  advantage  of  a  multi-core  system.  The
conclusion from this effort was that the GR740 is fast
enough to run the GAIA VPU application [2].

FUNCTIONAL  VALIDATION  AND  DSP
BENCHMARKS

The functional validation of the GR740 device builds on
existing tests used in the frame of the NGMP activities.
The  tests  include  both  functional  and  performance
benchmarks. 

PARSEC 2.1 benchmarks: PARSEC are a set of 
multithreaded shared-memory benchmarks. We run 
them with different number of cores. To show the 
benefit of multiple cores, we calculate the speedup as: 

where T1 is the execution time with one core and

T2 the execution time with different number of 
cores. 

In an ideal parallel application with no overheads, the 
speedup obtained with 4 cores would be 4x. Figure 2 
shows the speedup of a set of the PARSEC 2.1 small 
workloads under Linux. We observe an speedup up to 
almost 3.5x on the swaptions benchmark and 1.83x on 
average for the 4 cores.

Barcelona Supercomputing Center Multicore OS 
benchmarks: These benchmarks were designed to 
evaluate the multicore interference for different OS [5]. 
We use a subset of the benchmarks that continuously 
access the L2 cache with different patterns: L2-128K 
and L2-256K use 128K and 256K of L2 space, L2-miss 
is designed to miss on the L2 cache and ST performs 
store operations that hit on the L2 cache. These four 
benchmarks are highly sensitive to interference when 
running in multicore. We execute these benchmarks in 
single core without interference and with all other cpus 
running L2-miss to generate an extreme interference 
scenario. We calculate the slowdown (as the inverse of 
the speedup) which effectively measures the impact of 
the interference that the cores are generating. Figure 3 
shows the slowdown for the above mentioned 
benchmarks. We observe that the slowdown reaches up 
to almost 3.1x for the ST benchmark, which is the most 
sensitive since in the absence of interference, store 
operations are very efficient due to the write-buffers.

Sup=
T 1

T 2
Figure 3: BSC Multicore OS benchmarks 
slowdown

Figure 2: PARSEC benchmarks speedup
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EEMBC benchmarks:  We have successfully compiled
and run  EEMBC CoreMark,  Autobench,  FPMark  and
Multibench benchmark suites. In this paper, we present
the results of the Coremark and Autobench suites which
might be interesting for a DSP audience. 
In  order  to compare the GR740 with previous LEON
processors, we run the Coremark in a single core on the
UT699,  GR712  and  GR740.  Figure  4  shows  the
CoreMarks [3] when running in a single core. We can
see a significant increment on the GR740 with respect to
the  previous  processors,  mainly  due  to  the  frequency
increment (250 MHz vs 50 MHz). This increment would
become even  bigger  if  we consider  the  four  cores  in
comparison with the 2 core GR712RC or the singlecore
UT699.

Figure  5  shows  the  iterations/sec  of  the  EEMBC
Autobench  suite  under  singlecore  Linux  OS,  which
allows  to  compute  an  AutoMark  score  of  111.97,
comparable with the scores shown in [3].

CCSDS  123  Image  Compression:  This  software
implements  the  lossless  multispectral  & hyperspectral
compression   according  to  the  draft  standard  CCSDS
123.0-R-1.  We have run  4  compressions under  Linux
using one and four cpus, showing an speedup factor of
3.43x.

CONCLUSION

The  GR740  is  a  SPARC  V8(E)  based  multi-core
architecture  that  provides  a  significant  performance
increase  compared  to  earlier  generations  of  European
space  processors,  with  high-speed  interfaces  such  as
SpaceWire and Gigabit Ethernet on-chip. The platform
has improved support for profiling and debugging, and
software  tools  have  been  upgraded  to  this  new
architecture.  Moreover,  a  rich  set  of  software  is
immediately  available  due  to  backward  compatibility
with existing SPARC V8 software and LEON3 board
support packages.

The  GR740  constitutes  the  engineering  model  of  the
ESA NGMP,  which  is  part  of  the  ESA roadmap  for
standard  microprocessor  components.  It  is  developed
under ESA contract, and it will be commercialised under
fair and equal conditions to all users in the ESA member
states.  The GR740  is  also  fully  developed  with
manpower  located  in  Europe,  and  it  only  relies  on
European IP sources. It will therefore not be affected by
US export regulations. 

The  functional  validation  effort  aims  to  validate
functionality  of  the  device  and  of  the  development
board that will be made available to the space industry.

The  GR740  is  the  highest  performing  European
space-grade processor to date and results of DSP 

benchmarks will be presented to allow industry to assess
the GR740's suitability for DSP applications.

News  about  the  GR740  device  can  be  found  at  the
following link:

http://www.gaisler.com/gr7  40
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Abstract 

The Department of Astrophysics at the University of Vienna is 

a provider of payload instrument flight software. Among the 

projects under development is a custom, lightweight operating 

system for the upcoming Scalable Sensor Data Processor 

(SSDP) based on prior experience with its predecessor, the 

Massively Parallel Processor Breadboard (MPPB). The 

objective of this project is to create easy to use software that 

is capable of efficiently driving the SSDP’s Xentium DSP 

cores. Through its unique concept of driving the DSPs, it 

allows the user to make full use of the resources of this 

specific platform. 

I.  INTRODUCTION 

A common problem of space missions is the limited 

processing power of available space-qualified hardware, as 

Payload data processors of on-board spacecraft and satellites 

are subject to high levels of radiation. While there is the 

LEON to fill the role of a general purpose processor (GPP), 

the only radiation hardened digital signal processor (DSP) 

available in Europe is the already dated ADSP-21020, if 

ITAR/EAR regulations are taken into account. 

The need for a new processor or System-on-Chip (SoC) 

computer design for on-board payload data processing is high. 

This is mainly due to the ever increasing quantity of sensor 

data, as modern instruments produce ever larger volumes of 

measurements. Available down-link bandwidth however, is 

limited by available power, antenna sizes and in the end, 

physics. 

In recent years, ESA has been pursuing the development 

of a next generation payload processor. One of the outputs of 

this effort is a prototype SoC called the MPPB (Massively 

Parallel Processor Breadboard) developed by Recore Systems  

under ESA contract 21986 [1]. The MPPB is built around a 

Very Long Instruction Word DSP architecture named Xentium. 

In this platform, a LEON processor is acting as a supervisor, 

controlling a Network-on-Chip (NoC) with multiple DSPs, 

memory and I/O devices attached to it. 

II.  MOTIVATION 

In the course of the NGAPP (Next Generation Astronomy 

Processing Platform) activities, an evaluation of the MPPB 

was performed in a joint effort of RUAG Space Austria 

(RSA) and the Department of Astrophysics at the University 

of Vienna (UVIE). While the original intent of the work of 

UVIE was to quantify the performance of the Xentium DSPs 

and the MPPB as a whole with regard to on-board data 

treatment and reduction in an astronomical mission setting, it 

was found that, given the highly innovative nature of this new 

processing platform, a novel approach was needed concerning 

the management of system resources, DMA mechanics and 

DSP program design for best efficiency and turnover rates. 

Consequently, the University of Vienna developed an 

experimental operating system to stably drive the DSP cores 

and the MPPB close to its performance limit. This was 

achieved by splitting processing tasks into a pipeline of small 

units (kernels) that are dynamically scheduled to run on the 

Xentium DSPs, as required by the amount of data in the 

pipeline stages, thereby overcoming bottlenecks resulting 

from memory transfer overheads and cache sizes that would 

inevitably emerge when using large, monolithic programs 

with the particular characteristics of the MPPB. 

At present, activities are carried out by Thales Alenia 

Space España and Recore Systems in an effort to create the 

Scalable Sensor Data Processor (SSDP) hardware, where an 

ASIC is being developed based on the MPPB 2.0, which is an 

update of the original MPPB with adapted specification [2]. 

This new implementation was made available to UVIE in Q1 

2016 as a firmware update to the existing MPPB hardware 

box. 

In order to support this new hardware, a more refined 

version of the experimental operating system is under 

development at the University of Vienna under a nationally 

funded ASAP 11 project, which also aims to become space-

qualifiable, supporting applicable documentation and S/W 

standards. 

The software is tailored to the NoC concept present in the 

SSDP and is optimised for best performance in key areas of 

system and resource management. These include fast and 

efficient interrupt handling to ensure low response times and 

high memory throughput for DMA transfers that service the 

Xentium data caches and fast I/O interfaces like SpaceWire or 

ADC/DAC. 

Supporting functionality, for example device drivers, 

threads and schedulers, timing and a system 

configuration/information interface will be provided. Great 

effort is made to keep CPU and memory footprints at a 

minimum, so the LEON processor is available for duties other 

than DSP and data processing control, such as handling of 

tele-commands or instrument-related control tasks. 
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A major aim is to make the operating system as easy to use 

as possible, by providing appropriate, well designed interfaces 

in order to keep the need for configuration and extra 

programming effort at a minimum. 

To encourage use, modification and redistribution of the 

operating system, it will be made available under an open-

source license, including all drivers, modules and example 

DSP program kernels, as well as the documentation. 

 

III.  SSDP/MPPB 2.0 HARDWARE OVERVIEW 

The MPPB 2.0 (hereafter referred to as just MPPB) 

platform is a representative "preview" of the future SSDP 

hardware. It consists of two VLIW DSPs, called Xentiums, 

which are connected to a high-speed Network-on-Chip (NoC) 

along with distributed SDRAM memories and external high-

speed interfaces, such as SpaceWire, to satisfy requirements 

for space-based platforms. Attached to the NoC is a 

conventional AMBA bus, which serves as an inter-connect for 

a LEON GPP. The LEON is intended to control, manage and 

serve the nodes of the NoC and other payload oriented 

interfaces (e.g. the real time clock). It can also be used to run 

legacy software for satellite control operations beside its NoC 

servicing tasks. The system is clocked at 50 MHz. 

A. Network-on-Chip 

In high-performance multi-core computing, input/output 

bandwidth and data transport capability are most critical 

issues. In the MPPB, this is addressed by a Network-on-Chip 

(NoC), which is a packet-switched network based on an XY 

routing scheme. XY routing is a simple method of routing 

packets through a network, where first the horizontal (X) 

direction is taken, followed by a turn to the vertical (Y) path 

at the targets X location. For this reason, the forward and 

return paths are different most of the time and are guaranteed 

to be safe from deadlocking. 

The 3x3 NoC mesh connects the following devices: 

 2 Xentiums, 

 a bridge to the ADC/DAC 

 an 8-channel DMA controller 

 2 SpaceWire connections 

 DDR (SDRAM) controller 

 SRAM memory tile 

 AMBA Subsystem 

 

Every mesh routing node has 5 ports and serves 4 channels 

per port, each of them with different priorities. A channel 

offers a bandwidth of 1.6 Gbit/s at a system clock of 50 MHz. 

Two high-priority channels are dedicated to DMA transfers, 

while the low-priority channels serve single read/write 

operations and interrupts. The high-bandwidth design is 

important to the NoC concept, which intends to contain all 

high-volume data flows to the network, never crossing the 

slow AMBA bridge. 

B. Xentium DSP 

The Xentium is a little-endian Very Long Instruction Word 

(VLIW) type digital signal processor IP core developed by 

Recore Systems, The Netherlands. 

A Xentium DSP consists of three main parts: the Xentium 

local bus, the data path (processing core) and a tightly-

coupled memory (TCM) bank composed of 4 sub-banks of 

8 kiB each. The Xentium local bus is an AHB-like bus that 

allows the attachment to already existing compatible hardware 

if needed.  

Most instructions work on 32 bit or pairs of 16 bit 

complements of data-words. The different units offer different 

functionality: 

A0, A1 32 bit and 2x16 bit arithmetic with 40 bit wide add 

registers 

S0, S1 32 bit and 2x16 bit arithmetic with 40 bit wide add 

registers, shift operations 

M0, M1 multipliers for 32-bit operands or 2x16-bit operands  

E0, E1 load/store functionality 

C0 32 bit and 2x16 bit arithmetic, loop and branch control 

instructions 

P0 32 bit and 2x16 bit arithmetic, compare and packing 

instructions 

 

The TCM provides access to 4 different memory banks at 

the same time. As the data path can load and/or store 4x32 bit 

values simultaneously using these banks, enough bandwidth is 

available to all different parallel execution units in the 

Xentium. 

 

IV.  FUNDAMENTAL REQUIREMENTS OF THE OS 

A set of core prerequisites that are crucial to the usability  

of an operating system has been identified and are described 

in short below. These are not unusual for an operating system 

of this category, the features that are particular or less 

common are presented in more detail in the next sections. 

A. Interrupts and Traps 

CPU traps are a central element in the run-time 

environment of the SPARC architecture, they provide means 

to treat hardware exceptions and interrupt requests. Interfaces 

to manage and install higher level trap handlers are available 

and default handlers for different traps typed are provided. 

Effort is made to reduce interrupt entry and exit times as 

much as possible, as the SSDP tends to have higher rates than 

comparable systems under load. This is a consequence of 

necessary signalling with the Xentium DSPs and other 

platform-specific devices, so reducing even small amounts of 

systematic overhead can have great effects in the long run. 
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Interrupt call-back support for both hardware and software 

interrupts are provided. These will not only allow fast and 

easy (de-)registration of an arbitrary number of call-backs per 

interrupt with associated user-data, but also deferred low-

priority interrupt handling in a dedicated thread or OS idle 

loop. 

B. Multi-Core Support 

In order to make it future-proof and interesting for use 

with other LEON-based platforms, the OS is written with 

multi-core support in mind, including dedicated per-CPU 

interrupt stacks, cross-CPU synchronisation and locking, as 

well as task migration with according support in the threading 

library. 

C. Timers 

In addition to the usual facilities, emphasis is put on tick-

less (i.e. non-periodic) timing functionality, so unnecessary 

wake-ups of the GPP and inherent waste of CPU cycles can 

be avoided. 

D. Threads and Schedulers 

Along fixed priority based scheduling, a modified earliest 

deadline first scheduler with priority execution in overload 

conditions is implemented. This, along with dynamic ticking, 

gives an option to optimise thread CPU utilisation with the 

added benefit of predictable execution for certain high-

priority threads in conditions, where the total load 

unexpectedly exceeds 100%. 

E. DMA Driver 

The 8 channels of the DMA 2D-transfer feature in the 

MPPB/SSDP are essential to its computational performance. 

Low overhead and ease of use are desirable for this driver. 

Special care must be taken to avoid access conflicts to 

channels since the Xentiums have gained the faculties to 

receive transfer-completion signalling with version 2 of the 

MPPB and can now be used to initiate transfers themselves, 

thereby reducing the interrupt load of the GPP significantly. 

As there are (by the nature of the NoC) no atomic loads/stores 

possible,  the usage state of a DMA channel might change 

unexpectedly during programming, if channels are 

dynamically used, rather than being statically assigned to 

either a DSP or the GPP. The former is clearly more desirable, 

as there is less downtime when more transfers need to be 

started than channels are assigned to a node. 

F. I/O Interface Drivers 

The major I/O devices, i.e. ADC/DAC and SpaceWire that 

are common to both the MPPB and the SSDP are supported, 

others (FLASH, GPIO, LEDs, LCD, ...) as they are present or 

needed for OS operations or development support. 

 

 

 

G. FDIR and Error Reporting 

Fault detection and recovery with regard to hardware 

devices is part of the drivers themselves. EDAC handling and 

memory scrubbing is present as part of the OS. A central error 

reporting facility is in place that is being used by drivers or 

other software components.  

H. Miscellaneous 

Additional functionality to support application software 

development is available. This includes an interface to the 

debug support unit (DSU) of the LEON, generation of stack 

traces and register dumps on hardware traps, along with any 

NoC/Xentium focused debugging facilities. 

 

V. XENTIUM KERNEL SCHEDULER 

Within the NoC of the MPPB, functional components may 

be viewed to behave similarly to hosts in a computer network. 

Any data transferred between nodes of the NoC, even 

dedicated memories, are sent via datagrams. This means, for 

example, that a data load from an SDRAM bank executed on 

a Xentium node is executed via its Xentium Network 

Interface (XNI), which effectively constructs a request packet 

that is sent to the SDRAM node. The receiving node then 

reads the requested memory locations and sends a number of 

packets holding the data back to the DSP. The communication 

overhead and subsequent packet creation time generated for 

every single request of a program instruction or data word 

read from a larger memory store inevitably inserts significant 

latency into every operation of the Xentium that requires 

external interaction, as the possible throughput is 4x32 bit 

words per clock cycle, if the DSP program is properly written. 

A way to avoid these delays is to restrict Xentium memory 

access to the local TCM banks and, in order to forgo stalls in 

the instruction pipeline, restrict program sizes to be at most 

the size of the local instruction cache (16 kiB). 

The contents of the TCM can be exchanged with bulk 

memory via the DMA feature of the MPPB, as of version 2.0, 

transfers can also be locally controlled by the Xentium. The 

DMA function is essentially the same feature that is used for 

data transfer in the opaque XNI, but may be used to initiate 

larger, more complex (2D) data block transfers, so network 

overhead is minimized and transfers can happen at much 

higher rates, limited only by the mass memory throughput 

and, to a lesser extent, NoC bandwidth. 
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On-board processing pipelines, at least in the astronomical 

use cases that were explored in the NGAPP performance 

study, typically require many steps in data treatment, resulting 

in binary sizes that easily exceed the capacity of a Xentium's 

instruction cache. Instead, the monolithic program code can 

be broken down into arbitrarily small functional fragments 

(kernels) that are executed on the Xentium DSP as they are 

needed (see Figure 1). Such a science data processing chain is 

briefly described in [3]. Each step in there would be 

implemented in the SSPD as a processing kernel. These 

kernels require a generic data exchange interface for input and 

output, so data can be passed between arbitrarily chained 

processing nodes. This is done via dynamically defined 

metadata containers, which hold information about data type, 

references to location and size, previously applied processing 

steps and other configuration parameters, thus allowing the 

receiving kernel to act on the input data accordingly and to 

record its own data operations to the container when passing it 

on. In between operations, the metadata containers are held in 

circular buffers, which act as both a connecting intermediate 

and a measure of the state of the pipeline. 

A. Scheduling 

Since Xentium kernels act upon their input only as a link 

in a chain and do no further processing than what is their 

purpose, they must occasionally be exchanged, or the pipeline 

would stall eventually, because either the output of the kernel 

would run full, or the input would run empty. This is a task 

that is supervised by the MPPB's LEON GPP. A very simple, 

yet effective metric is used to determine whether the DSP 

should be assigned another kernel. 

During pipeline construction, each kernel is assigned an 

input and an output circular buffer, which is configured with 

two parameters: total size and critical fill state. The latter is 

used as a threshold trip point that results in a scheduling event 

signal when it is exceeded. The signal is emitted by the 

circular buffer itself, hence no periodic polling overhead is 

generated on the GPP and as long as the critical level is 

sensibly defined, it provides enough hysteresis for the pipeline 

not to stall. This applies to all but the last buffers in the 

processing chain, which is ignored, or rather, has no critical 

fill state, since its contents are typically sent to a bulk storage 

device or via a network interface. 

On a buffer criticality signal, the kernel scheduler selects 

the most critical buffer based on its location in the pipeline, 

with later buffers having less priority. It then selects a 

Xentium based on their kernel input buffers fill state and 

position in the pipeline and switches the running program. 

This is done so that data are buffered towards the end of the 

pipeline, rather than the beginning, allowing input to be 

accepted as long as possible, even if there are issues with 

output network interface or mass storage device. 

 

Figure 2 shows a test of the self-balancing nature of this 

approach. The processing pipeline of a fine guidance sensor 

and photometer instrument was implemented and fed 512x512 

pixel-sized input frames with simulated stars via two 

SpaceWire links running at 100 Mbits at maximum data rate 

(~34 frames per second). In the initial processing step, a 

region of interest of 100x100 pixels was masked, which was 

then examined by a center-of-gravity (COG) algorithm to 

determine the precise position of the guide star on the frame. 

The output of the COG step consisted of the object shift 

relative to the center of the input frame and photometric flux 

data for a 40x40 region of interest. This region was deglitched 

and calibrated in the next nodes of the processing chain, 

followed by de-correlation via integer wavelet transform and 

finally compressed by arithmetic coding (ARI). 

The resulting load curves, represented by the fill states of 

the circular buffers, demonstrate the quick emergence of a 

periodic pattern that clearly demonstrates the effectiveness of 

this approach (see Figure 2).  

VI.  RUN-TIME CONFIGURATION INTERFACE 

A core necessity of any type of on-board software is the 

ability to generate housekeeping data to be sent to ground, in 

 
Figure 1 Chaining concept of individual, pipelined program kernels. 

Data arriving via a SpaceWire link are processed by Xentium DSPs 

as needed by dynamically changing the running kernel. The data 

progresses through the pipeline and are sent to their destination via 

outgoing SpaceWire link. 

 

Figure 2: Successful test of a processing chain. Only buffers that 

show usage > 0 during any sampling period are included in the 

diagram. 
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order to provide information about the prevailing run-time 

parameters of both hardware and software. 

While requirements of update rates and number of 

variables – especially regarding software – may vary greatly 

for different mission profiles, there are generally hundreds of 

these data that are available for selection to form a 

housekeeping telemetry message. Usually, these are not solely 

read-only variables, but may also be patched by an 

appropriate tele-command in order to induce a mode change 

or adjust parameters to modify the behaviour of the software. 

These variables are often stored in large, monolithic, 

globally accessible "data pools". Such simplistic structures 

may at first glance be the logical choice, suggesting ease of 

both use and implementation, but are however very 

susceptible to breakage, particularly in top-down designs, 

where the data type of the implemented variables is not 

uniform and interaction with the data structure is only 

intended to occur via opaque accessor functions. If 

adjustments are made during development, memory violations 

may occur during runtime, and those can result in erratic, 

unpredictable, opaque bugs that are very difficult to track 

down. Another objection to this type of design is its re-

usability, as there may exist multiple points of adaption, 

especially in circumstances where a great number of 

internally used variables, which are elemental to a software 

module or function, are stored in an externally administered 

data structure. 

Highly modular, encapsulated software modules with an 

as minimalistic as possible external interface are very 

preferable for re-use. Ideally, for example, a SpaceWire driver 

would only provide an interface to send or receive packets 

and handle all configuration of the underlying hardware 

internally. This however poses a problem to a user that would, 

for example, configure a particular link speed or continuously 

monitor data transfer rates. 

For such purposes, an interaction point is needed that 

exposes certain internal attributes via a generic interface and 

acts as a conduit between operating system elements and user-

space. There are essentially four fundamental requirements for 

such functionality. First, internal interfaces or variables must 

not be slower to use than when not exposed. Second, all 

exposed functionality is defined by the module and exported 

to the generic interface when initialised. Third, the exposed 

functionality must not result in unpredictable behaviour, i.e. 

the software module must be insensitive to sudden changes in 

states or variables, or care must be taken by the module 

designer, so that interactions are properly handled. In any 

case, this must never be a concern for the user. Finally, any 

access must be on the user's processing time, not on that of 

the module. 

Given that the interaction point has to be completely 

generic to accommodate any kind of mapping defined by a 

module without restrictions, it must consequently be very 

simple. This is most easily achieved by implementing a 

character-buffer based interface that interacts with a module 

via functions provided by the latter to the generic interface 

structure. The necessary parsing or value conversion of text 

buffers on the user side is obviously slow compared to raw 

variable access, but given the underlying assumption that this 

system control interface is to be accessed in the order of no 

more than a few hundred or at most several thousand times 

per second,  the overhead is effectively negligible. 

The concept is very similar to the sysfs and sysctl 

interfaces found in Linux and BSD operating systems, with 

the former being file-system driven, while the latter is 

implemented as a system call. Since a file-system in the 

classic sense is not foreseen to be implemented in the OS, the 

actual implementation can be seen as a hybrid of the two, 

which represents nodes in the configuration in the same 

fashion as a virtual file system tree, while all access is 

performed via a call interface. 

To create a system object for exporting items, a software 

module must define at least one attribute structure that 

configures the name and the appropriate show and store 

methods of that attribute. The object is then registered to an 

existing logical set of objects. For instance, a SpaceWire 

driver would register its attributes under a /sys/drivers tree, 

while an interrupt manager would register under /sys/irq, 

provided that these sets were already defined. Optionally, a 

new sub-set to hold the system objects of particular attributes 

may be created before attaching an object. If the SpaceWire 

driver was to manage multiple interfaces, it could create a 

logical sub-set /sys/drivers/spw and group interfaces SpW0, 

SpW1, ... under that set. 

Since there are no formal restrictions on what qualifies to 

this system configuration tree, application software running 

on top of the operating system can (and should) make use of it 

as well. The aforementioned housekeeping data generation 

makes a good example for an application that both uses the 

the data provided by the registered software modules to 

generate housekeeping packets and is itself configured via this 

interface, e.g. its polling rate and the definition of 

housekeeping data to collect. 

VII. SUMMARY 

Given the unique nature of the SSDP/MPPB hardware 

concept, a custom approach is needed to efficiently run 

computational operations in an (astronomical) on-board data 

processing and compression setup of instrument payloads. 

The operating system currently under development at the 

Department of Astrophysics of the University of Vienna 

addresses this challenge. To encourage its use, modification 

and redistribution, it will be published under an open source 

license in all of its parts. 
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ABSTRACT 
The evolution of the Earth Observation mission is 
driven by the development of new processing 
paradigms to facilitate data downlink, handling and 
storage. Next generation planetary observation 
satellites will generate a great amount of data at a very 
high data rate, for both radar based and optical core 
applications.   
Real-time onboard processing can be the solution to 
reduce data downlink and management on ground.  
Not only commonly used image compression 
techniques (like e.g. JPEG2000) and signal processing 
can be performed directly on board, but also 
compression techniques based on more detailed 
analysis of image data (like e.g. frequency/spectral 
analysis). 
The MacSpace RC64 is a prototype DSP/ASIC for 
novel onboard image processing, which is being 
designed, developed and benchmarked in the 
framework of an EU FP7 project and targets these new 
demands for making a significant step towards 
exceeding current roadmaps of leading space agencies 
for future payload processors. The DSP featuring the 
CEVA X-1643 DSP IP core will deliver performance 
of 75 GMACs (16bit), 150 GOPS and 38 single 
precision GFLOPS while dissipating less than 10 
Watts.  
 
1. INTRODUCTION 
Nowadays, leading space agencies plan for high 
resolution and wide swath radar imaging systems 
aboard satellites such as the one to be employed in 
future Sentinel-1 (HRWS) or potential Venus orbiter 
missions.  Part of the processing could be shifted from 
the ground station to the satellite itself, requiring 
powerful real-time on-board processing [1].  
 
Typical applications include, SAR imaging and data 
compression. A large set of these applications comprise 
of computationally intensive kernels.  

These ambitions – far beyond well-known benchmarks, 
comprising of mostly basic signal processing 
algorithms like Fast Fourier Transform (FFT) and 
Finite Impulse Response (FIR) filtering  – depend on 
the availability of flexible and scalable hardware and 
software solutions, since applications most likely will 
change and develop over time and therefore space 
systems will need to adapt within limited time frames. 
Unlike currently employed applications such as e.g. 
FFT processing and BAQ compression on SAR 
satellites that usually do not change during the life-time 
of a satellite and therefore are mostly realized in 
hardware (e.g. FPGA accelerators). More modern 
applications - due to longer development time and 
relatively high development costs - can’t be 
implemented on special purpose hardware accelerators 
economically. We have detected the need for a 
platform that allows enough flexibility for space 
application developers and mission planners in order to 
determine feasibility of new ground breaking missions 
and to determine their parameters. 
The aim of the MacSpace project is to drive on-board 
processing of complex applications such as SAR 
imaging forward, eliminating the need for continuous 
transfer of huge data streams to ground stations, saving 
significant energy, time and bandwidth that are 
required for data transfers and especially for planetary 
observation. Besides enabling latency critical 
workloads, energy for data transmission can be saved 
and spent instead for onboard high-performance 
computing. One key challenge of MacSpace therefore 
is matching potential application requirements.  

 

2. SAR IMAGE PROCESSING 

Modern Synthetic Aperture Radar (SAR) systems are 
continuously developing into the direction of higher 
spatial resolution and new modes of operation. This 
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requires the use of high bandwidths, combined with 
wide azimuthal integration intervals.  

For focusing such data, a high quality SAR processing 
method is necessary, which is able to deal with more 
general sensor parameters. Wavenumber domain 
(Omega-K) processing is commonly accepted to be an 
ideal solution of the SAR focusing problem. It is 
mostly applicable on spaceborne SAR data where a 
straight sensor trajectory is given. 

Therefore, within the MacSpace project the TU 
Braunschweig in close connection with the DLR is 
conducting experimental benchmarks on a 
representative SAR application excluding 
preprocessing steps. 

The application consists of: 

i) Range FFT 
ii) Range compression 
iii) Azimuth FFT 
iv) Modified Stolt Mapping 
v) Range IFFT 
vi) Azimuth Compression 
vii) Azimuth IFFT 

Computation-wise one single RC64 chip could be 
capable of processing data of 8192x8192 complex 
values (single precision floating point, i.e. in total 
512MB) in under 2 seconds @ 300MHz and 100% 
compute utilization (based on a computation count: 
60G Floating Point Operations @ 38 GFLOPS). Since 
the onboard data bandwidth (per core: L1 data - peak 
128bit read/write per cycle per core from/to registers, 
L1 from/to shared memory ('L2') 128bit @~50% 
utilization read and 32bit write) potentially can sustain 
the demand by computations, reaching the best-case 
performance will be a matter of latency hiding. In the 
worst-case scenario, we still expect the application to 
finish processing the above described data in under 1 
minute. 

                            

3 MACSPACE DEMONSTRATOR 

The development of a MacSpace demonstrator is part 
of the project to validate the usability and functionality 
of the system. The processor architecture is 
implemented in a high-performance FPGA (Xilinx 
Virtex 7) representing the MacSpace RC64 prototype, 
which executes the image processing. A personal 
computer performs the management and the payload 

data handling. The GSEOS V software package is used 
to send preprocessed radar data, control and monitor 
the prototype as well as to analyse the results and 
qualify the performance. 

Its high computing performance of 150 GOPS and 38 
GFlops per RC64 chip, which could scale to an 
interconnected system that meets any defined 
performance level, can maintain high processing 
resources utilization using innovative parallel 
programming technics. The main approach is to 
parallelize compute kernels on a base of sufficiently 
small-split independent tasks that each work on local 
data, while using shared memory.   
A hardware (task) scheduler dynamically allocates, 
schedules, and synchronizes tasks among the parallel 
processing cores according to the program flow. 
Hence, it reduces the need for an operating system 
(OS) and eliminates large software 
management/execution overhead. No OS is deployed to 
the cores. 

4 RELATED WORK AND COMPARISON 

Most existing processors for space applications, such 
as Atmel AT697 [5], Aeroflex UT699 [6], Aeroflex 
Gaisler GR712RC [7] and BAE Systems RAD750 [8], 
provide performance levels below 1,000 MIPS, and are 
thus unsuitable for executing high-performance “next 
generation digital signal processing” (NGDSP) tasks in 
space missions [1]. While NGDSP requirements are 
listed at 1,000 MIPS/MFLOPS, a more practical goal is 
10,000 MIPS. Even the fastest, currently available 
space processor, SpaceMicro Proton200K [9], achieves 
only about 4,000 MIPS/900MFLOPS. Performance of 
some space processors versus year of introduction is 
plotted in figure 2.  

 

Figure 2: Performance Comparison of the RC64 based 
on MacSpace RC64 Prototype with other space 
processors  
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Recently, the US government has adopted Tilera’s Tile 
processor for use in space, in the framework of the 
OPERA program and the Maestro ASIC [10]. 
Integrating 49 triple issue cores operating at 310 MHz, 
it is expected to deliver peak performance of 45,000 
MIPS. Software development experience for the 
Maestro chip has encountered difficulties in 
parallelizing applications to the mere 49 cores of the 
Maestro. Some of the developments have 
underestimated the inter-core communication latencies 
involved in the tiled architecture of Maestro. Due to 
such difficulties, programmers are forced to cram 
multiple different applications into the many-core, 
resulting in additional difficulties regarding protection 
of each application from the other ones. 
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Abstract 
Stream processing, widely used in communications and 

digital signal processing applications, requires high-
throughput data processing that is achieved in most cases 
using ASIC designs. Lack of programmability is an issue 
especially in space applications, which use on-board 
components with long life-cycles requiring applications 
updates. To this end, the HPDP architecture integrates an 
array of coarse-grained reconfigurable elements to provide 
both flexible and efficient computational power suitable for 
stream-based data processing applications in space.  

In this work the capabilities of the HPDP architecture are 
demonstrated with the implementation of a real-time image 
processing algorithm for space debris detection in a space-
based space surveillance system. The implementation 
challenges and alternatives are described making trade-offs to 
improve performance at the expense of negligible degradation 
of detection accuracy. The proposed implementation uses 
over 99% of the available computational resources. 
Performance estimations based on simulations show that the 
HPDP can amply match the application requirements. 

I. INTRODUCTION 
A hardware architecture supporting parallelism, such as 

pipelining and data-flow parallelism is of high importance in 
stream-processing applications, in which conventional 
processors do not deliver the required performance efficiently. 
An Application-Specific Integrated Circuit (ASIC) achieves 
low power consumption with the best performance, but lacks 
of any reconfiguration capabilities needed especially in space 
applications where the on-board hardware has long life-cycles 
and might require application upgrades. On the other hand, a 
Field-Programmable Gate Array (FPGA) allows 
reconfigurable hardware design at gate level, offering more 
flexibility than an ASIC at expenses of higher power 
consumption, more silicon and at a relatively reduced 
maximum clock frequency, but capable of achieving better 
computational performance than processors in stream-based 
applications [2]. However, fine granularity reduce 
performance in an FPGA because of the complexity of the 
programmable connections used to build logic blocks [3]. 

As a result, architectures are evolving towards hardware 
with reconfigurable capabilities that integrates modules that 
can be configured to efficiently perform frequently used 

operations. The eXtreme Processing Platform (XPP) is the 
core of the High Performance Data Processors (HPDP) 
architecture [4]. The XPP allows runtime reconfiguration of a 
network of coarse-grained computation and storage elements. 
The algorithm's data-flow graph is implemented in 
configurations, in which each node is mapped to fundamental 
machine operations executed by a configurable Arithmetic 
Logic Unit (ALU) [5]. 

The present work aims to determine the effectiveness, 
portability and performance of an image processing algorithm 
in the HPDP architecture. Space debris is a major issue for 
operational satellites and spacecraft.  A Space Based Space 
Surveillance (SBSS) mission using an optical telescope has 
been proposed [1] in order to detect and track such debris. 
The required frame rate for the instrument calls for an 
efficient on-board image processing implementation in order 
to keep payload data volume within limits. Such on-board 
data reduction can be implemented by detecting features of 
interest (debris, stars) while omitting the remaining image 
content (noise, space background). 

The main objective of porting the algorithm to the HPDP 
architecture is to fulfil the requirement of real-time detection 
of space debris. Portability analysis covers use of hardware 
resources among different implementation alternatives, its 
parallelisation capabilities, throughput, memory usage (size 
and required bandwidth) and errors derived from rounding 
and data truncation.  

The paper is structured as follows. The first section 
introduces the HPDP architecture with its constitutive 
elements. Next, the theory behind the boundary tensor 
algorithm as a feature detection method is explained. Then, 
the implementation of the algorithm in the HPDP is described. 
In the following section, the cycle-accurate simulation results 
are presented to measure the throughput of the algorithm 
running on the HPDP, estimate the performance in the 
expected hardware, and quantify the detection error. Finally, 
the objectives are evaluated and conclusions are given. 

II. THE XPP AS THE CORE OF THE HPDP 
 
 The XPP is a runtime-reconfigurable data processing 

architecture, that combines a coarse-grained reconfigurable 
data-flow array with sequential processors. This allows 
mapping regular control-flow algorithms that operates over a 
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stream of data and achieve high throughput. Control-flow 
dominated tasks can be executed in the programmable 
processors [5]. 

The XPP Core consists of three types of Processing Array 
Elements (PAE): arithmetic logic unit PAE (ALU-PAE), 
random access memory with I/O PAE (RAM-PAE) and the 
Function PAE (FNC-PAE). ALU-PAE and RAM-PAE 
objects are arranged in a rectangular array, called the XPP 
Data-flow Array [6].  

 

Figure 1: Overview of the HPDP architecture [4] 

For the implementation of the feature detection algorithm 
the XPP-III 40.16.2 core is used, consisting of 40 ALU- PAE 
objects arranged in a 5x8 array, 16 RAM-PAE and two FNC-
PAE. For the HPDP project the XPP core has been selected 
by Airbus DS due to the availability as HDL source code 
among others. This enables the implementation on the 
STM65nm semiconductor technology, using a radiation 
hardened library. The elements in the library are designed 
such that radiation effects such as bit flips in storage elements 
and transients on control signals lines are very much limited. 
This makes the resulting HPDP chip suitable to operate in all 
earth orbits and be- yond. The development of this chip is 
currently on-going, first prototypes are expected in the second 
half 2016. 

III. ALGORITHM FOR SPACE DEBRIS DETECTION 
The objective of the used algorithm is to detect linear 

streaks formed by space debris trails. A linear feature is 
defined as a neighbourhood of image pixels with an intensity 
distribution forming a patter fitting in a line with some width 
and length, and with a high enough signal-to-noise ratio 
(SNR) to be detected.  

The boundary tensor [7][8] combined with thresholding is 
used as the detection algorithm to obtain a binary image 
containing the detected objects. 

The boundary tensor is constructed combining the results 
of applying a set of polar separable filters to the input image. 
It has been demonstrated that an adequate linear combination 
of the results of applying a set of polar filters to an image, 
produces a single peak of energy when an edge is found, 
regardless of the type of symmetry in the feature: step edges 
that exhibit even symmetry or roof edges that has odd 
symmetry [7]. Filtering is performed in the spatial domain, 
saving computational efforts compared with filters working in 

the frequency domain where Fourier transformations are 
required. For this purpose, a set of even and odd filters are 
used and the filtering operation is implemented as a set of 1-D 
Convolutions along the columns and rows of the image, 
generating a set of odd and even responses. Their energies are 
combined to obtain the boundary tensor. Seven filter kernels 
are used, which are calculated from the Gaussian function and 
successive derivatives. 

 

Figure 2: Boundary tensor and thresholding data-flow graph for 
space debris detection 

IV. PORTING THE DATA-FLOW GRAPH TO THE XPP 
ARRAY 

Convolution is the basic operation of most signal 
processing algorithms. For the boundary tensor algorithm 
seven row-wise convolutions and seven subsequent column-
wise convolutions are used to calculate the even and odd 
responses. The convolution process accounts for 80% of the 
data processing required for the whole boundary tensor 
algorithm. Thus, its implementation has a high impact in the 
final performance. Four types of operations are required to 
complete the convolution stage as illustrated in Figure 3. 

 
 

Figure 3: Data-flow graph of the convolution stage in the boundary 
tensor algorithm for feature detection 
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A. 1-D Convolution Implementation 
The reference design of boundary tensor [8] requires, in 

first instance, floating-point arithmetic. However, hardware 
for signal processing often uses fix-point arithmetic because 
floating-point support needs more hardware resources. This in 
turn increases power consumption. Furthermore, issues may 
arise in time-constrained applications since operations could 
take an unpredictable amount of time [9]. Therefore, 
convolution is implemented using fix-point arithmetic in this 
work. Kernels with radius r = 3 are used. 

1) Bit-Width for Data Representation in XPP computations 
The XPP array does not have enough computational 

elements to calculate several convolution sets in one 
configuration. And it has neither enough internal memory 
elements to perform convolution rounds with different 
kernels, without having to stream-out intermediate results to 
the system's memory. Therefore, the bit-width value 
representation used in the XPP computations has great 
influence in the volume of data exchanged between the XPP 
array and the system memory and, in consequence, impact in 
the performance. The input pixels are unsigned 16 bit values 
(uint16), signed arithmetic is required due to the negative 
elements of some kernels, and that the 4-Dimensional Direct 
Memory Access (4D-DMA) can transfer data at a maximum 
of 64 bits/cycle. A trade-off between accuracy and 
performance is possible. If the full-resolution input pixels are 
used for computation, two 16 bits data buses from the XPP 
array are required to hold computation values. This means 
that a pixel is represented by an int32 value and the 4D-
DMA is only capable to transfer 2 pixels/cycle. However, if 
the least significant bit (LSB) of the input pixels is truncated, 
all computations fit into 16 bits, therefore 4 pixels/cycle can 
be streamed to the XPP array. Additionally, the int16 
implementation requires the transfer of half the data volume 
than the int32, at expenses of inducing an error in the 
detection result. This LSB truncation approach is used and 
detection error is analysed. 

2) Overflow consideration 
Kernels that are derived from the Gaussian function are 

normalised, which means that the sum of the absolute value of 
the kernel elements is equal to one. In addition, for kernels 
obtained from the successive derivatives of the Gaussian 
function, it can be demonstrated that the sum of the absolute 
values is a positive number less than one. 

3) Resource Optimisation based on Kernel symmetry 
To convolve a full row (or column), a convolution is 

executed over all its pixels. At the end of this process, each 
kernel element is assumed to be multiplied with all pixels in 
the row (column). This rule applies to all pixels except the 
ones near the borders, i.e. the first and last r pixels in the row 
or column. These are not multiplied by all kernel elements, 
but only by r of them. In first instance, it is possible to assume 
that for each pixel convolution 2r+1 multiplications must be 
done and 2r additions must be calculated. 

Symmetry in a kernel is advantageous for the 
implementation, because it reduces the number of necessary 

multiplications between kernel elements and pixels. In the 
case that the kernels show even symmetry, the values at each 
side of the vertical axis are a reflection of the other side. As a 
result, only r+1 multiplications are necessary. For kernels 
with odd symmetry, the central element is always zero and the 
elements at one side of the vertical axis have the same 
magnitude with opposite sign than the values at the other side. 
This means that using this kind of kernel, only r 
multiplications are needed per pixel convolution. 

B. Boundary tensor trace calculation. 
Boundary tensor calculation is performed only once at the 

end of the algorithm and its complete implementation fits in a 
single XPP array configuration. For this reason, there are no 
intermediate values that must be temporarily stored in the 
system memory to be streamed-back to the XPP array for 
further processing. As illustrated in Figure 4 calculations are 
carried out using the given bit-width. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a) Even tensor calculation 

 
 
 
 
 
 
 
 
 
 
 
 
 

b) Odd tensor calculation 
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Figure 4: data-flow graph of the even tensor calculation, with data 
type and value ranges 

III. RESULTS 
In this section the performance of the feature detection 

algorithm executed in the HPDP is evaluated. The HPDP chip 
is not yet available. The following runtime estimates are 
derived from a cycle-accurate simulation of the XPP array and 
the expected clock frequencies as given in the following 
section.  

C. XPP Array Throughput 
For determining the throughput of the complete 

implementation, each pipeline in every of the six 
configurations (i.e. row and column-wise convolution with 
even and odd symmetry, transpose and boundary tensor 
calculation) is executed in the HPDP simulator. The 
maximum average throughput is 3.98 Bytes/cycle, which is 
achieved by the configurations computing convolution with 
odd symmetry kernels.  

For an XPP array working with a 200 MHz clock, after the 
data flow in the pipelines has been balanced, a maximum of 
796 MBytes/s will be flowing into the XPP array for 
processing and, at the same bit rate, results will be generated. 
Thus, for a single memory port, the minimum bandwidth to 
provide and store-back a continuous data stream to the XPP 
array is 1592 MBytes/s.  However, this requirement is not met 
by the assumed HPDP hardware specification which 
integrates two 64-bit wide memory ports: one with an internal 
4 MBytes SRAM operating at 100 MHz (i.e. 800 MBytes/s) 
and another with an external DRAM attached running at 50 
MHz (i.e. 400 MBytes/s). So the maximum theoretical bit 
transfer of the SRAM is nearly half the bit rate at which the 
XPP array is consuming data and generating results for the 
implemented algorithm. 

1) Sub-image Processing 
To achieve the best performance for the given 

specifications, the SRAM should be used for all memory 
transactions required for the convolution and boundary tensor 
calculation. This implementation requires eight image buffers 
for complete execution. One stores the input image, and the 
other seven hold the row-convolution results. Because the 
transposition operation reads the input image column-wise 
and writes the result row by row, it is not possible to use the 
same origin and destination buffer for this operation, 
otherwise loss of data will occur. Splitting the 2048x2048 
pixels input image in 16 parts, produces sub-images that can 
be processed one at a time using eight 512 KBytes sub-image 
buffers stored in SRAM. DRAM is used to store the input and 
result image. 

2) Estimated Computation Time 
The performance of the algorithm on the specified HPDP 

hardware is determined by the memory speed.  Based on the 
number of write and read operations needed for the complete 
algorithm, an estimation of the execution time of the feature 
detection algorithm is computed. The algorithm completion 

time for the expected HPDP hardware is 734 ms using sub-
image processing with SRAM, compliant with the maximum 
one second requirement for processing a 2048x2048 pixels 
image. 

3) Detection Accuracy 
For each detected streak in the binary image obtained from 

the HPDP simulation, there are approximately 10% less 
detected pixels compared with the reference implementation, 
as shown in Figure 5 for an input image containing a streak 
with an SNR of 7.19 dB. The error is negligible since the 
detection information per object can then be used to store full 
streak pixel values in order to not lose accuracy with respect 
to the position and brightness in a further processing step on-
ground. 

 
 
 
 
 
 
 
 
 

Figure 5: Comparison between reference and HPDP implementation. 
Detection values present in the reference implementation but not in 
the HPDP results are highlighted in red, and represent 10% of miss-

detected pixels. 

V. CONCLUSIONS 
In this paper, we showed that the boundary tensor 

algorithm can be mapped to a data-flow graph and a simple 
control flow is only required for filter kernel update, border 
replication and pipeline cleaning tasks. Thus, the XPP array is 
appropriate for its implementation, reaching in average 4.7 
GOp/s, for 16-bit fixed-point multiplication-addition 
operations. The model used for the convolution 
implementation makes possible to implement pipeline 
parallelism, because the image input stream is multiplied first 
by all kernel elements and the adder module receives the 
required multiplication results as they are produced. 
Moreover, convolution is appropriate for task parallelism in 
XPP array, since four consecutive pixel streams are received, 
and four pipelines can compute the convolution of four pixels 
simultaneously, without data dependencies.  The utilisation of 
99% of XPP array computation elements (e.g. ALU-PAE), 
and the use of the maximum transfer mode of the 4D-DMA, 
shows that this implementation is taking advantage of all the 
capabilities of the architecture.  

Additionally, it has been determined that for a noise-less 
detection, the SNR of the feature must be greater than 7.19 
dB. This specifies the capabilities of the implemented 
algorithm and shall be used as a detection-effectivity 
benchmark for comparison with other detection algorithms. 

In terms of scalability, the XPP array configuration (use of 
array objects and connections) implementing this algorithm is 
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independent from the dimensions of the input image. The size 
of the kernel has direct impact in the required operations and 
as consequence more XPP array resources are needed if the 
kernel radius is increased. This is determined by the deviation 
of the Gaussian function that generates the filters. The 
deviation value has an impact on the geometry of the features 
that can be detected. 

Finally, the LSB truncation is an effective alternative to 
meet the real-time requirement because the gain in 
performance is greater (twice as fast) than the error caused in 
the detection, evidenced by a loss of only 10\% of high-
detection pixels. Integer arithmetic keeps the hardware 
implementation at the lowest level of complexity, using less 
resources, reducing power consumption and assuring 
computation time determinism, with negligible error.   

To summarize, our experience from implementing the 
given algorithm shows that the coarse-grained reconfigurable 
array approach successfully can achieve typical requirements 
in space. A key feature is the fast re-configurability, which 
not only makes programmability possible in the first place, 
but also allows even complex data flows to be implemented in 
multiple configurations with modest hardware resources and 
still high data streaming throughput.  
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Abstract 

Next generation digital signal processors for space 

applications have to be programmable, high performance and 

low power. Moreover, the digital signal processors have to be 

tightly integrated with space relevant interfaces in System-on-

Chip (SoC) solutions with the required fault tolerance.  

We present DSP and Network-on-Chip IP technology to create 

multi-core architectures for payload data processing. The IP 

complements existing general purpose processing solutions 

and can be seamlessly integrated to extend processing and 

interconnect capabilities in next generation DSP multi-cores. 

I. INTRODUCTION 

On scientific missions to deep space a wealth of data is 

gathered, analysed and compressed on-board before being 

relayed back to earth. The data cannot be sent to earth in its 

entirety since modern instruments gather much more data than 

can be communicated back to earth. For a correct interpretation 

of what is going on in space, and valid answers to exciting 

questions it is key that the compressed and processed data is 

correct. 

Next generation digital signal processors for space 

applications have to be programmable, high performance and 

low power. Moreover, the digital signal processors have to be 

tightly integrated with space relevant interfaces in System-on-

Chip (SoC) solutions with the required fault tolerance.  

With the planning for the Cosmic Vision programme in 

mind, ESA plans to have a standard ASIC with a space 

qualified rad-hard Digital Signal Processor and a performance 

of at least 1000 MFLOPS in its portfolio. In this paper, we 

present multi-core DSP sub-system IP, built of fixed-/floating-

point Xentium DSP cores connected in a Network-on-Chip 

[6][7][8]. 

This paper is organized as follows: Section II presents the 

architectural aspects of a heterogeneous multi-core DSP 

system. Section III provides an overview on the Xentium DSP 

processor. In Section IV the software development process for 

mulit-core DSP architectures is discussed. Section VI 

concludes with ideas towards realization of the next-generation 

many-core DSP for space. 

 

 

 

II. MULTI-CORE DSP ARCHITECTURE 

We present a multi-core DSP architecture for streaming 

Digital Signal Processing for on-board payload data processing 

(OPDP) applications. In the Massively Parallel Processor 

Breadboarding (MPPB) study [2][5] and in the Scalable Sensor 

Data Processor (SSDP) [10] a Network-on-Chip (NoC) based 

multi-core DSP sub-system is integrated together with a 

conventional general purpose processor (LEON) sub-system in 

a System-on-Chip (SoC).  

 

 

Figure 1: Multi-core processor comprising a NoC sub-system 

(scalable DSP subsystem) and AMBA sub-system (GPP subsystem)  

 

Figure 1 shows the multi-core DSP processor architecture 

comprising two main parts: the NoC sub-system and the 

AMBA sub-system. Generally, the LEON sub-system acts as 

the host processor, initializing and controlling the multi-core 

DSP sub-system. After initialization by the host processor, the 

multi-core DSP sub-system will autonomously run compute-

intensive DSP functions. The architecture combines the 

AMBA legacy subsystem with the performance of the DSP 

subsystem. Existing AMBA-based hardware IP components 

can be easily integrated and legacy software can be easily 

ported.  
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The multi-core DSP subsystem comprises the following 

key building blocks: 

 The Xentium® is a programmable high-performance 

DSP processor core that is efficient and offers high-

precision; 

 Network-on-Chip (NoC) technology provides 

sufficient bandwidth, flexibility and predictability 

which are required for interconnecting DSP cores and 

I/O interfaces in streaming DSP applications. 

 

 

Figure 2: NoC-connected multi-core sub-system 

 

Mainly the high bandwidth peripherals are connected to the 

NoC while the others are connected to the AMBA system. The 

AMBA system also provides the ability to attach the well-

known LEON core processor to support execution of existing 

software with minimal changes to the source code. 

A. Network-on-Chip 

Tomorrow’s many-cores for (streaming) DSP applications 

will be interconnected by a network-on-chip (NoC) instead of 

a bus. Currently, most multi-core architectures rely on a central 

bus for interconnecting the (digital signal) processor cores. 

Such a central bus creates a major bottleneck and impedes 

performance, scalability and composability of such systems. A 

NoC approach does not suffer from these limitations. A NoC 

scales with the number of cores in the design. The more cores 

there are, the larger the network, and, hence, the more 

aggregate bandwidth is available in the SoC. Other advantages 

include that a NoC inherently supports short and structured 

wires, enabling increased clock rates and easier link 

optimization. NoCs allow disabling inactive parts of the 

network, which is essential for energy-efficiency and 

dependability. Finally, a key feature of NoCs is their 

predictable performance. 

Using transparent I/O interfaces it is even possible to extend 

the NoC across the chip boundaries creating a network-of-

chips. Hence, NoC technology enables true scalability of 

many-core systems-of-chips. 

The NoC sub-system is connected with the AMBA sub-

system through an AHB-NoC Bridge (as depicted in Figure 2). 

All components connected on the NoC use memory-mapped 

communication, and, hence, are available as memory-mapped 

components in the AMBA sub-system. So, NoC-connected 

components are accessible by devices on the AMBA and vice 

versa. This makes it possible for every master on the system to 

read and write data anywhere in the system. The LEON can for 

example read and write in local Xentium memories and the 

Xentium can read and write directly in the AMBA peripherals. 

1) XY-routing and QoS 

The NoC consists of a set of 5-port packet-switched routers 

that use service flow control. One port is the local port  

connected to the NoC peripherals; the other ports are connected 

to the neighbouring routers. 

The services are used to provide Quality of Service (QoS) 

for individual data transfers between two communicating 

entities (i.e. NoC-connected devices) in the NoC architecture. 

The NoC interface consists of 32-bit data in both directions. 

The NoC employs XY-routing, i.e. the direction in each 

router is determined by the router coordinates and the 

destination coordinates. Hence, the routing is fixed and 

depends on the topology of the 2D mesh. The use of a fixed 

XY-routing scheme ensures in-order delivery of transfers and 

prevents deadlocking. 

2) NoC Transactions and Performance 

The NoC links are full-duplex bidirectional. Each network 

link can handle 32 bit concurrently in each direction. The NoC 

supports burst transfers with a maximum bandwidth of 32 bits 

per clock cycle. 

The NoC protocol supports single read/write, block 

read/write and (2D) stride-based transfers. With (2D) stride 

support data transformations can be done efficiently as part of 

the data transfer.. 

3) Network Interface 

A Network Interface (NI) is a component to connect IP 

components (including internal/external IO interfaces) to the 

NoC. For the connected IPs, the NI hides the implementation 

details of a specific interconnect. NIs translate packet-based 

NoC communication on the NoC side into a higher-level 

protocol that is required on the IP side, and vice versa, by 

packetizing and de-packetizing the requests and responses. 

Using the transparent NI it is even possible to extend the 

NoC across the chip boundaries. Several I/O interfaces are 

available on the multi-core DSP architecture, such as 

SpaceWire bridge interfaces, bridges to external Analog-to-

Digital Convertor (ADC) and Digital-to-Analog Convertor 

(DAC) devices. Through the NI, all these I/O interfaces 

become memory-mapped interfaces in the multi-core processor 

system. 

III. XENTIUM DSP 

The Xentium is a programmable high-performance 32/40-

bit fixed-point DSP core for inclusion in multi-core systems-

on-chip. High-performance is achieved by exploiting 

instruction level parallelism using parallel execution slots. The 
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Very Long Instruction Word (VLIW) architecture of the 

Xentium features 10 parallel execution slots and includes 

support for Single Instruction Multiple Data (SIMD) and zero-

overhead loops. The Xentium is designed to meet the following 

objectives: high-performance, optimized energy profile, easily 

programmable and memory mapped I/O. 

 

 

Figure 3: Top-level of the Xentium DSP 

 

The core modules of the Xentium DSP are the Xentium 

core, tightly coupled data memory, and a NoC interface as 

shown in the block diagram in Figure 3. The size of the data and 

instruction memories is configurable at design-time of the 

multi-core processor SoC. A default instance of the Xentium 

DSP contains 32 kB tightly coupled data memory and 16 kB 

instruction cache. 

A. Xentium Datapath 

The Xentium datapath contains parallel execution units and 

register files. The different execution units can all perform 32-

bit scalar and vector operations. For vector operations the 

operands are interpreted as 2-element vectors. The elements of 

these vectors are the low and high half-word (16-bit) parts of a 

32-bit word. In addition several units can perform 40-bit scalar 

operations for improved accuracy. Most operations can be 

executed conditionally. 

The Xentium datapath provides powerful processing 

performance: 

 4 16-bit MACs per clock cycle, or 

 2 32-bit MACs per clock cycle, or 

 2 16-bit complex MACs per clock cycle 

The Xentium architecture has two M units, four S units, two 

P units and two E units. The M units can perform multiply 

operations. The S and P units perform ALU operations (e.g. 

additions and subtractions) including shift and pack 

instructions, respectively. The E units are responsible for load 

and store operations. 

 

Figure 4: The Xentium datapath 

B. Xentium Control 

The control block in the Xentium core performs instruction 

fetching and decoding, and controls the execution units in the 

datapath. Instructions are fetched from Xentium-external 

memory (e.g. on-chip or off-chip memory in the NoC sub-

system) and are stored in the Xentium instruction cache. The 

programmer can indicate that a section of a Xentium program 

has to be pre-fetched by the control to ensure that the 

instructions of that section of the program are cached. This 

prevents cache misses during execution, which makes the 

execution time of the pre-fetched section of the program 

predictable. 

C. Tightly-coupled data memory 

The tightly coupled data memory is organized in parallel 

memory banks to allow simultaneous access by different 

resources. The data memory can be simultaneously accessed by 

the Xentium core as well as by the Xentium NoC interface (i.e. 

other components in the NoC sub-system have access to the 

Xentium memories). 

The size of the memory banks is parametrizable at design-

time. By default the data memory in the Xentium tile is 

organized in 4 banks of 8 kBytes each, implemented using 

SRAM cells.  

The memories in the Xentium processor are protected by 

Error Detection and Correction (EDAC) logic.  

D. Debug Support 

Xentium processor IP includes debug hardware for remote 

debugging. The Xentium debug units supports stepping, watch 

points, break points, back tracing, and full access to registers 

and memory.   

E. Application Profiling 

In order to facilitate profiling of Xentium DSP programs, a 

number of software configurable counters (i.e. performance 

counters) are integrated in the Xentium processor IP. Through 

a configuration register, these counters can be configured to 

monitor different events in the Xentium including events such 

as cache misses and load/store wait cycles. 
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IV. SOFTWARE DEVELOPMENT 

Xentium Software Development Environment (SDE) is C-

based and includes a standard tool chain consisting of a C-

compiler with standard C-library, an assembler, a linker, a 

simulator, and a debugger. 

 

Figure 5: The Xentium toolchain 

The tools in the tool chain are based on well-known tools 

such as the LLVM compiler infrastructure, the GNU binary 

utilities, and the GNU debugger, offering a familiar user 

interface to allow a quick start. A Xentium Eclipse plug-in 

integrates  the Xentium tool chain in the Eclipse C/C++ IDE  to 

provide a familiar graphical user interface for editing, building, 

simulating and debugging Xentium programs. 

 C-compiler supports C99 and built-in functions for 

Xentium instructions. It comes together with a Newlib-

based standard C-library. 

 The assembler has clean and readable assembly syntax and 

a pre-processor with macro functionality to facilitate 

optional hand-programming. 

 The Linker, which is based on the GNU linker, has support 

for linker scripts which allow developers to describe the 

memory layout of executables. 

 The archiver lets developers create reusable code libraries. 

 With the Xentium Instruction Set Simulator, developers 

can test, time and trace execution of Xentium executables 

on their PC. 

 The Xentium Debugger allows debugging a Xentium 

executable running in the Xentium Simulator or on the 

Xentium hardware. The debugger is based on GDB, the 

GNU debugger, and therefore offers a familiar user 

interface. 

 The Xentium Profiler allows the user to get detailed cycle 

information of an application running on the Xentium 

Simulator. 

V. TOWARDS MULTI- AND MANY-CORE NEXT-

GENERATION DSP ARCHITECTURES 

We have presented the Xentium DSP and Network-on-Chip 

technology to create multi-core SoC architectures for on-board 

payload data processing. We integrated the Xentium DSP and 

NoC IP the Massively Parallel Processor Breadboard (MPPB) 

[2][5], tested the IP in XentiumDARE IC [11] and improved 

the IPs in the scope of the Scalable Sensor Data Processor 

(SSDP) [10]. 

The journey of integrating more Xentium DSP cores with 

advanced features, such as floating-point support, continues to 

further increase the performance of the next-generation data 

processor for space. Moreover, fault-tolerant features to protect 

against permanent and transient errors due to radiation effects 

will be added to the NoC technology. 

Using CMOS65Space we estimate a many-core DSP 

architecture with 8 floating-point Xentium DSP will provide a 

performance of at least 8 GFLOPS, opening new opportunities 

for advanced data processing in for example scientific 

instruments. 
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Abstract 
Digital Signal Processors (DSPs) have been popular devices 
for computation-intensive data processing for many decades. 
More recently, programmable logic devices (PLDs) have seen 
a dramatic evolution in terms of performances, popularity and 
capabilities of devices and programming tools.  
The application spectrum for programmable devices with 
respect to General Purpose Processors (GPPs) and DSPs has 
therefore evolved from a complementary, supportive role to a 
more competitive/ synergetic one.  
The evolution of chip technology follows a long-term trend 
towards increasingly complex Systems on Chip (SoC), 
integrating fixed design elements with reconfigurable blocks 
and in many cases also mixed signal elements into 
Application Specific Integrated Circuits (ASICs). For 
commercial digital data processing chips, a trend towards 
increased mix of reconfigurable logic with fixed digital 
functions can be observed. This is where we see a major 
opportunity for future Digital Signal Processing in space 
applications.  

In this paper, we first recall the basic technology trends for 
the implementation of data processing chains. We then 
summarize and compare the specific advantages and 
drawbacks of processor ASICs and FPGAs in the area of 
space based data processing. The advantages expected for 
systems on chip that integrate processors and FPGA fabric are 
explained, and typical application cases are addressed. The 
SoC design trade spaces for the mix of processor and FPGA 
IP are discussed, and relevant technology developments in 
Europe are summarized. The Scalable Sensor Data Processor 
(SSDP) as a promising technology basis for future, large 
flexible DSP SoCs is presented, and an architecture concept 
for a new high performance flexible European FPGA-
equipped DSP is introduced.  

I. INTRODUCTION 
Digital Signal Processors have been popular devices for 

computation-intensive data processing for many decades. In 
comparison to General Purpose Processors (GPPs), their 
specific architectural designs support efficient processing of 
digital data via separate data and instruction memories, 
combined operations such as multiply-accumulate (MAC), 
hardware support for efficient loop execution, execution of 
multiple parallel operations (SIMD / VLIW), Direct Memory 
Access (DMA) mechanisms and other specific features. Ever 
increasing clock speeds and, more recently, many-core 
designs have led to significant performance increases, a trend 
that is still continuing. Recent chip developments for space 

applications such as the Scalable Sensor Data Processor 
(SSDP) [1] include the combination of GPP and DSP cores, 
combing their respective strengths in execution of control 
code and efficient processing of data samples. 

On the other hand, programmable logic devices (PLDs) 
have been developed towards impressive levels of 
performance. Originally starting from relatively modest 
complexity level that allowed the implementation of glue 
logic and other specific circuitry, the recent generation of 
programmable devices, in the form of memory based Field 
Programmable Gate Arrays (FPGAs), allows not only to 
complement dedicated ASICs including GPPs and DSPs, but 
can replace them entirely in many application cases.  

However, both FPGAs and ASICs have specific 
advantages but also drawbacks, which cannot be overcome by 
choosing one of these technologies while discarding the other. 
In the commercial world, an increasing number of products 
provide evidence for a trend to integrate reconfigurable logic 
with hard-wired functionality within complex SoCs. The 
combination of these technologies is expected to provide a 
maximum of application versatility and performance for 
future data processing systems and applications, including 
those for on-board payload data processing in space 
applications. 

II. ASICS AND FPGAS – A BRIEF COMPARISON 
When implementing a digital design in ASIC or FPGA, a 

number of important considerations and tradeoffs apply. For 
ASICs, new developments or use of commercially available 
ASICs are possible. For FPGA, one is restricted to 
commercially available products. For the purposes of this 
comparison, we assume an identical or similar technology 
node (like 65nm, 180nm) for both technologies. 

Application performance / speed is often a key 
requirement. Dedicated ASIC developments are providing the 
highest performances, often by a factor of 4 up to 10 higher 
than FPGA implementations. However, for projects that are 
restricted to commercially available parts and involve 
solutions that do not map well onto an existing ASIC 
products, FPGAs typically provide superior performances.  

Power consumption is typically among the key 
drawbacks of FPGA solutions. Dedicated ASICs or 
commercial ASIC products that meet the performance 
specifications provide more power efficient solutions. 

Radiation hardness is another factor favouring ASICs 
over re-programmable FPGAs. While the TID is typically 
adequate also for FPGAs, in the past ASICs have generally 
been superior in SEE tolerance. However, the application of 
TMR  techniques and the use of antifuse FPGAs as well as the 
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upcoming use of flash-based FPGAs does enable the design of 
very robust FPGA based systems. 

Development time is a key criterion in favour of FPGA 
based solutions. The manufacturing, testing and validation, 
and space qualification of a dedicated ASIC typically 
consumes between 1 and 2 years (even more in case of 
complications) of additional development time. 

Flexibility is another key FPGA advantage. Late design 
changes, design modifications towards derived products, or 
even in-orbit re-programming are all possible with FPGAs. 

Cost is a factor that depends on some key parameters. 
The NRE cost of an ASIC development is typically high 
(several M€), but with moderate or even high numbers of use 
cases the ASIC’s unit cost may drop significantly below the 
cost of a comparable FPGA solution. For functions that are 
highly recurrent (GPP, GNSS ASICs, etc.) ASICs beat 
FPGAs easily. However, for one-time product development, 
or small series up to few 10 products, FPGA solutions are 
typically superior or competitive. 
Today, it is in most cases the available time for product 
development, and the envisaged market size / sales volume 
for a product, that drives the decisions for development of a 
dedicated ASIC or an FPGA based solution. Commercially 
available ASICs (standard products) are typically used 
wherever they can meet the application’s performance needs. 

III. FPGA-EQUIPPED PROCESSORS 
For space applications, the combination of processors with 

FPGAs has so far mostly been done on Printed Circuit Board 
(PCB) level. . More recently, FPGA dies have been combined 
with processor silicon in Multi-Chip Modules (MCMs) such 
as Intel’s combination of commercial Xeon® processors with 
Altera® FPGAs [2], and the Atmel ATF697FF [3] which 
combines a AT697 SPARC processor with an ATF280 
SRAM based FPGA for space applications.  
In the commercial world, a next step – the integration of 
FPGA and GPP / DSP on the same die – is already taking 
place [4, 5], with a trend towards increasingly complex SoCs. 
It is common knowledge that commercial processor 
technology trends are arriving in the space processor 
technology area with a typical delay of 10-15 years. Therefore 
it is reasonable to assume that the integration of processors / 
DSPs and FPGAs on the same chip is about to arrive in 
qualified space ASICs around 2020, probably first in the form 
of Multi-Chip Modules (MCMs) or in FPGAs with integrated 
processor macros,  and – possibly some years later - followed 
by DSPs and processors with integrated FPGA fabric. In the 
following paragraphs, we summarize the added value of such 
designs for space applications, and discuss the related 
tradeoffs and design spaces available to SoC developers. 

A. Added value of FPGA integration 
So far, the development of increasingly powerful 

processors and more and more capable FPGAs has been done 
independently, with HDL and software development done 
separately and often for similar applications. An efficient 
combination of FPGA and processor(s) in the same SoC 
would not only allow to combine the specific advantages of 
these technologies, but could also allow to re-use software 
and HDL from the traditional separate development lines for 

the specific elements where they perform best: software for 
control code, real-time needs, FDIR, fast application 
switching and FPGA reconfiguration, and HDL for high speed 
co-processing, glue logic, and interfacing.  
It is therefore expected that the flexibility and application 
performance of a new DSP chip can be maximized when 
traditional processor architectures are combined with on-chip 
FPGA fabric. This is illustrated in Fig. 1. 
 

 
Figure 1: Postulated advantages of an FPGA equipped Many-core 

DSP chip 

For space applications, many advantages of integrated 
FPGA fabric on space qualified DSP chips are obvious.  
The hard-wired functionality (such as GPP, DSP cores, NoC 
infrastructure, interface IPs) could provide 
 

• Reliable and efficient control and FDIR functions for the 
application 

• Software programmable processing power for algorithms 
that map well on programmable IPs 

• High energy efficiency and small footprint for these hard-
wired elements 

• GPP-like real time performances / properties (short 
reaction time in software via branch / interrupt) 

• Management of the FPGA configuration as a soft-ware 
function via the GPP / control processor 

 

On the other side, the on-chip FPGA fabric could provide 
 

• Functionality in line with application needs (logic 
dominated or DSP slice dominated FPGA tiles) 

• Reconfigurable and quickly re-programmable acceleration 
of specific functions 

• Flexible glue logic for external companion chips such as 
ADC, DAC, accelerator chips 

• Flexible logic for non-standard I/Os, tailored protocols, 
additional I/O functions 

 

The integration of FPGA fabric on-chip would also reduce the 
pin-count and increase associated reliability (in comparison to 
solutions using separate processor and FPGA), reduce the 
power consumption, and lower the system cost, as DSP/GPP 
plus separate FPGA could be replaced by a single chip. The 
TID of the system would be uniform, and the SEE sensitivity / 
radiation related FDIR could be managed on chip level. The 
PCB footprint of the system would be reduced as well.  

82



B. Typical Space Application Cases 
Once a SoC that combines the advantages of hard-wired,  

software-based processors and FPGAs is available, it is 
expected that these features are exploited in a range of 
relevant application cases. These would include 
 

• Data Processing Units (DPUs): The very high 
processing performance of both processor cores and 
FPGA fabric would be utilized; in addition, different 
and non-standard interfaces for DPUs on different 
spacecraft could easily be implemented without board 
/ hardware modifications. In comparison to separate 
(processor + FPGA) solutions, the lower footprint, 
smaller pin count, lower power consumption, and 
uniform radiation hardness level would be 
advantageous. 

• Future platform OBCs: Following a recent trend / 
desire to perform more subsystem related data 
processing tasks on the platform processor (example: 
star tracker / navigation software running on platform 
OBC), a platform processor will need high – and 
often specific - processing performance which could 
be provided by the on-chip FPGA fabric. 

• Payloads and instruments:  In many payload 
applications, an instrument controller (typically a 
GPP or DSP) is needed in combination with detectors 
/ image sensors / ADCs / DACs. In such applications 
that are typically connected via FPGA. The envisaged 
SoC would allow to replace two chips by one, and 
provide the associated mass / power / footprint 
savings at lower cost and higher reliability. 

• Telecom processors: in telecom applications, high 
bandwidth and processing power can be provided by 
the SoC’s NoC, HSSL, and processor cores. 
Application specific processing such as codecs can be 
implemented in the FPGA fabric, and provide 
flexibility via re-programming and re-configuration. 

 

 In addition to these generic space-related application 
cases, other uses may exist for niche applications and in 
terrestrial areas like nuclear industry and specific R&D fields. 

C. Tradeoffs and Design Spaces 
For the design of a SoC that integrates hard-wired 

processors and FPGA fabric, a wide design space exists 
between the extremes of processor-only and FPGA-only 
designs. Some of the intermediate options have been adopted 
by commercial products already; these include the Xilinx 
Zynq FPGAs [6] which combine quad-core and / or dual-core 
processors with FPGA fabric, and some variations of the  
Xilinx Virtex5 family which includes PowerPC processor 
cores. For processors with small on-chip FPGA, so far no 
commercial products have surfaced. For space, as of early 
2016 no qualified products featuring on-chip FPGA and hard-
wired processors exist. Future versions of the European 
FPGAs that are now under development may include a 
processor core, but with a die footprint that is dominated by 
the FPGA fabric. For the FPGA, further trade-offs between 
logic-dominated or DSP slice dominated fabric are needed. 

Therefore, the overall design space for FPGA-equipped 
SoCs for space applications remains unexplored to a 
significant degree, and invites associated R&D towards an 
optimized mix of hard-wired and reconfigurable SoC 
elements. 

IV. RECENT TECHNOLOGY DEVELOPMENTS  
A number of relevant technology developments have been 

performed or started in ESA contracts in the past few years. 
Here, we provide only a brief summary; more information is 
available in the provided references, including [7]. 

A. DSP and NoC IP and related Chips 
Recent ESA DSP chip and IP core developments can be 
traced back to a study performed from 2008 onwards, called 
“Massively Parallel Processor Breadboarding Study”, ESA 
contract 21986 [8]. In this study, a heterogeneous multi-core 
architecture (2 DSPs, 1 GPP) have been prototyped 
successfully together with a proprietary NoC, space standard 
interfaces, and other features. This was followed by an ASIC 
prototyping activity that proved the DSP cores, NoC, and 
other key features in rad-hard silicon (“DARE plus – ASICs 
for Extreme Radiation Hardness and Harsh Environments”, 
ESA contract Nr. 4000104087) [9]. The most recent 
development in this line is the Scalable Sensor Data Processor 
(SSDP) ASIC (ESA contract Nr. 4000109670). This chip 
provides a LEON3 SPARC compatible GPP and two NoC-
connected VLIW Xentium® DSPs. At a system clock of 100 
MHz, the chip provides up to 1600 MOps (800 MMACs) of 
DSP processing power, space standard interfaces, and a wide 
range of digital and mixed signal features that are expected to 
be attractive for applications in space instrumentation, data 
processing units, robotics, and various types of spacecraft 
subsystems. SSDP will be available world-wide as a 
commercial product via Cobham Gaisler [10]. More 
information on SSDP is provided in a companion paper [1].  

Based on the DSP and NoC IP used in MPPB and SSDP, 
additional developments are ongoing for the development of a 
floating point version of the Xentium ® DSP (CCN to ESA 
contract 21986) as well as an advanced version of the NoC 
(ESA contract 4000115252/15/NL/LF) which provides 
enhanced features for reliability, radiation hardness, and 
FDIR. Both developments are expected to be completed in 
2017. A comprehensive overview on DSP and NoC IP, related 
software, and ongoing ESA contracts is available in a 
companion paper [11] and from [7]. 

B. FPGA IP and chips 
ESA and CNES, together with European space industry, 

have been working for several years on the European high-
performance, radiation hardened reprogrammable FPGA 
family know under the acronym BRAVE for “Big 
Reprogrammable Array for Versatile Environments”. 
The first FPGA of the family, under development since 2015, 
is the NG-MEDIUM (also known as NXP-32000) under ESA 
contract 4000113670/15/NL/LvH [12]. NG-MEDIUM is 
based on the STMicroelectronics 65nm ASIC technology and 
the associated radiation-hardened library. In order to achieve 
high-density (i.e. high capacity) and high performance, most 
of the NG-MEDIUM design has been created using a full-
custom flow (i.e. not using the radiation-hardened library). 
Radiation hardening has been the main focus, from the full-
custom cell-level to the system-level. For instance, at system 
level it includes EDAC for the internal memories, as well as a 
transparent configuration memory integrity check. The NG-
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MEDIUM has a logic capacity similar to the Microsemi® 
RTAX4000 FPGA with the advantage of including 112 hard-
macro DSP blocks that bring high-performance for any 
algorithm requiring arithmetic operations. 
The configuration of the BRAVE FPGA family is based on 
radiation-hardened SRAM-memory cells, which provide 
unlimited re-programmability of the FPGA. The re-
programmability allows BRAVE based systems to perform 
different processing functions, and enables the 
implementation of adaptive systems for space. 
The first samples of NG-MEDIUM will be available in Q4 
2016, with an expected qualification in Q4 2017. The next 
FPGA of the family, called NG-LARGE, will use the same 
65nm ASIC technology and will have a complexity similar to 
the RTG4 FPGA: the first samples are expected to be 
available in 2017. There are plans to have the third FPGA of 
the family, NG-ULTRA, in 2018. 

For integration into larger SoCs, it is possible to use an 
embedded FPGA IP (eFPGA) based on the NanoXplore 
BRAVE family. There are other European eFPGA solutions 
(Menta and Adicsys) based on the use of standard-cell digital 
flow: they are more portable solutions across ASIC 
technologies, but they provide less density and performance. 
Future SoC designers therefore have several options available 
for their developments. 

V. AN ARCHITECTURE CONCEPT FOR AN FPGA 
EQUIPPED HIGH PERFORMANCE DSP 

There are multiple options for the integration of FPGA 
fabric with contemporary processor and DSP IP. For space 
applications and related product acceptance, an evolutionary 
approach that supports both software and HDL re-use is 
considered advantageous. For ESA, such an approach would 
suggest the evaluation of integration possibilities with 
recently developed DSP core and NoC IP technology 
performed by European companies. In this paper, we 
therefore consider an example design (tentatively called 
“FlexDSP”) that could be derived from the latest European 
Space DSP, the Scalable Sensor Data Processor [1], in a 
rather straightforward and evolutionary way. 

A. SSDP  
The SSDP has already been mentioned in chapter IV A, 

and details can be found in the corresponding companion 
paper [1]. Here, we limit the description to those elements and 
concepts that are relevant for the derived “FlexDSP” concept. 

SSDP is based on an architecture that uses a GPP 
(LEON3) to control a NoC based subsystem (called 
“Omnific”, illustrated in Fig. 2) via an AHB bus bridge and 
interrupt signals. All high bandwidth data traffic takes place 
within the NoC subsystem; the GPP controls data traffic and 
related DMA transfers, assignment of jobs (data and binary 
program code) to DSP cores, use of buffers, and overall 
system con-figuration. Once DSP jobs or data transfers are 
completed, the GPP is notified via interrupt and can schedule 
the next activity within a data processing sequence. Some of 
these tasks (like control of DMA transfers, or synchronization 
of DSP cores) may be delegated to the DSPs in case a lower  

 

 
Figure 2: SSDP’s “Omnific” NoC Subsystem 

GPP interrupt rate is desirable; this may be especially useful 
for future SoCs with significantly larger numbers of DSP 
cores and NoC nodes, including the “FlexDSP” example. 

DSP cores are controlled via their network interfaces 
(NIs). These interfaces provide a number of registers 
(“mailboxes”) which are used to pass information to the DSP, 
and for assigning the DSP’s program code to be executed. A 
typical DSP activity sequence may look as follows: 

 

• Input data is transferred to the DSP’s local data 
memory via DMA controlled by the GPP. 

• The location (address) of the DSP’s assigned 
program code is written to the NI’s mailbox. 

• The NI then fetches the code and transfers it to the 
DSP’s instruction cache; once this is completed, 
the DSP is started and code execution commences. 

• Once the DSP code execution is complete, the 
GPP is notified via interrupt and the DSP core 
changes to idle mode. 

• Output data in the DSP’s local memory is 
transferred to a suitable location via DMA under 
GPP control. 

• A new sequence as above can be initiated. 
 

This concept is scalable to larger NoCs within certain 
boundaries, and is re-used in the “FlexDSP” concept 
introduced in the next section. 

B. FlexDSP 
Taking an evolutionary path towards future SoCs, and 

specifically towards an FPGA-equipped many-core DSP as 
discussed here, is desirable for a number of reasons, including 

 

• Re-use of available GPP code and tools (LEONx 
family, SSDP) to reduce cost / increase maturity 

• Re-use of available DSP code and tools (SSDP) to 
reduce cost / increase maturity 

• Re-use of existing HDL for the embedded FPGA 
fabric (glue logic to ADC/DAC, codecs, etc) 

• Reducing development risk by re-using accessible, 
well known and validated IP cores 
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• Exploiting the accumulated expertise and 
familiarity with IP and underlying concepts 
available in the user community 

 

A concept for a new, FPGA-equipped many-core DSP 
could therefore be based on the following features: 

 

• GPP controller with local memory and associated 
subsystem 

• NoC with routers, bridges, DMA, network 
interfaces 

• DSP cores with their local memories / caches, 
connected via network interfaces 

• One or more FPGA tiles, connected via network 
interfaces 

• NoC connected memory tiles and external 
memory controllers 

 

In order to re-use the software concepts developed for 
SSDP, the FPGA tiles could have an interface that supports a 
utilization in a way that is similar or identical to that of the 
DSP cores. The network interface could provide access to the 
FPGA’s integrated memories (corresponding to the DSP 
core’s local data memory) and support loading the FPGA’s 
configuration bitstream (corresponding to loading code into 
the DSP core’s instruction cache). The NI would also 
facilitate access to NoC connected memories for the FPGA, 
and provide configuration registers and interrupt outputs to 
the GPP that controls the system. 
The type of FPGA configuration memory could be chosen 
between SRAM and FLASH; from a first assessment it seems 
that SRAM based FPGA might be more advantageous, as 
SRAM cells are available in the relevant DSM ASIC 
processes (65nm, possibly 28nm) and would support fast re-
configuration as well as unlimited numbers of re-
programming cycles.  
Final memory choice and aspects such as radiation effects 
mitigation will need further study.as radiation effects 
mitigation will need further study. From the foregoing 
considerations, a concept arises that is depicted in Fig. 3. It 
extends the basic architecture known from SSDP towards a 

larger number of cores, and integrates FPGA fabric that is 
connected to the NoC and to external I/Os. In all application 
cases, the SoC would start up by booting the GPP which then 
configures the on-chip resources. Then, depending on the 
application, two distinct types of FPGA fabric utilization can 
be considered: 

Data processing with frequent re-configuration 
Here, the FPGA fabric is used for data processing under 

the control of the GPP. A configuration bitstream would be 
assigned and loaded via the NI. Data can either be provided 
via the NI-connected local FPGA memories, or stored in 
memory tiles or external memories and accessed via the NI. 
The FPGA fabric would then process the data in line with its 
configuration, and notify the GPP via interrupt once the 
output data is ready. The GPP can then assign new data and 
either re-start the processing, or assign a different 
configuration bitstream for a different type of job. The FPGA 
bitstream may be loaded via the NoC from either on-chip 
memory tiles, or from external (presumably DDR2/3 
SDRAM) memory. It is expected that in this scenario, which 
is depicted in Fig. 3, FPGA reconfiguration can occur in a 
very short time span, much faster than in contemporary 
SRAM based FPGAs for which the bitstream is provided via a 
comparatively slow interface from external memory.  

Static interfacing, pre-processing and glue logic 
For applications where the on-chip FPGA is used for static 

functions like interfacing to external chips (ADC, DAC, co-
processor chips), provision of custom / additional interfaces 
(non-standard interfaces of specialized ASICs, additional 
SpW / SPI / CAN / other interfaces) or simple pre-processing 
(averaging / filtering / other pre-processing of input data) the 
FPGA bitstream is loaded only once at the time of system 
configuration, and kept static during the application 
execution. For a product, interface configuration bitstreams 
for popular companion devices might be provided with the 
DSP’s SDE.  The mitigation of radiation effects 
(configuration memory scrubbing) would be performed 
frequently under GPP or NI control. This scenario is depicted 
in Fig. 4. It must be noted that the number of DSP cores, on-
chip memory tiles, IOs, and FPGA tiles depicted in the 
example (Fig. 3 and Fig. 4) are chosen here for the purposes  

  

 

 
 
 
 
 
 

 
 
 
 
 

 

Figure 3: FPGA-equipped many-core DSP example (FlexDSP”) configured for reconfigurable processing 
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Figure 4: FPGA-equipped many-core DSP example (“FlexDSP”) configured for static interfacing 

 

of concept illustration, and are not the outcome of a 
requirements analysis and trade-off that would be necessary 
for a product development. 

The performances that can be achieved for such a SoC 
increase with the chosen number of DSP cores and FPGA 
tiles. The following performances can be expected for the 
individual SoC elements when implemented in a 65nm ASIC 
process: 

 

• System clock (GPP clock, DSP core and NoC) of 
ca. 250 MHz 

• DSP cores providing ca. 1 GFLOPS per core (2 
MACs per clock cycle, 32 bit floating point) 

• Ca. 8 Gbps NoC speed (32 bit parallel lanes, bi-
directional links) 

• FPGA performance varying with fabric size and 
type; several to several 10 GOPS can be expected 

• Process typical TID, radiation hardened design, 
6.25 Gbps HSSL, DDR2/3 expected 

 

Upcoming 28 nm processes would further boost the 
achievable performance and allowable SoC size. Related 
considerations are however out of scope for this paper. 

VI. SUMMARY 
DSP ASICs and FPGAs enable different solutions for 

space based data processing applications. Both technologies 
have their advantages and drawbacks. Following a trend that 
started in the commercial world, it is expected that an 
optimized combination of hardwired GPP / DSP functionality 
with FPGA fabric on the same chip will enable more power-, 
size-, mass-, and cost-efficient solutions for future space 
applications. The design space for such future SoCs is still 
largely unexplored and invites further study, followed by 
prototyping activities that enable future product developments.  

The underlying technologies (GPP, NoC, DSP cores, 
FPGA fabric, DSM ASIC processes) are available or under 
development in Europe, and would support the envisaged SoC 
developments in the near future. A first NoC-based DSP chip 

is under development in Europe, and its scalable architecture 
provides a possible basis for future SoCs that integrate FPGA 
fabric. A conceptual example for a large, European FPGA- 
equipped NoC based DSP SoC has been introduced. Its key 
features and possible operating modes have been explained, 
and areas inviting further study have been identified.  

At ESA, further studies on FPGA integration into GPP and 
DSP SoCs are planned, and are expected to inform future 
design decision for the next generation of high performance 
components for space based data processing applications.  
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