

ESA DSP Day 2016

Wednesday June 15th – Thursday June 16th 2016

 Gothenburg, Sweden

Workshop Proceedings

Ed. R. Trautner, ESA/ESTEC
Noordwijk, The Netherlands

Table of Contents

Session 1: Rad-Hard DSP Chips

3

Scalable Sensor Data Processor: Architecture and Development Status
PINTO, Ricardo; BERROJO, Luis; GARCIA, Elena; TRAUTNER, Roland; RAUWERDA, Gerard; SUNESEN, Kim;
REDANT, Steven; ANDERSSON, Jan; HABINC, Sandi; LÓPEZ, Jesus

4

RC64: High Performance Rad-Hard Many-core DSP
GINOSAR, Ran; AVIELY, Peleg; LANGE, Fredy; ISRAELI, Tsvika

10

Session 2: Test, Verification and Qualification of DSP Chips

18

ESCC Qualification of Space Components - Schemes and New Opportunities
MARTINEZ, Fernando

19

Scalable Sensor Data Processor: Testing and Validation
PINTO, Ricardo; TRAUTNER, Roland; RAUWERDA, Gerard; REDANT, Steven; SUNESEN, Kim; ANDERSSON,
Jan; HABINC, Sandi; LÓPEZ, Jesús; BERROJO-VALERO, Luis-Rafael; MARTIN, Beatriz; PIARETTE, Fernando;
SANCHEZ DE ROJAS, Pablo

23

Session 3: COTS based DSP Systems and Boards

28

High Performance COTS based Computer for Regenerative Telecom Payloads
NOTEBAERT, Olivier; BARTHE, Lyonel; VANHOVE, Jean-Luc; PRIEUR, Olivier

29

SpaceWire and SpaceFibre Interconnect for High Performance DSPs
PARKES, Steve; MCCLEMENTS, Chris; GONZALEZ VILLAFRANCA, Alberto; FERRER, Albert

34

Session 4: DSP Day Reception and Poster Session

39

Characterization and Qualification of Microcontrollers and DSPs in Extreme
Temperatures
DOLZOME, Flavien

40

Radiation Intelligent Memory Controller IP Core
WANG, Pierre-xiao; SELLIER, Charles

46

DVB-S2 Software Defined Radio Modem on the RC64 Many-core DSP
AVIELY, Peleg; RADOVSKY, Olga; GINOSAR, Ran

48

1

Session 5: DSP Software and Applications

59

DSP Benchmark Results of the GR740 Rad-Hard Quad-Core LEON4FT
 JALLE, Javier; HJORTH, Magnus; ANDERSSON, Jan; FOSSATI, Luca; WEIGAND, Roland

60

A Lightweight Operating System for the SSDP
LUNTZER, Armin; OTTENSAMER, Roland; KERSCHBAUM, Franz; REIMERS, Christian

63

MacSpace
NAGHMOUCHI, Jamin; BISCHOFF, Ole; MICHALIK, Sören; GINOSAR, Ran; BEREKOVIC, Mladen; AVIELI, Peleg;
SCHEIBER, Rolf; REIGBER, Andreas; GELLIS, Hagay

68

Space Debris Detection on the HPDP, A Coarse-Grained Reconfigurable Array
Architecture for Space
SUAREZ, Diego; WEIDENDORFER, Josef; HELFERS, Tim; BRETZ, Daniel; UTZMANN, Jena

71

Session 6: IP Cores, FPGAs, and their Synergies with DSPs

76

Multi-core DSP sub-system IP
RAUWERDA, Gerard; SUNESEN, Kim; BRUINTJES, Tom; HOANG THANH, Tung; POTMAN, Jordy

77

DSP and FPGA: Competition, Synergy, and Future Integration in Space ASICs
TRAUTNER, Roland; MERODIO CODINACHS, David; WEIGAND, Roland; BOTH, Johannes

81

2

Session 1:

Rad-Hard DSP Chips

3

Scalable Sensor Data Processor: Architecture and Development Status
R. Pinto

a
, L. Berrojo, E. Garcia, R. Trautner

b
, G. Rauwerda

c
, K. Sunesen, S. Redant

d
, S. Habinc

e
,

J. Andersson, J. López
f

a
Thales Alenia Space Spain (TAS-E), 28760 Tres Cantos, Spain

b
ESA, 2200 AG Noordwijk, The Netherlands

c
Recore Systems B.V., 7500 AB Enschede, The Netherlands

d
IMEC, B-3001 Leuven, Belgium

e
Cobham Gaisler AB, SE-411 19 Göteborg, Sweden

f
Arquimea Ingeniería, S.L.U., 28919 Leganés, Madrid, Spain

ricardo.pinto@thalesaleniaspace.com

Abstract

Future science missions are envisaged to be demanding

w.r.t. on-board data processing capabilities, due to the scarcity

of downlink bandwidth together with the massive amount of

data which can be generated by next-generation instruments,

both in terms of data rate and volume. Therefore, new

architectures for on-board data processing are needed.

The Scalable Sensor Data Processor (SSDP) is a next-

generation mixed-signal ASIC aiming at fulfilling the

processing needs of such missions, integrating in the same

chip a heterogeneous multicore architecture, with two Digital

Signal Processing (DSP) cores and a general purpose

processor, together with Input/Output interfaces and data

acquisition capabilities.

This paper details the current development of the SSDP

ASIC, providing an overview of its architecture and

highlighting the processing capabilities, together with design

enhancements stemming from previous projects. The project

status is also documented, both regarding current and future

activities and milestones.

I. INTRODUCTION

Instruments for future space missions are getting more

capable, offering the possibility of acquiring larger sets of

data, e.g. higher resolution. However, the on-board data

storage and downlink bandwidth are not keeping up with such

capabilities, and are regarded as the bottlenecks for the

exploitation of the instrument. This constraint is not recent,

and many techniques for on-board data processing and

reduction have been introduced in order to overcome it, or at

least mitigate it: decimation, filtering, down-sampling,

compression, among others.

Data processing and reduction algorithms often require

specialized hardware, in order to be implemented in an

efficient way. Such hardware can be Field-Programmable

Gate Arrays (FPGAs) or even Application-Specific Integrated

Circuits (ASICs), which have a non-negligible impact both in

terms of cost and development time. Furthermore, such

processing hardware is usually a companion to control

hardware, which is in charge of instrument/payload control,

together with local house- and time-keeping tasks, processing

and input/output activities.

The Scalable Sensor Data Processor (SSDP) is a next

generation on-board data processing mixed-signal ASIC,

envisaged to be used in future scientific missions requiring

high on-board data processing capabilities, but without

neglecting the control functions. It offers a novel

heterogeneous multicore architecture, combining two high-

performance Xentium Digital Signal Processing (DSP) cores

[1] together with a LEON3FT general-purpose processor

(GPP) [2], all integrated in a System-on-a-Chip (SoC) design

and served by a rich set of Input/Output (I/O) interfaces,

including on-chip Analogue-to-Digital Converters (ADCs).

The envisaged domains of applicability of the SSDP are

future science and robotic exploration missions like JUICE

[3], easing the development and implementation of data

processing functions, without neglecting the control

capabilities offered by a GPP. The main forces driving its

design are processing power, power consumption and

radiation tolerance. The focal point of these characteristics

lies between flexibility and scalability, enabling the usage of

the SSDP in missions with profiles so diverse as deep-space

missions or planetary landers.

The SSDP builds on the experience and expertise gathered

through the successful Massively Parallel Processor

Breadboard (MPPB) project [4] commissioned by ESA,

which aimed at developing a demonstrator of a (scalable)

heterogeneous multicore DSP platform for Space applications.

The mapping into ASIC technology will be performed with

DARE180 digital cells. Development is sustained by a

consortium led by Thales Alenia Space España, and

comprising Recore Systems, IMEC, Cobham Gaisler and

Arquimea, bringing together expertise in the digital, analogue

and mixed-signal domains. Such diverse expertise is of the

utmost importance in order to tackle the technical challenges

posed by integrating the many different components, yet

achieving the proposed goals.

This paper is organized in the following manner: Section

II provides some on-board processing use-cases envisaged for

future Space applications, Section III provides an overview

on the SSDP Architecture, namely its subsystems and I/O

interfaces; Section IV details the processing capabilities of the

SSDP, including architectural enhancements introduced;

Section V presents the current project status and timeline for

the following stages and milestones, and finally Section VI

concludes this paper.

4

mailto:ricardo.pinto@thalesaleniaspace.com

II. FUTURE SRE DATA PROCESSING NEEDS

Future data processing needs of Science and Robotic

Exploration (SRE) missions can be divided in two major

domains: on-board data reduction; robotics processing and

control. Each domain has its own specificities regarding

processing needs, briefly presented in this section.

Nevertheless, there is a common denominator in both

domains: processing power, in order to execute sophisticated

algorithms.

A. On-board Data Reduction

Next-generation instruments are capable of generating a

massive amount of data, which can be orders of magnitude

higher than the available down-link. A first form of data

reduction can be achieved by performing digital signal

processing on the captured samples, with (simple) functions

like filtering and down-sampling. Nevertheless, more

sophisticated functions which are currently performed at

ground segment level can be performed directly on-board.

Another form of on-board data reduction can be achieved

by performing compression on the data. Several standards

exist, both for general data and images, and typically resort to

transforms and other algorithms which are suitable to be

implemented by DSPs.

B. Robotics Processing and Control

Robotics is a vast yet growing domain, with several

different disciplines like computer science, algorithms and

mechanics. Current robotics-based missions are highlighting

the need for not only powerful processing capabilities, but

also appropriate I/O interfaces for precise control, including

exploitation of sensors and actuators.

1) Image Processing

A typical application in robotics is image and vision

processing, which requires a fair amount of processing power.

Such processing is used by the robotics application to identify

its surroundings, and then be able to take a decision regarding

its future state based on what it finds.

An illustrative example is path-decision algorithms of a

rover, which requires identifying potential routes – and

hazards – before moving. Such class of algorithms is

processing-intensive due to the amount of data and steps

needed to take a decision. Moreover, they can be time and

energy consuming if the appropriate processing architecture is

not used.

2) Actuator and Drive Control

Another robotics application deals with the control of

actuators, e.g. motors. This kind of applications usually

involves a feedback control loop: gathering information from

sensors, input it into a control algorithm e.g. PID
1
, and then

use the output to control actuators, like wheel motors or

steering. Such application requires not only processing power

– in fact the requirements for control are usually modest, with

loops below the kHz range - but also a set of special-purpose

input/output interfaces, like general-purpose pins, low-speed

ADCs and pulse-width modulated (PWM) outputs.

1
 Proportional, Integral, Derivative

III. SSDP ARCHITECTURE

Most systems nowadays follow the System-on-a-Chip

(SoC) paradigm, embedding in the same package processing

resources together with Input/Output (I/O) interfaces. The

SSDP is not an exception, aiming at providing in a single chip

all the resources needed to perform a wide range of tasks

pertaining to on-board data processing.

The SSDP architecture can be divided in two major

subsystems, based on their main scope:

 Control, with a General-Purpose Processor (GPP) at

its heart, providing general control tasks including

Fault Detection, Isolation and Recovery (FDIR)

functions;

 Processing, with two Digital Signal Processors

(DSPs) providing the raw processing power together

with high-speed I/O.

A top-level block diagram depicting the two subsystems

and their interconnection is shown in Figure 1.

Figure 1: SSDP High-level Block Diagram

Each subsystem has its own internal SoC bus: AMBA for

Control, a Network-on-a-Chip (NoC) for Processing. The

subsystems are interconnected via a special-purpose Bridge

interface, allowing them to exchange information such as data

and signalling (interrupts and errors). Reception of signalling

information from the Processing subsystem permits the

effective implementation on the Control subsystem of FDIR

handling mechanisms.

The two subsystems have a set of local and networked I/O

interfaces: Controller Area Network (CAN), SpaceWire

(SpW) with RMAP target support, Serial Peripheral Interface

(SPI), Pulse-Width Modulator (PWM), among others, which

gives a high degree of flexibility w.r.t. applications. Dynamic

power saving was not neglected, and a clock gating is used to

turn-off major IP cores when not in use, enabling significant

power savings.

Besides the diverse I/O interface set, the SSDP is also

capable of performing both on- and off-chip data acquisition

and conversion, using Analogue-to-Digital (ADCs), and

Digital-to-Analogue (DAC) converters. On-chip ADCs

provide both high- and low-speed capabilities, allowing a

wide spectrum of applications ranging from high-speed sensor

data acquisition to low-rate house-keeping activities.

5

A. Control Subsystem

At the heart of the Control Subsystem there is a SoC based

on the flight-proven Cobham Gaisler LEON3FT, a fault-

tolerant SPARC V8 architecture. The SoC modules are

interconnected via a shared 32-bit ARM AMBA 2.0 bus,

yielding a maximum throughput of 3.2 Gbps. A block

diagram depicting the Control Subsystem and its components

is shown in Figure 2, with the remaining SoC components,

also from the Cobham Gaisler GRLIB.

Figure 2: SSDP Control Subsystem Block Diagram

The following Sections detail some of the features of the

Control Subsystem depicted in Figure 2.

1) Input/Output Interfaces

The Control Subsystem has a rich set of I/O interfaces,

both local and networked, allowing it to interact with and/or

control both local and remote devices/systems. Such

interfaces range from SpW and CAN to local device control

with SPI or I2C.

There are interfaces dedicated to directly interface with

actuators, such as Pulse-Width Modulation (PWM) outputs.

The provision of such functions in hardware paves the way to

fine-grained control of actuators, such as brushless motors.

Analogue I/O interfaces also exist, such as an on-chip low-

speed current DAC. The purpose of such device is to be able

to measure external temperature via a thermistor such as a

platinum probe (Pt1000). This interface is complemented by a

low-speed voltage ADC, intended primarily to be used in

house-keeping activities, but also capable of being used in

other applications.

2) Memory Support

The storage and execution of software applications is

supported by a Fault-Tolerant Memory Controller supporting

both non-volatile (mature PROM, EEPROM and novel

MRAM) and volatile (SRAM) memory technologies.

Furthermore, these can be protected by Error Detection and

Correction (EDAC) mechanisms in order to ensure reliable

operation in the harsh space environment. These are further

aided by dedicated and autonomous memory scrubbing

hardware mechanisms (not shown in Figure 2).

3) House-keeping and Time-keeping & distribution

As previously mentioned, house-keeping data can be

acquired with the on-chip low-speed ADC. The device is

capable of measuring several parameters, either internal to the

ASIC or external, e.g. internal supply voltage or temperature.

Time-keeping services are also provided, and

complemented by (Spacecraft/Instrument) time distribution is

managed by the novel SpaceWire Time Distribution Protocol

(SpW-TDP) [5], whose IP core has been enhanced with time-

keeping and management functions. Besides the presence of

SpW-TDP, local time distribution and synchronization is also

possible via dedicated input pins, e.g. Pulse Per Second (PPS).

4) Operating System and Debug Support

Operating system (OS) support is provided, via timer

units, interrupt controller and even a Memory Management

Unit (MMU). Such components allow running both Real-

Time Operating Systems (RTOS) like RTEMS, or modern

generic operating systems like Linux.

A Debug Support Unit is provided for on-ground

application development, using standard Cobham Gaisler

tools, together with profiling mechanisms.

5) Advanced Features

Although the LEON3FT GPP is envisaged to be mostly in

charge of SSDP control activities, its processing features were

not neglected, being endowed with advanced features such as:

 High-performance IEEE-754 compliant Double

Precision Floating Point Unit (FPU);

 Separate 4-way set-associative 16 kB Data and

Instruction cache memories.

Furthermore, it is possible to lock lines of instruction

cache, allowing to speed-up the execution of some portions of

code by reducing latency, e.g. fast interrupt-handling routines.

6) Summary

The Control Subsystem offers many resources which

enable its exploitation as a fully capable On-Board Computer

(OBC) component, without neglecting processing tasks:

 Networked I/O: CAN, SpW

 Local I/O : GPIO, SPI, I2C, among others

 EDAC-protected Memory Storage

 Timer Units, IRQ Controller, MMU

 House-keeping, Time-keeping and distribution

 FPU and Cache Memories

The architecture of the Control Subsystem is intended to

be highly compatible with the commercially available

GR712RC GPP from Cobham Gaisler [6], which is also based

on the LEON3FT. The objective of such compatibility is to

allow the reuse in the SSDP of code, tools and procedures

already developed for the GR712RC and its applications.

6

B. Processing Subsystem

The Processing Subsystem is powered by a multicore SoC

based on the novel Recore Systems’ Xentium Processor [1], a

VLIW
2
 fixed-point DSP architecture. The DSPs are connected

to the remaining SoC components via a high-performance

Network-on-a-Chip (NoC) interconnect. The SSDP

Processing Subsystem is depicted in Figure 3 through a block

diagram, showing how the SoC components are connected via

the NoC.

Figure 3: SSDP Processing Subsystem Block Diagram

SoC elements are connected via Network Interfaces (NI)

to NoC routers with 32-bit full-duplex links, yielding a

maximum throughput of 3.2 Gbps each way. Each router has

five ports: one for the NI, and four to connect to other

adjacent routers (see Figure 3). The following sections detail

the characteristics of the SoC components.

1) Xentium Processor

The Xentium Processor is a 32-bit fixed-point high-

performance parallel Processing Element (PE) capable of

executing multiple instructions on multiple data (MIMD). The

Xentium Processor is depicted in Figure 4, showing its main

components: Tightly Coupled memory (TCM), providing a

high-bandwidth connection to the NoC for data input/output;

Datapath, with the computing resources used for processing;

Instruction Cache for speeding-up the execution of

application program code..

Figure 4: Xentium Processor

The Datapath is composed by functional units (FUs),

providing the data computing resources, and register files

2
 Very-Large Instruction Word

(RFs), providing temporary data storage. There are ten FUs,

which are grouped based on the different operations they can

perform: arithmetic, logical, multiplication and load/store.

Execution can be controlled through external status signals,

e.g. synchronization (wait on bit).

There are five RFs, each with two read and write ports

each, allowing two simultaneous operations. Datapath data

input and output is managed by the load/store FUs, which are

connected via 64-bit ports to the Tightly-Coupled Memory

(TCM), running at system speed and organized in four

independent banks, thus allowing the programmer to design

the application in order to avoid FU contention upon memory

access.

The Xentium Processor is capable of performing the

following operations per clock cycle:

- 4x 16-bit Multiply-Accumulate Operations (MACs)

- 2x 16-bit Complex MACs

- 2x 32-bit MACs

- 2x 64-bit load/store operations

2) Input/Output and Data Acquisition

I/O interfacing was not neglected on this subsystem,

despite having as main scope the processing of massive

amounts of data. Two SpW interfaces with RMAP target are

available to be used directly by the Xentium Processors.

These interfaces are capable of exchanging data with a data

rate up to 200 Mbps.

Data acquisition and conversion is also a feature of the

Processing Subsystem, with both on- and off-chip acquisition

(ADCs). On-chip acquisition is envisaged to be capable of

acquiring 16-bit samples at 100 Mega-samples per second,

(re)using an ADC design developed under previous ESA

contracts. Off-chip acquisition has been designed to interface

with already existing radiation-hardened ADCs. The sample

rate of this interface allows up to 50 Mega-samples per

second acquisitions, with a sample width up to 16-bit.

3) Memory Hierarchy

Efficient exploitation of memory hierarchy is the crux of

effective processing algorithms’ implementations, often the

application’s bottleneck resides in the rate at which data can

be put and retrieved to/from the processing element or system.

The SSDP has a full-fledged memory hierarchy in place,

listed here from high latency to low latency:

 High capacity SDRAM Memory, up to 512 MB

 Internal low-latency 64 kB SRAM Memory Tile

 Local TCMs, 32 kB per Xentium Processor

The Memory Tile provides a large SRAM accessible via

the NoC at full system speed, which can be used to store large

chunks of data which will then be transferred either to the

TCMs, SDRAM or any available I/O interface. This allows

the implementation of a software-based cache memory.

Memory addressing is performed in little-endian, i.e. the least

significant byte is stored in the lowest address.

7

4) System Scaling

The scaling of SSDP-based systems has been envisaged,

and with that purpose a Chip-to-Chip (CtC) interface has been

introduced. This full-duplex parallel interface has a 16-bit

width, and is capable of exchanging data at a speed up to 50

MWords per second, yielding a maximum throughput of 800

Mbps. The interface has hardware-based flow-control

mechanisms, thus enabling reliable communication support.

The CtC interface allows data exchange between one or more

SSDP devices, or the exploitation of companion devices,

including functions supported by FPGAs (see Figure 5).

Figure 5: Chip-to-Chip Interface Usage Examples

The bi-directional interconnection of the SSDP with a

companion FPGA is depicted in Figure 5a, in a star topology:

the FPGA is at the centre, and can be used with a specific

purpose (companion device), and/or be used to route data

between the SSDP devices. A single-device topology would

be a star with a single SSDP. Another topology is shown in

Figure 5b, where the devices are connected in a ring topology.

These topologies enable a powerful processing chain, with

each device being in charge of a given task, or subset of tasks,

or even being connected to multiple different

instruments/acquisition devices.

5) Summary

The Processing Subsystem provides a high-performance

multicore DSP SoC, with data acquisition capabilities. Its

most striking features are:

 Multicore 32-bit fixed-point VLIW DSP (x2)

 Internal 64 kB SRAM, external SDRAM

 SpW I/F with RMAP target, up to 200 Mbps (2x)

 On-chip ADC up to 100 Msps

 Off-chip ADC and DAC up to 50 Msps

 Chip-to-Chip Interface, up to 800 Mbps

These features can be efficiently exploited by application

designers through compilers and a graphical Software

Development Environment, with debugging capabilities.

IV. SSDP ADVANCED FEATURES

The SSDP draws heavily from the MPPB platform,

inheriting most of its architecture and components. Building

on this heritage, improvements and features were introduced,

based on MPPB usage and evaluation activities performed

both by industry and academia. This section details some of

the advanced features, and how they can enable the design

and implementation of sophisticated systems and algorithms.

A. Efficient DMA Transfers

The availability of DMA transfers allows the exchange of

data autonomously, without needing processor intervention.

The SSDP Processing Subsystem provides a DMA Controller

which is capable of performing stride-based transfers, where

data which is not stored in contiguous positions can still be

efficiently accessed without paying a severe penalty. The

same feature can be used for sub-sampling / decimation

without consuming processor/DSP resources.

The availability of DMA transfers (both 2D and stride-

based) enables creative – and efficient - uses of the memory

hierarchy. An example is implementing an effective software-

based cache, with the DMA controller being used to transfer

data between the SDRAM, Memory Tile and TCMs, for

ensuring that the Xentium processors would always be

working on data, i.e. they would not suffer data starvation.

B. Endianness Conversion

Memory accesses performed by most of Processing

Subsystem modules are done in little endian, i.e. the least-

significant byte is stored at the lowest memory address. Such

access fashion clashes with the one used by the Control

Subsystem, whose modules inherit the big-endian addressing

from the LEON3FT architecture.

The issue of endianness conversion is addressed on the

SSDP at the points where information has to cross a so-called

“endianness domain crossing”, i.e the bridges between the

two subsystems. At these points there are specially crafted

mechanisms to provide automatic and transparent conversion.

Transparency is achieved by having different memory maps

for big- and little-endian information exchange, which will

determine if there should be a conversion or not.

C. Application Profiling

Profiling an application is the logical step to be taken after

its (initial) implementation and validation, and it should be

performed before attempting to introduce any optimization.

The Xentium Processors have been enhanced w.r.t. profiling

support, with new performance monitoring mechanisms

added. A new set of counters is provided, which can be used

to assess the performance of an application in a non-intrusive

manner: read and write cycles, latency, cache misses and hits,

among others.

D. Fault Detection, Isolation and Recoveryl

Space-based applications must provide FDIR functions in

order to be able to cope with errors induced by the harshness

of the Space environment. Such function must be built on top

of hardware-based mechanisms, providing the capability of

detecting errors, which may trigger faults.

In the SSDP the Control Subsystem is in charge of dealing

with FDIR functions. In order to provide effective FDIR, the

NoC and modules of the Processing Subsystem have been

enhanced w.r.t. error detection and signalling capabilities.

Such capabilities allow the hardware based detection of

errors. Error notifications are forwarded to the Control

Subsystem in order to trigger the execution of appropriate

handlers.

(a) Star/Single

(b) Ring

8

V. DEVELOPMENT & STATUS

The SSDP is being developed through an industrial

consortium led by Thales Alenia Space España (ES), and

encompassing several partners across Europe with different

domains of expertise:

 Recore Systems (NL), providing the multicore DSP

and components of the Processing Subsystem,

together with the Software Development Environment

(SDE) and support;

 Cobham Gaisler (SE), with the LEON3FT SoC and

support

 IMEC (BE), providing specific IP cores, DARE180

cell library, and also the layout services, package,

assembly support, foundry interface and manufacture

testing;

 Arquimea (ES), with the on-chip fast ADC.

The SSDP is now at its development and validation stage,

including FPGA-based prototyping. The SSDP development

will result in a CQFP-352 mixed-signal ASIC, built in UMC

180 nm technology with DARE180 digital cell technology

[6]. Engineering Models (EMs), Flight Models (FMs) and

evaluation boards will be commercialized by Cobham Gaisler.

A. Prototyping, Testing and Validation

The prototyping and testing activities are being carried out

on a custom board based on a Xilinx Kintex Ultrascale FPGA,

providing enough resources to accommodate both SSDP

subsystems. The schematic was captured internally at TAS-E,

and the manufacture commissioned to Pender Electronics.

This board will provide all the I/O interfaces needed by the

SSDP, thus allowing their validation.

The SSDP testing and validation activities are being

carried out with support of a National Instruments PXI

testbench comprising both hardware and LabView software.

The SSDP runs small pieces of software to support the

validation procedures. Such a setup allows a simple yet

powerful validation loop, which can be used at all levels of

the validation procedures, from interfaces to full system.

Benchmarking will be performed throughout the

development cycle, in order to characterize the SSDP from a

processing point of view. For that purpose, the NGDSP

benchmark suite [8] will be used.

B. Development Milestones

The SRR was successfully closed out in October 2015,

and the current activities related to development and

subsystem integration will culminate with a PDR in 2016. The

current schedule for the following (major) milestones is the

following:

 Q1 2017 – CDR

 Q2 2017 – Prototypes Manufacturing

 Q3/Q4 2017 – Prototypes (EM) Available

 2018 – FM Available

Evaluation boards with EMs are expected also during

Q3/Q4 2017, after the testing and validation campaign.

VI. CONCLUSIONS

The Scalable Sensor Data Processor (SSDP) is a next-

generation data processing mixed-signal ASIC, providing in a

single package a sophisticated architecture with a Processing

Subsystem with powerful multicore DSP processing

capabilities, together will a Control Subsystem using well-

established general-purpose processing resources capable of

delivering fast and reliable control and house-keeping. Each

of these is a full System-on-a-Chip (SoC) on its own, with

Input/Output capabilities besides the processing resources.

The Control Subsystem offers a general-purpose

LEON3FT with a floating-point unit, together with

SpaceWire, CAN and local I/O such as SPI and I2C, being

highly compliant with the LEON3FT-based Cobham Gaisler

GR712RC SoC, thus allowing the porting to the SSDP of

applications developed for such platform.

Besides the powerful Xentium Processors, the Processing

Subsystem is supported by a high-performance Network-on-

Chip (NoC), interconnecting the processing resources,

SDRAM storage, I/O such as SpW and on- and off-chip data

acquisition for ADCs and DACs. A Chip-to-Chip interface is

also provided, allowing scaling a system with other devices,

such as additional SSDP ASICs, FPGAs or others.

The SSDP RTL is currently being integrated, tested and

validated, supported by a custom FPGA-based prototyping

board. The next step after validation will be to perform the

ASIC layout. The SSDP ASIC will be implemented in UMC

180 nm technology, using DARE180 digital cells, providing a

high degree of SEE tolerance which is in line with envisaged

future science and robotic exploration missions. The first

prototypes for testing and validation are expected to be

delivered during the second half of 2017, with evaluation

boards being made available by Cobham Gaisler.

VII. REFERENCES

[1] Recore Systems, “Xentium® VLIW DSP IP Core - Product

Brief,” 2012. [Online]. Available:

http://www.recoresystems.com/fileadmin/downloads/Product_br

iefs/2012-2.0_Xentium_Product_Brief.pdf.

[2] Cobham Gaisler, “GRLIB IP Core User's Manual,” April 2016.

[Online]. Available:

http://www.gaisler.com/products/grlib/grlib.pdf.

[3] European Space Agency, “JUICE Definition Study Report,”

2014.

[4] Recore Systems, “Massively Parallel Processor Breadboarding

Study,” 2012.

[5] Cobham Gaisler, “High Accuracy Time Synchronization over

SpaceWire Networks,” 2013.

[6] Cobham Gaisler, GR712RC Dual-Core LEON3-FT SPARC V8

Processor, 2016.

[7] S. Redant, R. Marec, L. Baguena, E. Liegeon, J. Soucarre, B.

Van Thielen, G. Beeckman, P. Ribeiro, A. Fernandez-Leon and

B. Glass, “The Design Against Radiation Effects (DARE)

Library,” in 5th Radiation Effects on Components and Systems

Workshop (RADECS), Madrid, 2004.

[8] TEC-EDP/2008.18/RT, “Next Generation Space Digital Signal

Processor Software Benchmark,” ESA, 2008.

9

RC64: High Performance Rad-Hard Manycore

Ran Ginosar, Peleg Aviely, Fredy Lange and Tsvika Israeli

Ramon Chips, Ltd., 5 HaCarmel Street, Yoqneam Illit 2069201, Israel

 [ran, peleg, fredy, tsvika]@ramon-chips.com

Abstract

RC64 is a rad-hard manycore DSP combining 64

VLIW/SIMD DSP cores, lock-free shared memory, a

hardware scheduler and a task-based programming model.

The hardware scheduler enables fast scheduling and

allocation of fine grain tasks to all cores.

I. INTRODUCTION

Multiple core architectures are divided into multi-cores and

many-cores. Multi-cores, ranging from rad-hard Gaisler/

Ramon Chips’ LEON3FT dual-core GR712RC to

commercial ARM Cortex A9 and Intel Xeon, typically

provide some form of cache coherency and are designed to

execute many unrelated processes, governed by an operating

system such as Linux. In contrast, many-cores such as Tilera

TilePro, Adapteva’s Epiphany, NVidia GPU, Intel Xeon Phi

and Ramon Chips’ RC64, execute parallel programs

specifically designed for them and avoid operating systems,

in order to achieve higher performance and higher power-

efficiency.

Many-core architectures come in different flavors: a two-

dimensional array of cores arranged around a mesh NoC

(Tilera and Adapteva), GPUs and other manycores with

clusters of cores (Kalray), and rings. This paper discusses

the Plural architecture [12]—[16] of RC64 [17], in which

many cores are interconnected to a many-port shared

memory rather than to each other (Figure 1).

Many cores also differ on their programming models,

ranging from PRAM-like shared memory through CSP-like

message-passing to dataflow. Memory access and message

passing also relate to data dependencies and

synchronization—locks, bulk-synchronous patterns and

rendezvous. RC64 architecture employs a strict shared

memory programming model.

The last defining issue relates to task scheduling—allocating

tasks to cores and handling task dependencies. Scheduling

methods include static (compile time) scheduling, dynamic

software scheduling, architecture-specific scheduling (e.g.,

for NoC), and hardware schedulers, as in RC64, in which

data dependencies are replaced by task dependencies in

order to enhance performance and efficiency and to simplify

programming.

As a processor designed for operation in harsh space

environment, RC64 is based on rad-hard technology and

includes several mechanisms to enhance its fault tolerance,

such as EDAC, and to handle fault detection, isolation and

recovery (FDIR).

Figure 1. RC64 Many-Core Architecture. 64 DSP cores,

modem accelerators and multiple DMA controllers of I/O

interfaces access the multibank shared memory through a

logarithmic network. The hardware scheduler dispatches fine

grain tasks to cores, accelerators and I/O.

10

II. RELATED WORK

GR712RC, an early dual-core rad-hard space processor was

introduced by Ramon Chips and Cobham Gaisler [1][2].

Other multi-core architectures, not intended for space,

include ARM Cortex A9 [3] and Intel Xeon. Many core

architectures include the mesh-tiled Tilera [4][5] and

Adapteva [6], NVidia GPU [7], Intel ring-topology Xeon

Phi [8] and dataflow clusters by Kalray [9]. The research

XMT manycore [10] is PRAM-inspired and employs

hardware scheduling, similar to RC64. It employs

declarative parallelism to direct scheduling [11]. The Plural

architecture and its RC64 incarnation are discussed

in [12]—[17] and is the subject of the MacSpace European

FP7 research project [18]. An early hardware scheduler is

reported in [19]. The baseline multistage interconnection

network has been introduced in [20]. Example of SDR

modem implementation on RC64 and simulated

performance results are given in [26].

Other efforts to introduce rad-hard manycores for space

include the FPGA-based AppSTAR at Harris [22], Maestro

at Boeing [23] and RADSPEED at BAE Systems [24].

III. RC64 ARCHITECTURE

This section presents the Plural architecture of RC64

(Figure 1). RC64 architecture defines a shared-memory

single-chip many-core. The many-core consists of a

hardware synchronization and scheduling unit, 64 DSP

cores, and a shared on-chip memory accessible through a

high-performance logarithmic interconnection network. The

cores contain instruction and data caches, as well as a

private ‘scratchpad’ memory. The data cache is flushed and

invalidated by the end of each task execution, guaranteeing

consistency of the shared memory. The cores are designed

for low power operation using ‘slow clock’ (typically

slower than 500 MHz). Performance is achieved by high

level of parallelism rather than by sheer speed, and access to

the on-chip shared memory across the chip takes only a

small number of cycles.

The on-chip shared memory is organized in a large number

of banks, to enable many ports that can be accessed in

parallel by the many cores, via the network. To reduce

collisions, addresses are interleaved over the banks. The

cores are connected to the memory banks by a multi-stage

many-to-many interconnection network. The network

detects access conflicts contending on the same memory

bank, proceeds serving one of the requests and notifies the

other cores to retry their access. The cores immediately retry

a failed access. Two or more concurrent read requests from

the same address are served by a single read operation and a

multicast of the same value to all requesting cores. As

explained in the next section, there is no need for any cache

coherency mechanism.

The CEVA X1643 DSP core comprises the following parts.

The computation unit consists of four multiplier-

accumulators (MAC) of 16-bit fixed point data, supporting

other precisions as well, and a register file. Ramon Chips

has added a floating point MAC. The data addressing units

includes two load-store modules and address calculation.

The data memory unit consists of the data cache, AXI bus

interface, write buffers for queuing write-through

transactions and a scratchpad private memory. The program

memory unit is the instruction cache. Other units support

emulation and debug and mange power gating. Thus, the

DSP core contains three memories: an instruction cache, a

write-through data cache and a scratchpad private memory.

Implemented in 65nm CMOS and designed for operation at

300 MHz, RC64 is planned to achieve 38 GFLOPS (single

precision) and 76 GMAC (16-bit). With 12 high speed serial

links operating at up to 5 Gbps in each direction, a total

bandwidth of 120 Gbps is provided. Additional high

bandwidth is enabled for memories (25 Gbps DDR3

interface of 32 bit at 800 Mword/s with additional 16 bits

for ECC) and for high performance ADC and DAC (38

Gbps over 48 LVDS channels of 800 Mbps). The device is

planned to dissipate less than 10 Watt in either CCGA or

PBGA 624 column or ball grid array packages.

IV. RC64 PROGRAMMING MODEL

The Plural PRAM-like programming model of RC64 is

based on non-preemptive execution of multiple sequential

tasks. The programmer defines the tasks, as well as their

dependencies and priorities which are specified by a

(directed) task graph. Tasks are executed by cores and the

task graph is ‘executed’ by the scheduler.

In the Plural shared-memory programming model,

concurrent tasks cannot communicate. A group of tasks that

are allowed to execute in parallel may share read-only data

but they cannot share data that is written by any one of

them. If one task must write into a shared data variable and

another task must read that data, then they are dependent—

the writing task must complete before the reading task may

commence. That dependency is specified as a directed edge

in the task graph, and enforced by the hardware scheduler.

Tasks that do not write-share data are defined as

independent, and may execute concurrently. Concurrent

execution does not necessarily happens at the same time—

concurrent tasks may execute together or at any order, as

determined by the scheduler.

Some tasks, typically amenable to independent data

parallelism, may be duplicable, accompanied by a quota

that determines the number of instances that should be

executed (declared parallelism [11]). All instances of the

same duplicable task are mutually independent (they do not

write-share any data) and concurrent, and hence they may

be executed in parallel or in any arbitrary order. These

instances are distinguishable from each other merely by

their instance number. Ideally, their execution time is short

(fine granularity). Concurrent instances can be scheduled for

11

execution at any (arbitrary) order, and no priority is

associated with instances.

Each task progresses through at most four states (Figure 2).

Tasks without predecessors (enabled at the beginning of

program execution) start in the ready state. Tasks that

depend on predecessor tasks start in the pending state. Once

all predecessors to a task have completed, the task becomes

ready and the scheduler may schedule its instances for

execution and allocate (dispatch) the instances to cores.

Once all instances of a task have been allocated, the task is

All allocated. And once all its instances have terminated, the

task moves into the terminated state (possibly enabling

successor tasks to become ready).

Terminated
All

Allocated
ReadyPending

Figure 2. Task State Graph

Many-flow pipelining facilitates enhanced core utilization in

streamed signal processing. Consider the task graph

examples for executing JPEG2000 image compression and

the processor utilization charts of Figure 3. In (a), five tasks

A-E are scheduled in sequence. Tasks B and D are

duplicable with a large number of instances, enabling

efficient utilization of 64 cores. Tasks A,C,E, on the other

hand, are sequential. Execution time of compressing one

image is 160 time units, and overall utilization, reflected by

the ratio of colored area to the 64×160 rectangle, is 65%.

The core utilization chart (on the right) indicates the number

of busy cores over time, and different colors represent

different tasks. In the many-flow task graph (Figure 3b), a

pipeline of seven images is processed. During one iteration,

say iteration k, the output stage sends compressed image k,

task E processes image k+1, task D computes the data of

image k+2, and so on. Notice that the sequential tasks A,C,E

are allocated first in each iteration, and duplicable instances

occupy the remaining cores. A single iteration takes 95 time

units and the latency of a single image is extended to five

iterations, but the throughput is enhanced and the core

utilization chart now demonstrates 99% core utilization.

Data dependencies are expressed (by the programmer) as

task dependencies. For instance, if a variable is written by

task tw and must later be read, then reading must occur in a

group of tasks {tr} and tw{tr}. The synchronization action

of completion of tw prior to any execution of tasks {tr}

provides the needed barrier.

Figure 3. Many-flow pipelining: (a) task graph and single

execution of an image compression program, (b) many-flow task

graph and its pipelined execution

V. RC64 HARDWARE SCHEDULER

The hardware scheduler assigns tasks to cores for execution.

The scheduler maintains two data structures, one for

managing cores (Figure 4) and the other for managing tasks

(Figure 5). Core and task state graphs are shown in Figure 6

and Figure 2, respectively.

The hardware scheduler operates as follows. At start, all

cores are listed as Idle and the task graph is loaded into the

first three columns of the Task Management Table. The

scheduler loops forever over its computation cycle. On each

cycle, the scheduler performs two activities: allocating tasks

for execution, and handling task completions.

Core # State Task # Instance # … …

0

1

2

…

Figure 4. Core Management Table

12

Task #
Duplication

quota
Dependencies State

allocated

instances

terminated

instances

0

1

2

…

data from task graph

Figure 5. Task Management Table

BusyIdle

Figure 6. Core State Graph

To allocate tasks, the scheduler first selects ready tasks from

the Task Management Table. It allocates each such task to

idle cores by changing the task state to All Allocated (if the

task is regular, or if all duplicable instances have been

dispatched), by increasing the count of allocated instances in

the Task Management Table, and by noting the task number

(and instance number, for duplicable tasks) in the Core

Management Table. Finally, task/instance activation

messages are dispatched to the relevant cores. The

activation message for a specific core includes the code

entry address and (in case of a duplicable instance) the

instance ID number.

To handle task completions, the scheduler collects

termination messages from cores that have completed task

executions. It changes the state of those cores to Idle. For

regular tasks, the task state is changed to Terminated. For

duplicable tasks, the counter of terminated tasks in the Task

Management Table is incremented, and if it has reached the

quota value then the state of that task is changed to

Terminated. Next, the scheduler updates the Dependencies

entry of each task in the table which depends on the

terminated task: the arrival of that token is noted, the

dependency condition is recomputed, and if all precedencies

of any task have been fulfilled then the state of that task is

changed to Ready, enabling allocation and dispatch in

subsequent scheduler computation cycles.

The scheduler capacity, namely the number of simultaneous

tasks which the scheduler is able to allocate or terminate

during each computation cycle, is limited. Any additional

task allocations and task termination messages beyond

scheduler capacity wait for subsequent cycles in order to be

processed. A core remains idle from the time it issues a

termination message until the next task allocation arrives.

That idle time comprises not only the delay at the scheduler

(wait and processing times) but also any transmission

latency of the termination and allocation messages over the

scheduler-to-cores network.

The allocation and termination algorithms are shown in

Figure 7.

Scheduling efficiency depends on the ratio of scheduling

latency (reflected in idle time of cores) to task execution

time. Extremely fine grain tasks (e.g., those executing for

1~100 cycles) call for very short scheduling latencies (down

to zero cycles) to be efficient. Alternatively, speculative

advanced scheduling may fill queues attached to each core

so that the core can start executing a new instance once it

has completed a previous instance (see [16] for such an

analysis). However, typical tasks tend to incur compiled

overhead (prologue and epilogue code sequences generated

by even the most efficient optimizing compilers), and

typical programming practices of parallel tasks tend to avoid

the shortest tasks, resulting in average task duration

exceeding 100 cycles. With average scheduling latency of

only 10-20 cycles, enabled by hardware implementation, we

obtain execution efficiency close to 99%.

The hardware scheduler is implemented as custom logic in

RC64. Two other possibilities will be considered in future

generations, one based on two content-addressable memory

(CAM) arrays implementing the two management tables,

and another implementation as software executing on a

dedicated fast core with its dedicated high throughput

memory.

Figure 7. Allocation (top) and termination (bottom) algorithms

ALLOCATION

1. Choose a Ready task (according to priority, if

specified)

2. While there is still enough scheduler capacity and

there are still Idle cores

a. Identify an Idle core

b. Allocate an instance to that core

c. Increase counter of allocated task

instances

d. If # allocated instances == quota, change

task state to All Allocated and continue to

next task (step 1)

e. Else, continue to next instance of same

task (step 2)

TERMINATION

1. Choose a core which has sent a termination

message

2. While there is still enough scheduler capacity

a. Change core state to Idle

b. Increment # terminated instances

c. If # terminated instances == quota, change

task state to Terminated

d. Recompute dependencies for all other

tasks that depend on the terminated task,

and where relevant change their state to

Ready

13

A special section of the scheduler schedules High Priority

Tasks (HPTs), which are designed as ‘interrupt handling

routines’ to handle hardware interrupts. As explained in

Section VII, all I/O interfaces (including interfaces to

accelerators) are based on DMA controllers that issue

interrupts once completing their action. The most urgent

portion of handling the interrupt is packaged as a HPT, and

less urgent parts are formulated as a normal task. HPT is

dispatched immediately and pre-emptively by the scheduler.

Each core may execute one HPT, and one HPT does not

pre-empt another HPT. Thus, a maximum of 64 HPTs may

execute simultaneously. RC64 defines fewer than 64

different HPTs, and thus there is no shortage of processors

for prompt invocation of HPTs.

VI. RC64 NETWORKS ON CHIP

RC64 contains two specialized Networks on Chip (NOCs),

one connecting the scheduler to all cores and other

schedulable entities (DMA controllers and accelerators), and

a second NOC connecting all cores and other data sources

(DMA controllers) to the shared memory.

A. Scheduler NOC

The scheduler-to-cores NOC employs a tree topology. That

NOC off-loads two distributed functions from the scheduler,

task allocation and task termination.

The distributed task allocation function receives clustered

task allocation messages from the scheduler. In particular, a

task allocation message related to a duplicable task specifies

the task entry address and a range of instance numbers that

should be dispatched. The NOC partitions such a clustered

message into new messages specifying the same task entry

address and sub-range of instance numbers, so that the sub-

ranges of any two new messages are mutually exclusive and

the union of all new messages covers the same range of

instance numbers as the original message. The NOC nodes

maintain Core and Task Management Tables which are

subsets of those tables in the scheduler (Figure 4 and Figure

5, respectively), to enable making these distributed

decisions.

The distributed task termination process complements task

allocations. Upon receiving instance terminations from

cores or subordinate nodes, a NOC node combine the

messages and forwards a more succinct message specifying

ranges of completed tasks.

B. Shared Memory NOC

The larger NOC of RC64 connects 64 cores, tens of DMA

controllers and hardware accelerators to 256 banks of the

shared memory. To simplify layout, floor-planning and

routing, we employ a Baseline logarithmic-depth multistage

interconnection network [20], symbolically drawn in Figure

1. Some of the NOC switch stages are combinational, while

others employ registers and operate in a pipeline. Two

separate networks are used, one for reading and another one

for writing. The read networks accesses and transfers 16

bytes (128 bits) in parallel, matching cache line size and

serving cache fetch in a single operation. The write network

is limited to 32 bits, compatible with the write-through

mechanism employed in the DSP cores. Writing smaller

formats (16 and 8 bits) is also allowed.

VII. RC64 ACCELERATORS AND I/O

Certain operations cannot be performed efficiently on

programmable cores. Typical examples require bit level

manipulations that are not provided for by the instruction

set, such as used for error correction (LDPC, Turbo code,

BCH, etc.) and for encryption. RC64 offers two solutions.

First, several accelerators for pre-determined computations

(such as LDPC and Turbo Coding, useful in DVB-S2 and

DVB-RCS for space telecommunications) are included on

chip. They are accessible only through shared memory, as

follows. First, the data to be processed by the accelerator are

deposited in shared memory. Next, the accelerator is

invoked. Data is fetched to the accelerator by a dedicated

DMA controller, and the outcome is sent back to shared

memory by a complementing second DMA controller. This

mode of operation decouples the accelerator from the cores

and eliminates busy waiting of cores.

The second possibility is to employ an external acceleration

on either an FPGA or an ASIC. High speed serial links on

RC64 enable efficient utilization of such external

acceleration. This mode offers scalability and extendibility

to RC64.

All input / output interfaces operate asynchronously to the

cores. Each interface is managed by one DMA controller for

input and a second DMA controller for output. Many

different types of I/O interfaces are available in RC64,

including slow GPIO and SpaceWire links, high rate

DDR2/DDR3 and ONFI flash EDAC memory interfaces

(error detection and correction is carried out at the I/O

interfaces, offloading that compute load from the cores),

high speed serial links (implementing SpaceFibre [25],

serial Rapid IO and proprietary protocols) and 48-link

LVDS port useful for ADCs, DACs and other custom

interfaces.

All DMA controllers are scheduled by the scheduler, submit

interrupt signals to the scheduler (as explained in Section V

above), and read and write data directly to the shared

memory through the NOC (see Section VI above). The

system software required for managing I/O is described in

Section VIII below.

VIII. RC64 SYSTEM SOFTWARE

The system run-time software stack is shown schematically

in Figure 8. The boot sequence library is based on the boot

code of the DSP core. It is modified to enable execution by

many cores in parallel. Only one of the cores performs the

shared memory content initialization. The boot code

14

includes DSP core self-test, cache clearing, memory

protection configuration and execution status notification to

an external controlling host.

The Runtime Kernel (RTK) performs the scheduling

function for the DSP core. It interacts with the hardware

scheduler, receives task allocation details, launches the task

code and responds with task termination when the task is

finished. The RTK also initiates the power down sequence

when no task is received for execution.

The first task allocated by the scheduler is responsible for

loading the application task graph into the scheduler. This

code is automatically generated during a pre-compile stage

according to the task graph definition. Application tasks are

allocated after the initialization task is finished.

Certain library routines manage EDAC for memories,

encapsulate messaging and routing services to off-chip

networking (especially over high speed serial SpaceFibre

links), respond to commands received from an external host

(or one of the on-chip cores, playing the role of a host),

perform FDIR functions, and offer some level of

virtualization when multiple RC64 chips are employed in

concert to execute coordinated missions.

Figure 8. RC64 Run Time Software. The kernel enables boot,

initialization, task processing and I/O. Other services include

execution of host commands, networking and routing, error

correction and management of applications distributed over

multiple RC64 chips

Other components of the RTK manage I/O and accelerators.

Configuring the interfaces requires special sequences such

as link detection and activation, clock enabling, DMA

configuration, etc. Each interface has its own set of

parameters according to the required connectivity, storage

type, data rate and so on.

Figure 9 demonstrate the hardware-kernel-application

sequence of events in the case of an input of a predefined

data unit over a stream input link. The DMA controller,

previously scheduled, stores input data into a pre-allocated

buffer in memory (step 1). Upon completion, it issues an

interrupt (step 2). A HPT is invoked (step 3, see Section V)

and stores pointers and status in shared memory, effectively

enqueuing the new arrival (step 4). It ends up by issuing a

‘software event’ to the scheduler (step 5). Eventually, the

scheduler dispatches a task that has been waiting for that

event (step 6). That task can consume the data and then

dequeue it, releasing the storage where the data was stored

(step 7). Other I/O operations are conducted similarly.

Figure 9. Event sequence performing stream input

IX. RC64 SOFTWARE DEVELOPMENT TOOLS

RC64 SDK enables software development, debug and

tuning, as shown in Figure 10. The IDE tool chain includes

a C/C++ compiler for the DSP core, an assembler, a linker,

and a library of DSP functions customized for the core,

taking full advantage of its VLIW capability (computing

and moving data at the same time) and SIMD (performing

several multiply and accumulate operations in parallel).

RC64 Parallel programming is supported by the task

compiler, which translates the task graph for the scheduler, a

many-task emulator (MTE) that enables efficient

development of parallel codes on personal computers, and a

many-core debugger, which synchronizes debug operations

of all cores. The RC64 parallel simulator is cycle accurate,

fully simulating the cores as well as all other hardware

components on the chip.

The profiler provides complete record of parallel execution

on all 64 cores. The event recorder generates traces with

time stamps of desired events. The kernel and libraries are

described in Section VIII above.

15

X. RC64 RADIATION HARDNESS AND FDIR

RC64 will be implemented in 65nm CMOS using

RadSafe™ rad-hard-by-design (RHBD) technology and

library [21]. RadSafe™ is designed for a wide range of

space missions, enabling TID tolerance to 300 kRad(Si), no

latchup and very low SEU rate. All memories on chip are

protected by various means and varying levels of error

correction and detection. Special protection is designed for

registers that hold data for extended time, such as

configuration registers. The two external memory interfaces,

to DDR2/DDR3 and to ONFI flash memories, implement

several types of EDAC. For instance, ten flash memory

chips can be connected for eight byte wide datapath and two

flash devices for storing Reed Solomon ECC.

Figure 10. RC64 Software Development Kit.

RC64 implements extensive means for fault detection,

isolation and recovery (FDIR). An external host can reset,

boot and scrub the device through dual RMAP SpaceWire

ports. RC64 contains numerous error counters and monitors

that collect and report error statistics. Trace buffers,

allocated in shared memory as desired, enable rollback and

analysis (in addition to helping debug). Faulty sub-systems

may be shut down and the scheduler is designed to operate

with partial configurations.

XI. CONCLUSIONS

RC64 is a many core architecture suitable for use in space.

It is designed for simplified PRAM-like shared memory

programming and high performance at low power. RC64

goal is to enable future software-defined satellites in all

space endeavors. RC64 is presently under design and all

performance figures reported herein and in [26] are based on

simulations. RC64 is planned for availability before the end

of the decade. RC64 R&D project is funded by Israel Space

Agency and by the European Union.

XII. ACKNOWLEDGEMENTS

The financial support of the Israel Space Agency, the Israel

Ministry of Defense, the Israel Aerospace Industry and the

European Union (Seventh Framework Programme grant

agreement 607212) is greatly appreciated. Itai Avron has

contributed to early versions of this paper.

XIII. REFERENCES

[1] Sturesson, F., J. Gaisler, R. Ginosar, and T. Liran. "Radiation

characterization of a dual core LEON3-FT processor." In

Radiation and Its Effects on Components and Systems

(RADECS), 2011 12th European Conference on, pp. 938-944.

IEEE, 2011.

[2] Habinc, S., K. Glembo, and J. Gaisler. "GR712RC-The Dual-

Core LEON3FT System-on-Chip Avionics Solution." In

DASIA 2010 Data Systems In Aerospace, vol. 682, p. 8.

2010.

[3] Jacquet, David, Frederic Hasbani, Philippe Flatresse, Richard

Wilson, Franck Arnaud, Giorgio Cesana, Thierry Di Gilio et

al. "A 3 GHz dual core processor ARM cortex TM-A9 in 28

nm UTBB FD-SOI CMOS with ultra-wide voltage range and

energy efficiency optimization." Solid-State Circuits, IEEE

Journal of 49, no. 4 (2014): 812-826.

[4] Villalpando, Carlos Y., Andrew E. Johnson, Raphael Some,

Jacob Oberlin, and Steven Goldberg. "Investigation of the

tilera processor for real time hazard detection and avoidance

on the altair lunar lander." In Aerospace Conference, 2010

IEEE, pp. 1-9. IEEE, 2010.

[5] Wentzlaff, David, et al. "On-chip interconnection architecture

of the tile processor." IEEE micro 5 (2007): 15-31.

[6] Varghese, Anitha, Ben Edwards, Gaurav Mitra, and Alistair

P. Rendell. "Programming the Adapteva Epiphany 64-core

Network-on-chip Coprocessor." In Parallel & Distributed

Processing Symposium Workshops (IPDPSW), 2014 IEEE

International, pp. 984-992. IEEE, 2014.

[7] Nickolls, John, and William J. Dally. "The GPU computing

era." IEEE micro 2 (2010): 56-69.

[8] Heinecke, Alexander, Karthikeyan Vaidyanathan, Mikhail

Smelyanskiy, Alexander Kobotov, Roman Dubtsov, Greg

Henry, Aniruddha G. Shet, Grigorios Chrysos, and Pradeep

Dubey. "Design and implementation of the linpack

benchmark for single and multi-node systems based on intel®

xeon phi coprocessor." In Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on, pp.

126-137. IEEE, 2013.

[9] De Dinechin, Benoît Dupont, Duco Van Amstel, Marc

Poulhiès, and Guillaume Lager. "Time-critical computing on

a single-chip massively parallel processor." In Design,

Automation and Test in Europe Conference and Exhibition

(DATE), 2014, pp. 1-6. IEEE, 2014.

[10] Wen, Xingzhi, and Uzi Vishkin. "Fpga-based prototype of a

pram-on-chip processor." In Proceedings of the 5th

conference on Computing frontiers, pp. 55-66. ACM, 2008.

[11] Tzannes, Alexandros, George C. Caragea, Uzi Vishkin, and

Rajeev Barua. "Lazy scheduling: A runtime adaptive

scheduler for declarative parallelism." ACM Transactions on

Programming Languages and Systems (TOPLAS) 36, no. 3

(2014): 10.

16

[12] Bayer, Nimrod, and Ran Ginosar. "High flow-rate

synchronizer/scheduler apparatus and method for

multiprocessors." U.S. Patent 5,202,987, issued April 13,

1993.

[13] Bayer, Nimrod, and Ran Ginosar. "Tightly Coupled

Multiprocessing: The Super Processor Architecture." In

Enabling Society with Information Technology, pp. 329-339.

Springer Japan, 2002.

[14] Bayer, Nimrod, and Aviely Peleg. "Shared memory system

for a tightly-coupled multiprocessor." U.S. Patent 8,099,561,

issued January 17, 2012.

[15] Avron, Itai, and Ran Ginosar. "Performance of a hardware

scheduler for many-core architecture." In 2012 IEEE 14th

International Conference on High Performance Computing

and Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems (HPCC-

ICESS), pp. 151-160. IEEE, 2012.

[16] Avron, Itai, and Ran Ginosar. "Hardware Scheduler

Performance on the Plural Many-Core Architecture."

In Proceedings of the 3rd International Workshop on Many-

core Embedded Systems, pp. 48-51. ACM, 2015.

[17] Ran Ginosar and Peleg Aviely, RC64 – Many-Core

Communication Processor for Space IP Router. In

Proceedings of International Astronautical Conference, pp.

IAC-15-B2.6.1, Jerusalem, Israel, Oct. 2015.

[18] http://www.macspace.eu/

[19] Crummey, T. P., D. I. Jones, P. J. Fleming, and W. P.

Marnane. "A hardware scheduler for parallel processing in

control applications." In Control, International Conference on,

vol. 2, pp. 1098-1103. IET, 1994.

[20] Wu, Chuan-Lin, and Tse-Yun Feng. "On a class of multistage

interconnection networks." Computers, IEEE Transactions on,

vol. C-29, no. 8, pp. 694-702, 1980.

[21] Liran, Tuvia, Ran Ginosar, Fredy Lange, Peleg Aviely, Henri

Meirov, Michael Goldberg, Zeev Meister, and Mickey Oliel.

"65nm RadSafe™ technology for RC64 and advanced SOCs."

(2015).

[22] Beadle, Edward R., and Tim Dyson. "Software-Based

Reconfigurable Computing Platform (AppSTAR TM) for

Multi-Mission Payloads in Spaceborne and Near-Space

Vehicles." In International Conference on Reconfigurable

Systems and Algorithms, ERSA 2012.

[23] Malone, Michael. "OPERA RHBD multi-core." In

Military/Aerospace Programmable Logic Device Workshop

(MAPLD 2009). 2009.

[24] Marshall, Joseph, Richard Berger, Michael Bear, Lisa

Hollinden, Jeffrey Robertson, and Dale Rickard. "Applying a

high performance tiled rad-hard digital signal processor to

spaceborne applications." In Aerospace Conference, 2012

IEEE, pp. 1-10. IEEE, 2012.

[25] Parkes, Steve, Chris McClements, David McLaren, Albert

Ferrer Florit, and Alberto Gonzalez Villafranca. "SpaceFibre:

A multi-Gigabit/s interconnect for spacecraft onboard data

handling." In Aerospace Conference, pp. 1-13. IEEE, 2015.

[26] Aviely, Peleg, Olga Radovsky and Ran Ginosar. “DVB-S2

Software Defined Radio Modem on the RC64 Manycore

DSP.” In DSP Day, 2016.

17

Session 2:

Test, Verification and Qualification of DSP Chips

18

ESCC Qualification of Space components – Schemes and New Opportunities

F. Martinez

ESA, 2200 AG Noordwijk, The Netherlands

fernando.martinez.martin@esa.int

Abstract

The European Space Components Coordination (ESCC)

system offers opportunities for the recognition of established

performance, product maturity and independent Space

qualification of advanced microelectronics products aimed at

high reliability in their operation as part of critical equipment

on-board long-life Space systems. This has been achieved for

decades with older microcircuit products and, after some

recent developments, is enabled now as well for the latest

devices.

I. ESCC AS AN EXAMPLE OF SUPPLIER-USER

COOPERATION

ESCC is established with the objective of harmonising the

efforts concerning the various aspects of EEE space

components by ESA, European national public space

organisations, the component manufacturers and the user

industries. The goal is to improve the availability of strategic

EEE space components with the required performance and at

affordable costs for institutional and commercial space

programmes. ESCC aims at achieving this goal by

harmonising the resources and development efforts for space

components in the ESA Member States and by providing a

single and unified system for the standardisation, product

specification, evaluation, qualification and procurement of

European EEE space components and for the certification of

components and component manufacturers. ESCC is end-

product oriented, so it must be noted that the ESCC system

does not provide a standard methodology for technology

development activities which start at very low Technology

Readiness Levels (TRL 3 or below). Similarly, the ESCC

system does not address systematically the actual design flow

of EEE components, nor does it prescribe the specifics of their

actual implementation (assembly processes, bias circuits) in

the context of a particular mission or application. However,

some of these application-related topics (like mission-specific

Radiation Hardness Assurance, or soldering of components on

a PCB, of Surface Mount assembly techniques and associated

requirements) are addressed in Working Groups which

function under the “umbrella” of coordination and

cooperation provided by the ESCC system. This ensures, for

instance, that components are only qualified in package types

which are compatible with existing and approved board level

assembly processes All public outputs of ESCC are posted

online at https://escies.org

As mentioned, the ESCC system is based on the technical

collaboration among its partners (manufacturers, users, space

agencies). This cooperation is effective in addressing

technology harmonization and the development of standards.

Such standards support the evaluation, procurement and

qualification of components and technologies. The actual

implementation of these standards in the context of

qualification activities is primarily the responsibility of

manufacturers, with the help and support of National Space

Agencies (NSAs) and ESA as certifying authority.

The various activities which happen in the scope ESCC can

therefore be grouped in two main categories: Harmonisation

tasks and Executive tasks. When ESCC delivers technology

road-maps, annual qualification plans, technical reports or

assessments, draft specifications, test methods, proposals or

endorsement of technical development activities, we talk

about Harmonisation work. When ESCC results in published

specifications, certifications of qualification, actions related to

Quality Assurance, we talk about Executive work. Of course

most activities are interrelated with each other and there are

obvious overlaps.

The main actor in Europe in space components Harmonisation

is the ESCC Component Technology Board (CTB). The CTB

coordinates the work of technology-specific Working Groups

(WG). One of them, the CTB Silicon WG has mixed-signal

and advanced CMOS components in their scope of activities.

The CTB Silicon WG advices ESA and other European

national space agencies on activities (and priorities) which

should be supported and funded for such components, in

terms of technology development, technology

characterisation, space evaluation and ESCC Qualification.

The ESCC Harmonisation Task includes maintaining strategic

plans areas. These are considered proprietary to the ESCC

membership. The development activities are harmonised by

the ESCC members within the CTB to maximise the use of

funds and to prevent duplication of effort. As regards

participating in the ESCC Harmonisation Task, this implies

joining one or more of the standing and ad-hoc working

groups. A willing European organisation (or company) may

well be accepted to contribute and would be expected to

appoint members of staff to represent the organisation in one

or more of the working groups. A contribution of this nature

will in general be welcomed but will have to be agreed with

the ESCC preeminent body, the Space Components Steering

Board (SCSB). This is in part to maintain the appropriate

balance, as required by the ESCC Charter, between the

different interest groups.

The ESCC Executive task is carried out by various National

Space Agencies and ESA. The publicly visible outputs of this

shared task are the ESCC specifications, the ESCC Qualified

19

Parts List (QPL), the ESCC Qualified Manufacturers List

(QML) and the European Preferred Parts List (EPPL). The

ESCC Executive is also responsible for ensuring the

implementation (by manufacturers) of ESCC requirements on

Quality Assurance.

A better understanding of the ESCC system can be achieved

by checking the information published at the mentioned

website (https://escies.org), through the reading of ESCC

20000, by sending specific questions or requests to

secretariat@escies.org or by attending an ESCC training

session, such as those organised periodically by ESA at its

ESTEC establishment periodically, which are free of charge.

II. ESCC SPECIFICATIONS – THE SKELETON OF THE

SYSTEM

ESA can only provide certification of ESCC Qualification

when the pertinent requirements have been verified. Such

requirements are defined in a number of specifications. The

ESCC system is supported by some 600+ published

specifications.

For example, in the case of integrated circuits, the ESCC

requirements can be found in various specifications, which

can be grouped as follows:

A. Basic specifications

Table 1: Basic Specifications (methodology)

Subject ESCC Number

Component Qualification 20100

Component Evaluation 22600 + 2269000

Capability Approval Qualification 24300 + 2439000

Technology Flow Qualification 25400 + 2549000

Table 2: Basic Specifications (test methods)

Subject ESCC Number

Internal Visual inspection 20400 + 2049000

External Visual inspection 20500 + 2059000

SEM inspection 21400

Total Dose Steady-state irradiation 22900

EDS Sensitivity Test Method 23800

Resistance to solvants 24800

Table 3: Basic Specifications (system and Quality Assurance)

Subject ESCC Number

Preservation, packaging, dispatch 20600

Terms, definitions, symbols, units 21300

Marking 21700

Leads materials and finishes 23500

Quality System requirements 24600

Non-conformance management 22800

B. Generic specification

ESCC 9000, Monolithic and Multichip Microcircuits,

wire-bonded, hermetically sealed AND flip-chip monolithic

microcircuits, solder ball bonded, hermetically and non-

hermetically sealed.

C. Detail specification

This will be a device-specific procurement specification,

issued by ESA upon a review of a manufacturer-provided

initial draft. In principle, such review will include the ESCC

Executive only.

Probably, the best starting point to become familiar with the

ESCC qualification concept is the generic specification ESCC

9000. This specification will set the basic rules for Flight

microcircuits screening, periodic testing and qualification

(initial qualification and maintenance) and is most relevant for

manufacturers and users. Incidentally, it may be noted that

some space system projects may be ready to accept the use of

unqualified components on the basis of their capability to

conform to ESCC 9000 requirements for production control

and screening.

The ESCC qualification concept is based on a two-step

approach consisting of an evaluation and a qualification test

phase. Evaluation test requirements are defined in ESCC

2269000 and the evaluation of the manufacturer itself, which

is carried out in the form of an audit by the ESCC Executive

(ESA and/or national agencies) is defined in ESCC 2029000.

Finally, customers will need to refer to a procurement

specification in their Purchase Orders for Devices. The ESCC

Detail specification serves that purpose. The ESCC Executive

readily supports manufacturers and users in the preparation

and publication of ESCC Detail specifications. The process

can be started by a manufacturer at any time, using the

spacecomponents.org website. The ESCC Detail

specification, as a supplement to ESCC 9000, will define the

product in its basic constituents and absolute limits (package

drawing, pin-out, power dissipation, Operating

temperatures…) as well as the acceptance limits for electrical

testing of the microcircuits and the bias conditions for

endurance and radiation evaluation testing. It must be

highlighted that the ESCC Detail specification does not

replace the product data sheet and associated application notes

in what refers to typical performances, application-specific

instructions or recommended bias circuits or load conditions.

The rest of the specifications mentioned earlier in this

paragraph contain more detailed requirements and ESCC

Quality Assurance system provisions which the manufacturer

needs to understand and implement in his own processes. The

adoption of such requirements is rarely problematic and can

normally and gradually be achieved, with the support of the

ESCC Executive, in the early phases of Evaluation. It may be

noted in this respect that the use of alternative test methods or

manufacturer’s own procedures may well be agreed at that

stage or early evaluation. In such cases, for ESCC Qualified

components, the agreed deviations are described publicly in a

manufacturer-specific agreed deviations annex to the ESCC

Detail specification. When a component is not qualified, even

if available in accordance with an ESCC Detail specification,

no agencies’ monitoring nor supervision of compliance to

20

https://escies.org/
mailto:secretariat@escies.org

ESCC requirements can be assumed and customers may need

to decide on their own on the best strategy for verification of

such requirements (if the manufacturer’s self-certification is

not enough) in the context of their own supplier’s evaluation

or rating.

III. ESCC QUALIFICATION SCHEMES

The ESCC system supports the procurement and qualification

of EEE Components suitable for use in most space systems.

However, additional evaluation or tests during procurement

may be required for use in projects with exceptional

application conditions (e.g. extended temperature range or

Radiation Hardness Assurance).

Various schemes of qualification co-exist in the ESCC

system, and all have been used over the years to achieve

qualification of microelectronics products and manufacturer's

technology flows and capability domains. The ESCC

Secretariat has recently published a very detailed brochure

which provides details and insight into the various schemes of

ESCC Qualification. This brochure is available for download

at the ESCIES website.

In addition, it may be noted that several standardization

initiatives have been developing and running, since some

years ago, to build an alternative certification scheme in order

to address non-integrated supply chains. This was reported

already at AMICSA in 2012. The new scheme is called

Process Capability Approval (PCA) and is described in ESCC

25600 specification. The first implementation of this scheme

has been achieved with hermetic hybrid products. Further

developments in this context may address assembly and test

houses and, possibly, other services related to the production

of space components.

All three schemes of Qualification share a basic underlying

structure which includes an evaluation stage (product and

manufacturer) and a qualification testing stage, all

accompanied by the production of a certain amount of

documentation aimed at establishing a verified baseline of

product configuration and performance which would then be

exercised in procurement during the validity of the

qualification. Even when overlapping these two stages is not

necessarily forbidden in the system, it rarely happened as it

was usually understood that proceeding to Qualification

testing without the product knowledge and other assurances

obtained in the Evaluation stage might actually lead to a failed

exercise, or the Qualification results might still be impaired at

the last minute by unexpected evaluation outputs requiring a

resolution or a change to the product. A typical example of

this could be a product which does not perform as expected

when evaluated in a radiation facility in a Total Dose test. It

may be noted however that, in an effort to expedite and

simplify the access to Qualification, the ESCC system has

decided to start in 2016 an exercise aimed at merging, in a

single test stage, the previously established two stages. This

optional “fast track” to full Qualification is to be developed

for microcircuits, among some other families of components.

It is understood that a unified flow may reduce time and cost

by eliminating any possible repetition of tests (hence less test

samples would be used up in the total exercise) and creating

additional opportunities for concurrent test implementations.

Another interesting area of recent development in the ESCC

system is the already-started re-writing of specifications in

order to enable the ESCC Qualification of integrated circuits

in DIE form. This additional possibility, perhaps in

combination with the expected PCA of Assembly and Test

Houses, might enable the “concatenation” of certifications in

fragmented microcircuits’ supply chains involving various

suppliers. In this respect, even when there are no explicit

ESCC documents that define requirements/restrictions in the

area of IP ownership and/or subcontracting, a legal entity that

has no design, production (incl. test) tool of any kind could

only achieve an ESCC qualification if they could verifiably

demonstrate to have full control and effective authority over

their supply chain just as if they were an almost self -

sufficient designer/producer (materials, utilities, etc.

excluded) with beginning to end (comprehensive) product

competence. In practice, this would require nearly perfect

management and technical competence, and a lot of

“interfaces verifications” by the ESCC Executive. As the

primary added value of a qualification is a manufacturer's

credible commitment to the customer that he is effectively

capable of resolving product issues (within the specification)

of almost any kind and implement the necessary corrective

actions within a reasonably limited time, the more fragmented

a supply chain is, the more difficult this demonstration will

become. So far, only moderately-fragmented microcircuit

manufacturers have really achieved ESCC qualification.

Typical examples include fabless manufacturers or

manufacturers with an established partnership with external

assembly house for packaging operations.

Finally, it should be noted that significant efforts have

transformed already the ESCC 9000 specification during the

last two years. These reforms have reshaped the specification

so that its present (issue 8 of February 2016) scope for

procurement and qualification includes MONOLITHIC AND

MULTICHIP MICROCIRCUITS, WIRE-BONDED,

HERMETICALLY SEALED AND FLIP-CHIP

MONOLITHIC MICROCIRCUITS, SOLDER BALL

BONDED, HERMETICALLY AND NON-

HERMETICALLY SEALED. So the specification is not any

more addressing simpler constructions with a single

monolithic chip wire-bonded in a hermetic enclosure as it now

also includes useful requirements for the screening and

qualification of much more advanced and complex devices.

IV. BENEFITS OF QUALIFICATION

What would a manufacturer obtain in return for his efforts in

pursuing ESCC Qualification? ESCC qualified components

come with added value as potential users will see advantages

such as simplified procurement effort, robust components -

ESCC qualified components hold an impressive record of

faultless operation in thousands of space systems and, if any

faults do appear, national space agencies and ESA commit

their resources to address and fix the problems together with

the manufacturer and any affected customers, high product

21

https://escies.org/webdocument/showArticle?id=1015

maturity and low rate of obsolescence, a simplified parts

approval process – for projects complying with ECSS-Q-ST-

60C ESCC qualified products are, in the majority of cases,

pre-approved, solid performance - very high repeatability

between manufacturing lots and across manufacturers

(multiple sources may be qualified to a common standard),

proven supply chains - periodic testing and audit are inherent

to the system. In addition, qualified manufacturers operate an

open-books policy with the qualifying agencies and ESA, so

their cooperation in any problems’ resolution is guaranteed. In

terms of Quality Assurance, ESCC qualification implies third-

party independent monitoring of the manufacturer’s

operations, performed by impartial space agencies and ESA

and the ESCC Executive approves the full industrial

configuration of qualified components. In summary, a valid

ESA certificate is perceived by most space system customers

as a strong endorsement of performance and quality, which in

fact supports the customers' high level of trust and offers them

a reduced cost of ownership - as quality problems are very

infrequent with ESCC components. ESCC qualified

components are acceptable for use in all ESA satellite

missions and meet as well the requirements of most

commercial and scientific space missions.

V. SUMMARY AND ADDITIONAL CONSIDERATIONS

The ESCC system continues to adapt itself to a changing

industrial landscape and to enable the qualification of

advanced technologies and components. The activities

performed under the ESCC represent a successful example of

systematic partnership and cooperation among European

private and public entities with interests in the field of EEE

components for Space applications.

Even for cases where Qualification is not suitable or possible,

the ESCC system provides the relevant specifications which

may enable procurement, inspections and various other

Quality Assurance actions aimed at producing and testing

Space grade components. To provide recognition of

intermediate achievements on the way to full space

qualification the European Preferred Parts List (EPPL) offers

the possibility to list components which have successfully

completed an ESCC evaluation programme.

REFERENCES AND ACKNOWLEDGEMENTS

General information and the procedures and documentation

that describe the ESCC system are publicly available for

download at the ESCC website, https:spacecomponents.org

All specifications mentioned in this paper are publicly

available for download at the European Space Components

Information Exchange System website, https://escies.org

The author thanks A. Pesce and R. de Marino, at ESA

ESTEC, for their review, suggestions and inputs resulting in

this communication.

22

Scalable Sensor Data Processor: Testing and Validation

R. Pinto

a
, L. Berrojo, L. Gomez, F. Piarrette, P. Sanchez, E. Garcia, R. Trautner

b
, G. Rauwerda

c
,

K. Sunesen, S. Redant
d
, S. Habinc

e
, J. Andersson, J. López

f

a
Thales Alenia Space Spain (TAS-E), 28760 Tres Cantos, Spain

b
ESA, 2200 AG Noordwijk, The Netherlands

c
Recore Systems B.V., 7500 AB Enschede, The Netherlands

d
IMEC, B-3001 Leuven, Belgium

e
Cobham Gaisler AB, SE-411 19 Göteborg, Sweden

f
Arquimea Ingeniería, S.L.U., 28919 Leganés, Madrid, Spain

ricardo.pinto@thalesaleniaspace.com

Abstract

The Scalable Sensor Data Processor (SSDP) is a next-

generation heterogeneous multicore mixed-signal ASIC for

on-board data processing, embedding in the same chip

resources for high-performance data processing and control.

These resources are organized as a System-on-a-Chip (SoC)

together with generic and specialized interfaces for

Input/Output (I/O), as well as interfaces for data acquisition.

Test and validation of such diversity requires an adequate

prototyping platform connected to flexible Electrical Ground

Support Equipment (EGSE), which are exploited with

representative use-cases and applications. This paper details

the test and validation activities of the SSDP, ranging from

low-level interface testing up to benchmarking.

I. INTRODUCTION

Heterogeneous computing architectures are poised to be

part of next-generation on-board processing systems, due to

their appealing properties, such as flexibility and power

efficiency. The flexibility conferred by mixing different

computing architectures is undeniable, allowing the co-

existence of processing and control in the same package.

These are further enriched by a complete set of input/output

(I/O) peripherals, in a System-on-a-Chip (SoC) fashion. The

Scalable Sensor Data Processor (SSDP) is an example of such

devices, having resources for processing, control and data

acquisition in the same package. Furthermore, it has local and

networked I/O, and the capability of being connected to other

SSDP devices to scale a system towards higher performances.

Testing and validation of such devices encompasses many

different tasks, stemming from their very SoC nature. For

example, there are several I/O interfaces which require

testing, and at the same time, the interaction between these

and the processing elements must be validated. Such test and

validation requires specialized hardware in the form of

Electrical Ground Support Equipment (EGSE), with the

appropriate interfaces and test execution support.

This paper is organized in the following manner: Section

II broadly presents the SSDP architecture, its main blocks and

I/O interfaces; Section III and IV describe the prototyping

support required by the SSDP and the planned test and

validation work; Section V explains the support needed by the

testing and validation activities, as well how these are being

carried out, both at hardware and software level; and Section

VI concludes this paper.

II. SSDP ARCHITECTURE

The SSDP is a next-generation mixed-signal ASIC for on-

board data processing, with a heterogeneous multicore SoC

architecture. It embeds specialized Digital Signal Processors

(DSPs) together with a General-Purpose Processor (GPP),

being capable of delivering high-performance processing

together with reliable control. The SSDP architecture can be

divided in two major subsystems, based on their main scope:

- Processing, with the multicore DSP, large memory

and data acquisition interfaces;

- Control, with the GPP and I/O interfaces, both local

and networked

These subsystems are connected via bidirectional bridges,

translating signalling and data between them. A block

diagram depicting the subsystems and their modules is shown

in Figure 1.

Figure 1: SSDP Architecture Block Diagram

23

mailto:ricardo.pinto@thalesaleniaspace.com

The Processing Subsystem is based on Recore Systems

multicore DSP IP, containing two Xentium® fixed-point DSP

cores [1] connected to I/O interfaces and SDRAM memory

via a high-speed Network-on-Chip (NoC) interconnect. This

subsystem is oriented to data processing and contains an

internal 64 kB SRAM (Memory Tile) as well as a DMA

Controller which can be exploited to efficiently move data

between the several components. On- and Off-chip data

acquisition is possible, via dedicated bridges. Furthermore,

the ADC/DAC Bridge can double as a high-throughput 16-bit

Chip-to-Chip interface, capable of reaching 800 Mbps and

supporting flow-control mechanisms.

The Control Subsystem is based on the well-known

Cobham Gaisler LEON3 System-on-a-Chip (SoC) [2], with a

LEON3FT fault-tolerant SPARC V8 GPP connected to

SRAM and EEPROM memories and several I/O interfaces via

an AMBA bus interconnect. The I/O interfaces provided by

this subsystem are more oriented towards control, with local

I/O like SPI, I2C, PWM and GPIO among others, and

networked I/O like SpaceWire (SpW) and CAN. Furthermore,

it provides many advanced functions: house-keeping data

acquisition (HK ADC); time-keeping and distribution and

memory scrubbing, to name a few.

III. PROTOTYPING SUPPORT

The major challenge regarding prototyping the SSDP

stems from its sophisticated nature, and is related to the

amount of FPGA resources needed to integrate the two

subsystems. In order to tackle this issue, a state-of-the-art

Xilinx Kintex Ultrascale XCKU060 FPGA [3] is used, which

offers enough fabric for the SSDP machinery. The FPGA is

mounted together with all the I/O interfaces on a custom

board whose block diagram is shown in Figure 2.

Figure 2: SSDP Prototyping Board Block Diagram

The prototyping board supports all the peripherals and I/O

interfaces envisaged in the SSDP architecture. Additionally,

connectors based on the FMC standard were added, enabling

the expansion of the board functions with modules such as an

ADC or DAC devices, as well as allowing the probing of

internal signals. The architecture presented in Figure 2 was

mapped into a printed-circuit board named SSDP Prototyping

Board (SSDP-PROB), and shown in Figure 3.

Figure 3: SSDP-PROB - SSDP Prototyping Board

The specification and schematic capture of the SSDP-

PROB was performed by TAS-E. The fabrication, assembly

and test were performed by Pender Electronics.

IV. TESTING AND VALIDATION ACTIVITIES

Testing activities of the SSDP can be divided in three

classes
1
, based on the objective of the activities:

 Interface testing, where one or more interfaces are

tested, in order to assess their status of compliance to

the (individual) specification;

 Validation testing, where an application is used to

validate a system or subsystem, usually using several

interfaces;

 Benchmark testing, where an application or procedure

is used to assess the performance of a specific

component or set of components (function).

Each of these classes requires different approaches to the

testing, including different abstraction levels when designing

and implementing the test itself. However, all have a common

denominator: the need of some sort of testing support, both at

hardware and software level.

1) Interface

The testing of interfaces is a task requiring a very low

level of abstraction, for it usually deals with the hardware

itself directly. Such activities are usually characterized by

activities including configuration and status registers (read

and write operations).

Appropriate software support is crucial for this particular

activity, for it is the key to increase the level of abstraction of

1
 Radiation testing was left out on purpose, although it can be

seen as a particular case of validation.

24

testing activities. For example, having a software routine

which may perform several operations, such as a

configuration routine, may enable the design of more

powerful tests, and at the same time decrease the amount of

test steps needed.

2) Validation

A software application is executed in the SSDP, e.g.,

filtering, for validation testing activities. The resulting output

is then verified to be compliant with a reference model, e.g.

output of the same application in a modelling tool like Matlab.

Some of the envisaged validation tests are:

 Image processing, with edge-detection algorithms;

 Compression, with algorithms such as CCSDS 122;

 Operating System support, like RTEMS.

These shall be compared against known reference models

or golden results, coming from widely accepted reference

implementations or standards.

3) Benchmarking

Assessing the performance of a specific component or

function is achieved by performing benchmarking. A

benchmark is a procedure or application which can be used

across several different platforms or systems, yet allowing

having a common basis for result comparison. In benchmark

testing, an application is executed and the time it takes to

complete is evaluated. The results can be used to assess the

performance of the tested system, and compare it with others

systems. An example of a benchmark is the amount of time

needed to perform a given operation on a set of data, e.g. the

FFT
2
 on a set of 1024 samples. In the SSDP scope, the set of

benchmarks used for the NGDSP [4] will be used, in order to

assess the performance figures of the processing block.

V. TESTING AND VALIDATION SUPPORT

Testing and validation is usually performed by having a

test bench driving the testing activities, providing stimuli to a

Unit Under Test (UUT) and then observing the outputs.

Correctness is assessed by comparison with a given reference,

which can be based either on specifications of I/O interfaces,

or output of reference applications and algorithms.

With the SSDP prototyped on hardware and being the

UUT, some sort of Electrical Ground Support Equipment

(EGSE) is needed as the Test Bench, in order to provide the

necessary stimuli (I/O activities), and capture the outputs for

verification. This architecture is depicted in the block diagram

of Figure 4.

From the test bench perspective, such architecture requires

the provision of both hardware and software components, to

(electrically) interface with the UUT and at the same time to

(logically) drive the execution of the tests. From the UUT

perspective, both hardware and software support is needed:

the former is embodied by the SSDP-PROB; the latter in the

form of routines to support testing activities, which are

described later in this section, or fully-fledged validation

applications, described in the following section.

2
 Fast Fourier Transform

Figure 4: SSDP Testing Architecture Block Diagram

A. Test Bench Hardware

The test setup for the SSDP requires an integrated and

flexible EGSE platform, given the diversity of I/O interfaces

(see Figure 1). A suitable candidate is the PXI platform from

National Instruments (NI) [5], which offers the possibility to

embed in a single chassis several modular I/O interfaces,

together with the computational resources needed to support

the execution of the testing activities. A photo of the current

setup is shown in Figure 5.

Figure 5: SSDP EGSE Setup for Testing

All the (digital) I/O interfaces of the SSDP architecture are

connected to the test bench. Mixed-signal interfaces, such as

data acquisition, are emulated by resorting either to on-chip

mechanism such as a ROM memory, or to an external digital

reconfigurable I/O NI PXI module with an FPGA device.

Such module allows the emulation of mixed-signal

component’s digital interface, e.g. the digital word of an

ADC, together with the control signals. Furthermore, this

module is also used to control the UUT, by issuing signals

such as reset.

B. Software

Software support is crucial for the execution of testing and

validation activities, as can be inferred from the architecture

depicted by Figure 4. Support is required from two different

sides: test bench, with the logic driving test execution (stimuli

and UUT control); UUT, with the logic that responds to the

stimuli and control signalling, and generates output or actions

accordingly.

25

1) Test bench

The software driving the tests must provide several levels

of abstraction for the design and implementation of the tests.

A platform that provides such feature and at the same time is

capable of fully exploiting the chosen EGSE hardware

platform is NI LabView, an industry standard software w.r.t.

test design and execution.

With LabView, tests can be modelled as applications at a

high(er) abstraction level and provide support for advanced

validation scenarios, based on high-level descriptions, e.g.

emulation of a system component, like a mass memory. Such

abstraction, however, is based on low-level interfacing with

the test components, following a component-based approach,

with functions modelled as boxes being instantiated inside

other boxes (functions), as shown in Error! Reference

source not found..

2) UUT

As pointed out earlier, the UUT software will mainly

provide support for test execution, i.e. control of the UUT

hardware and stimuli response. Such support comes in the

form of the ability to process and exchange telecommands

(TCs), which are provided by the Test Bench. A diagram

depicting the modelling of a sequence of actions triggered by

a TC from the test bench down to the UUT software is shown

in Figure 7.

Despite having a seemingly simple function, the UUT

software is also capable of performing sophisticated

functions, such as data manipulation and peripheral

initialization and configuration, needed by the higher-level

functions required by the Test Bench application.

C. Resulting Architecture

The resulting test and validation architecture, including

hardware and software, is depicted in Figure 8, with some of

I/O interfaces represented. Although not depicted, the

reconfigurable I/O is also responsible for the (hardware)

control of the test activities, e.g. reset.

Figure 8: SSDP Testing and Validation Architecture

Such architecture enables the effective test of all the interfaces

of a system. Furthermore, this architecture can be reused for

Engineering Model (EM) and Flight Model (FM) testing and

validation activities, including radiation tests.

Figure 6: LabView Software Test Design and Entry

Figure 7: UUT Software Sequence Chart

26

VI. CONCLUDING REMARKS

The Scalable Sensor Data Processor (SSDP) is a next-

generation mixed-signal on-board processing ASIC, with a

heterogeneous multicore architecture for processing and

control activities, having local & networked Input/Output

(I/O) and data acquisition and conversion capabilities.

Testing of sophisticated devices like the SSDP requires an

appropriate test setup and environment, capable of providing

flexibility for the several types of testing activities. Test

activities have to be performed at several levels of abstraction,

ranging from the hardware low-level modules up to validation

as a system, and including also benchmarking activities.

SSDP prototyping is supported by a custom FPGA-based

board, with all the needed I/O interfaces, emulation of the

digital end of mixed-signal components, like ADCs. Testing

and validation activities of the SSDP are supported by a Test

Bench architecture based on National Instruments PXI

hardware and LabView software.

The same setup is used for all testing, validation and

benchmarking activities, with varying software support at the

SSDP level, thus encompassing all the required levels of

abstraction. Furthermore, Engineering and Flight Model

testing and validation can reuse the same architecture for their

activities, including radiation testing.

VII. REFERENCES

[1] Recore Systems, “Xentium® VLIW DSP IP Core - Product

Brief,” 2016. [Online]. Available:

http://www.recoresystems.com/fileadmin/downloads/Product_br

iefs/2016-1.0_Xentium_Product_Brief.pdf.

[2] Cobham Gaisler, GRLIB IP Core User's Manual, 2016.

[3] Xilinx Inc., UltraScale Architecture and Product Overview,

2016.

[4] TEC-EDP/2008.18/RT, “Next Generation Space Digital Signal

Processor Software Benchmark,” ESA, 2008.

[5] National Instruments, “PXI: The Industry Standard Platform for

Instrumentation,” 2014.

27

Session 3:

COTS based DSP Systems and Boards

28

High Performance COTS based Computer for Regenerative Telecom Payloads

O. Notebaerta, L. Barthea, O. Prieurb, J-L. Vanhovea

a Airbus Defence and Space, 31 rue des Cosmonautes Z.I. du Palays 31402 Toulouse Cedex 4, France

b Airbus Defence and Space, 1 boulevard Jean Moulin 78997 Elancourt Cedex, France

olivier.notebaert@airbus.com lyonel.barthe@airbus.com
olivier.prieur@airbus.com jean-luc.vanhove@airbus.com

Abstract
Architectural solutions for improving robustness of space
computers with regard to radiations effects enables the
development of high performance computers based on
commercial grade digital processing devices. The ESA
study HiP-CBC (High Performance COTS Based
Computer) has validated the radiation mitigation concept
to soft errors with a TRL5/6 DSP demonstrator. This
concept is now being applied for a new range of payload
processing applications such as digital signal processing
on regenerative telecom missions.

Index terms- Digital Signal Processing, Reconfigurable
FPGA, COTS based computers, Payload Data Processing,
Space radiations effects mitigation technique, HiP-CBC,
SmartIO, SCOC3

I. CONTEXT AND MOTIVATION
Commercial and scientific returns of satellite missions are

closely linked with the on-board processing capabilities of a
spacecraft. Higher on-board processing performance
capability allows for more data to be acquired and processed
in real time, thus increasing both the efficiency and the range
of applications of satellite missions.

Among the main benefits, it allows to reduce the amount
of information to be transferred to the ground segment for
exploitation, which is typically done for science or earth
observation missions. Higher processing capability also
increases on-board autonomy of a spacecraft, reducing the
need of a distant mission operation planning as well as the
delay for delivering space data products to the final customer.
At last, it enables on-board direct usage of the processed data
for advanced applications such as autonomous vision based
navigation and regenerative telecom payloads, opening the
door to new opportunities and innovations.

Using commercial off the shelf (COTS) components for
space application is a long standing idea for the space industry
[1][2][3]. Its main purpose is to take benefit from an increased
processing performance and from a better power efficiency
driven by the mass production of electronic markets, in which
the competition is fierce. With the constantly increased
performance gap between state of the art space and ground
technologies, standard COTS reprogrammable processing
devices such as multi-core processors or FPGAs achieve
today better performance than the latest space qualified
ASICs.

That is why the use of COTS based computers for high
payload processing applications has become an interesting
alternative to fully space-grade systems. However, they
generally do not fulfil space mission’s expectations mainly in
terms of radiation tolerance and thermal dissipation.

II. PROCESSING DEVICES RADIATION TOLERANCE
Radiation tolerance is usually divided into three main

categories; Total Ionizing Dose (TID) and hard errors which
result in a permanently faulty device, and soft errors resulting
in temporary faulty behaviour that can be recovered.

Over time an accumulative dose of radiation degrades the
transistors of circuits; tolerance to TID effects is therefore a
first aspect to be taken into account when using COTS
devices and must be in line with the mission requirements
(duration, orbit, shielding thickness which is constrained by
both the weight and the size of the payload budget).

Then, hard errors such as Single Event Latch-up (SEL),
Single Event Burnout (SEB), and Single Event Gate Rupture
(SEGR) may not be reversed by resetting or power cycling the
system and can lead in the worst case to the destruction of the
device. As a consequence, immunity to such effects is a
fundamental prerequisite to enable the use of COTS for space
applications.

At last, soft errors such as Single Event Upset (SEU),
Single Event Transient (SET), and Single Event Functional
Interrupt (SEFI) can be mitigated by various methods
reviewed in [4]. In this way, by using such methods for
monitoring and control of soft errors, selected COTS devices
may deliver extreme processing performance with an overall
level of reliability and availability which is fully acceptable
for a given mission.

The traditional way for implementing space on-board
computers is to achieve robustness through radiation
mitigation techniques inherent to the EEE component
technology and the processor design thus making them robust
to all radiation effects. We call these devices “rad-hard”.
But this approach induces a long and costly development
process which duration also increases the technology gap
w.r.t. commercial devices given the fast micro-electronic
technology evolution. The proposed alternative is to use
selected COTS processing devices which technology ensures
a sufficient robustness to radiation destructive effects (e.g.
TID and hard errors). We call these devices “rad-soft”.
External mitigation mechanisms for monitoring and control of

29

mailto:olivier.notebaert@airbus.com
mailto:lyonel.barthe@airbus.com
mailto:olivier.prieur@airbus.com
mailto:jean-luc.vanhove@airbus.com

the device w.r.t. non-destructive radiation effects (e.g. soft
errors) are then built within the computer system itself. There
are currently many rad-soft devices that can achieve much
higher processing performance than existing rad-hard devices.

Figure 1: “Rad-hard” and COTS “rad-soft” processing devices
features and examples.

Figure 2: COTS “rad-soft” devices can achieve much higher

performance than currently existing “rad-hard” devices.

III. SMARTIO MITIGATION CONCEPT

A. High Performance COTS based Computer
Within the framework of ESA TRP/GSTP studies devoted

to the development of High Performance COTS Based
Computers (HiP-CBC) in space applications, a generic
architecture has been defined by Airbus Defence and Space to
efficiently mitigate the erratic behaviour of commercial grade
processing devices such as DSPs, general purpose micro-
processors, or FPGAs when they are submitted to the space
radiation environment [5].

Functions for detection and management of the sporadic
errors induced by the radiation effects are developed with
standard space-grade device - called SmartIO - interfacing
with one or several high performance data processing boards
implemented with commercial processing devices.

SmartIO ranks among macro-mitigation techniques that
tackle all types of soft errors (SEU, SET, and SEFI). It is
based on an external radiation hardened unit that monitors the
execution of COTS units called Processing Modules (PMs).
The checking of the execution is performed at the I/O level,
which is used as a coarse synchronization point to facilitate

the implementation of the mitigation strategy. For that
purpose, input data are divided into processing batches, are
sent for computation of the COTS units, and results from
COTS are finally checked. In this scheme, SmartIO is always
a master while PMs are acting as slaves.

SmartIO

Processor
Module

From instrument

To platform

Memory Processor
Module

Processor
Module

COTSRad-Hard

Figure 3: HiP-CBC generic architecture using 3 processor modules
implementing the Triple Modular Redundancy (TMR) mitigation
strategy to mask potential faults/failures into one of the channels.

Voting strategy is flexible and depends on the availability
requirement of the mission:
 Hardware triplication (TMR) that allows to mask

potential faults/failures without interrupting the
processing;

 Hardware duplication (DMR) in which the duplicated
components work in parallel and allow to only detect
faults/failures;

 Time redundancy that performs the same operation
multiple times on one component to compare and
detect faults/failures.

Following this approach, the analysis of faults/failures is
straightforward. Indeed, only three scenarios have to be taken
into account:
 The PM gives an incorrect result (data corruption);
 The PM does not accept input data;
 The PM does not provide output data.
For the first case, error checking is achieved by simple

comparisons of each of the result data sets, or by computing
and comparing the digital signature (typically a CRC) of each
of the result data sets to relax memory constraints. For the
latter cases, the correctness of the execution is achieved by a
configurable watchdog timeout.

SmartIO is also linked to a fast memory used as an
intermediate buffer to support pipeline processing on a large
number of data as well as to enable a replay mode in case of
detected faults/failures.

Finally, SmartIO also brings the reconfigurable unit that is
required to safely restore the context after a soft error.
Recovery phase requires re-synchronizing the faulty channel
with healthy ones in case of hardware redundancy, which is
relatively simple for most payload applications using a coarse
synchronization at the I/O level.

30

B. HiP-CBC Concept Validation
Through the HiP-CBC study, a TRL 5/6 prototype

implementation with a SmartIO based on a SCOC3
component (SCOC3 is a Spacecraft Controller on a Chip
including a LEON3 processor with several interfaces such as
1553, CAN bus, and SpaceWire) and COTS based processing
board made around Texas Instrument TMS320C6727 DSPs
has been designed and manufactured within the frame of this
ESA project [6].

Figure 4: HiP-CBC SmartIO prototype is implemented with a

SCOC3ASIC.

This demonstrator has validated the concept and the
maturity of the so called Generation 1 of SmartIO (i.e. based
on fully mature 2015 existing technologies) which remains
limited to the coverage of applications with moderate needs in
term of data processing due to the limited bandwidth of
SpaceWire (up to 200 Mbps) and processing performance of
the SCOC3 (80 MIPS). Higher rates will be required for e.g.
on-board image, radar, or telecom signal processing with a
support of serial links in the 1-10 Gbps range such as Serial
RapidIO or the SpaceFibre currently in development.

Figure 5: DSP board developed by OHBCGS with Texas Instrument
TMS320C6727 DSPs.

Figure 6: The full HiP-CBC demonstrator.

IV. APPLICATION TO REGENERATIVE TELECOM
MISSION

A. Context
In this paper, we introduce a typical architecture of COTS

based computers that mitigates soft errors for regenerative
telecom payload applications, in which digital signal
processing needs are strongly increasing and lead to a
“technological breakthrough” for on-board payload
processing architectures.

Indeed, telecom satellites were historically mostly used as
transparent repeaters (also known as “bent-pipe” repeaters),
which only amplify uplink signals without processing.
Nowadays, telecom satellites are often made of regenerative
payloads that implement on-board demodulation, decoding,
encoding, and modulation, allowing to process incoming data
with advanced network functions such as scheduling and
packet routing, short-term and long-term storages as well as
acknowledgement and control flow features. These new
functions induce a high level of complexity in the
development of the last generation of telecom rad-hard
regenerative Digital Signal Processors. This is a typical case
for which advanced on-board processing architecture based on
the use of COTS components could help to save time to
market and overall cost with an increased flexibility.

31

B. Machine-to- Machine communications
Machine-to-Machine (M2M) communications, serving the

broader Internet-of-Things (IoT), are receiving increasing
interest. They have a very large market and growth potential,
with increasing needs in the low-cost, low data rate segment.
Complementing the ground networking through satellites is
the only solution to provide global continuous coverage
including remote and desert areas, with growing interest in
low altitude satellite constellations embarking Software
Defined Radio (SDR) payloads.

LEO satellite
system

Satellite Network
coverage (global)

End Users

Application
Server

Satellite +
Terrestrial

Unified platform

Terrestrial Network
coverage

Dual-aode
Terminal

Direct to ground
Link

Terrestrial System

Figure 7: Overview of a M2M hybrid system with a

satellite/terrestrial solution.

However, current space technologies are not adequate to
offer a competitive solution for commercial services with a
satisfactory level of quality of service. To be commercially
successful, flexible and regenerative payloads, delivering very
high performances under severe cost, size, and energy
constraints are mandatory. This is where the HiP-CBC
concept and its SmartIO comes in; “enabling access” to the
processing performances of latest COTS components based
on more power efficient silicon technologies, which is
identified as the most promising strategy. Many other
applications related for instance to data collection, spectrum
survey or air-traffic control could also benefit of such
development.

C. Generation 2 of the SmartIO
Exploring this promising technical path, Airbus Defence

and Space is currently working on an innovative architecture
of a generic Radio-Digital Processing Module (R-DSP) based
on COTS components with the Generation 2 of the SmartIO.
This development is performed with the support of ESA
through an ARTES program and CNES through the “Machine
DSP à base de FPGA COTS” R&T study.

To fulfil the requirements of a typical SDR payload, a
preliminary analysis has shown that the SmartIO function
developed in the frame of the HiP-CBC – a spacecraft
controller - is not best fitted for SDR processing. For such
applications, the instrument is actually a single or even a
multi-port RF front-end providing one or several ADC and
DAC LVDS interfaces, with a resolution of samples greater
than or equal to 8 bits. Furthermore, the nature of the
processing, with independent input and output data stream of
samples, promotes the use of a pipelined streaming
architecture for implementing the SmartIO. To achieve this, a

Radiation-Tolerant (RT) FPGA offering a sufficient number
of I/O pins and bandwidth capacity to be interconnected with
a RF front-end has been identified as the most effective
solution.

Another fundamental aspect is related to the DSP
performance of COTS devices. The PHY layer of the SDR
protocol developed for M2M communications (ranging from
low to medium data rates) requires a theoretical capacity of at
least 50 GMAC/s to process 20 MHz of cumulated
bandwidth. To satisfy these needs, COTS FPGAs have been
selected since they offer a good trade-off between
performance and flexibility.

Among the different types of FPGA technologies, SRAM-
based FPGAs – in which both the configuration and the
application layers are based on SRAM cells – have been
chosen for several reasons. As summarized in Table 1, each
FPGA technology comes with its strengths and weaknesses.
SRAM-based FPGAs provide the most powerful devices in
terms of throughput and capacity and are the only type of
FPGAs to support online reconfiguration feature. In the
context of SDR payloads, flexibility to support multi-missions
and upgrades being a major asset, this technology is obviously
the most promising.

However, SRAM-based FPGA is also the most sensitive
technology to soft errors, mostly because of the nature of the
configuration memory based on SRAM cells. On the contrary,
flash and anti-fuse based FPGAs provide better intrinsic
resistance since their configuration memory is soft error
immune, but lack behind in performance and capacity due to
the use of old CMOS processes; respectively 65 nm and 150
nm compared to 16 nm for latest SRAM-based FPGAs. A
significant gap in the electronic world!

Nevertheless, this weakness can largely be compensated
by the efficiency of the SmartIO mitigation technique, in
which the availability is scalable and can be adapted by
choosing the appropriate voting strategy thanks to a modular
architecture.

Table 1: Comparison of FPGA technologies (2016)

Feature Anti-fuse Flash SRAM
Reprogrammable No Yes but

limited Yes

Volatile
Configuration No No Yes

Online
Reconfiguration No Not

Recommended Yes

Capacity Low Medium Very High

DSP Performance Low
(125 MHz)

Medium
(350 MHz)

Very High
(700 MHz)

Soft Error
Sensitivity

Low to Very
Low

Medium to
Low High

TID Tolerance High Low to
Medium High

The resulting architecture for COTS based computer for

regenerative telecom payload is depicted in the following
picture (Figure 8).

32

SmartIO
(RT-FPGA)

SRAM
FPGA

Memory SRAM
FPGA

SRAM
FPGA

COTSRad-Hard

 SpaceWire

RF
Front-End

To Payload Network
or ICU

Figure 8: R-DSP architecture based on RT-FPGA for the SmartIO
and 3 SRAM FPGAs for PMs.

In this scheme, SmartIO function is implemented using a
RT anti-fuse FPGA while commercial SRAM FPGAs are
used to implement the high processing layer of the R-DSP
module. A non-volatile memory is used to store multiple
bitstreams that contain necessary information for the
configuration of SRAM FPGAs for a given mission. Since the
SRAM FPGA configuration memory is volatile, this is
required each time the R-DSP is activated. This is also
necessary for the recovery phase when a soft error has been
detected by the SmartIO. The configuration port of PMs is
driven by the SmartIO FPGA, to ensure the correctness of the
programming. At last, a SpaceWire link is also part of the
design to provide a standard interface between the SmartIO
and the rest of the payload network.

V. CONCLUSION
The use of commercial electronic components in space

avionics is becoming an attractive solution for high
performance payload processing applications, in which
availability and reliability requirements can be achieved
through the use of different design mitigation schemes. The
growing performance gap between the commercial electronic
components and the space grade components suggests that
COTS based computers are a strategic research topic for space
on-board data processing and avionics. Several studies with
ESA, CNES, and other national agencies have explored this
way at computer architecture level as well as for high
performance processing COTS devices and technologies. This
paper has introduced the development by Airbus Defence and
Space of an advanced COTS based computer architecture
based on FPGA technologies enabling flexible and high
performance SDR data processing in future space
applications. A TRL 5/6 demonstrator is expected at the end
of the 2016 year.

VI. REFERENCES
[1] David Jameux, Application of the Payload Data Processing and

Storage System to MOSREM Multi-Processor On-Board System
for Robotic Exploration Missions. DASIA 2003. Proceedings of
the Data Systems in Aerospace Conference, Prague, Czech
Republic, June 2003.

[2] H. Klemm & L. Werner, Experience with High Performance
COTS Processors for Future Space Payload Applications.
DASIA 2006. Proceedings of the Data Systems in Aerospace
Conference, Berlin, Germany, May 2006.

[3] Christophe Honvault, Olivier Notebaert. Prototyping a Modular
Architecture for On-Board Payload Data Processing. DASIA
2007. Proceedings of the Data Systems in Aerospace
Conference, Naples, Italy, May 2007.

[4] Michel Pignol. 2010. COTS-based Applications in Space
Avionics. DATE ’10 Proceedings of the Conference on Design,
Automation and Test in Europe, Dresden, Germany, March
2010.

[5] Olivier Notebaert, John Franklin, Vincent Lefftz, Jose Moreno,
Mathieu Patte, Mohsin Syed, Arnaud Wagner. Way forward for
High Performance Payload Processing development. DASIA
2012 – Proceedings of the Data Systems in Aerospace
Conference, Dubrovnik, Croatia, May 2012

[6] Mathieu Patte, Olivier Notebaert 2015. Enabling technologies
for efficient high performance processing in space applications.
EUCASS 2015 - 6th European Conference for Aeronautics and
Space Sciences, Krakow, Poland, July 2015

33

SpaceWire and SpaceFibre Interconnect for High Performance DSPs

S.M. Parkesa , B. Yub, A. Whyte b, C. McClements b, A. Ferrer Florit b, A. Gonzalez Villafranca b,

aUniversity of Dundee, Dundee, DD1 4EE, UK

bSTAR-Dundee, Dundee, DD1 4EE, UK

s.m.parkes@dundee.ac.uk

Abstract

STAR-Dundee with the University of Dundee has recently

designed several high performance DSP units each using

SpaceWire or SpaceFibre interfaces to provide an input/output

performance in-line with the capabilities of the specific DSP

processor.

The first DSP unit is for the High Processing Power

Digital Signal Processor (HPPDSP) project, which is an ESA

funded project led by AirbusDS with STAR-Dundee Ltd and

CG Space. It aims to build a high performance, programmable

DSP processor suitable for spaceflight applications. STAR-

Dundee was responsible for the hardware, FPGA and low

level software development. The HPPDSP is designed around

the TI TMS320C6727B processor which is available as a

space qualified part. The DSP processor connects to external

SDRAM via its EMIF (external memory interface) bus.

Peripherals that are directly controlled by the DSP processor

are attached to the EMIF bus via an FPGA. Other peripherals

that are able to access DSP memory and registers in parallel

with the DSP processor are attached to the UHPI (Universal

Host Processor Interface) bus of the DSP processor via the

FPGA. A board has been designed incorporating the

TMS320C6727 processor, SDRAM memory and a Xilinx

Virtex 4 FPGA. The FPGA includes EDAC for the SDRAM

memory, memory management, SpaceFibre and SpaceWire

interfaces, and other general purpose interfaces. A high

sample rate ADC/DAC interface is also included.

The second DSP project is a high performance FFT

processor for a THz Radiometer. Implemented in various

FPGA technologies this Wideband Spectrometer (WBS) is

able to perform 2k point complex FFTs at a sample rate of

around 2.4 Gsamples/s in radiation tolerant technology, a total

processing power of more than 200 GOPS. Each FFT board

processes a 2 GHz wide band to a resolution of around 3

MHz. SpaceWire is used to gather the data from several of

these spectrum analysers to handle up to 12 GHz bandwidth.

The third DSP project is the Ramon Chips RC64 Many

Core DSP processor, where STAR-Dundee provided the

SpaceWire and SpaceFibre technology for this very powerful

programmable DSP processor.

The paper focuses on the HPPDSP architecture, the FPGA

design and the board design. It will give an overview of the

WBS system and present the latest implementation of this

high performance DSP system. A brief summary of the RC64

processor will be provided. In each case the role of SpaceWire

and SpaceFibre in the different systems will be described.

I. SPACEFIBRE

SpaceFibre [1] [2] is a very high-speed serial data-link and

data-handling network technology designed by the University

of Dundee (UoD) and STAR-Dundee (STAR), which

supports high data-rate payloads. SpaceFibre operates over

fibre-optic and electrical cable and provides data rates of 2.5

Gbits/s in current radiation tolerant technology. It aims to

complement the capabilities of the widely used SpaceWire

on-board networking standard [3][4][5]: improving the data

rate by a factor of 12, reducing the cable mass by a factor of

two and providing galvanic isolation. Innovative multi-laning

improves the data-rate further to tens of Gbits/s. SpaceFibre

provides a coherent quality of service (QoS) mechanism able

to support priority, bandwidth reservation and scheduling. It

also provides fault detection, isolation and recovery (FDIR)

capabilities. SpaceFibre enables a common on-board network

technology to be used across many different mission

applications resulting in cost reduction and design reusability.

SpaceFibre uses the same packet format as SpaceWire,

enabling simple connection between existing SpaceWire

equipment and SpaceFibre. The SpaceFibre interface is

designed to be implemented efficiently, requiring

substantially fewer logic gates than other interface

technologies like Gigabit Ethernet and Serial RapidIO.

SpaceFibre is currently being prototyped and designed into a

range of on-board processing, mass memory and other

spacecraft applications by international prime, equipment and

chip manufacturers.

II. HPPDSP

The HPPDSP processor board is shown in Figure 1 and a

block diagram of the board and FPGA is given in Figure 5 at

the end of this paper.

Figure 1: HPPDSP Prototype Unit

34

mailto:s.m.parkes@dundee.ac.uk

A. HPPDSP Overview

The HPPDSP board uses the TI TMS320C6727B DSP

processor [6], which is Texas Instruments' high-performance

32-/64-bit floating-point digital signal processors. It has on-

chip RAM and ROM as unified program/data memory, and

for external memory it has External Memory Interface

(EMIF) which supports a single bank of SDRAM and a single

bank of asynchronous memory. The Universal Host-Port

Interface (UHPI) is a parallel interface through which an

external host, i.e. Control FPGA, can access memories on the

DSP. The Control FPGA is a Virtex-4 device.

The DSP can boot either directly from a FLASH-based

boot PROM, or over a SpaceWire/SpaceFibre interface

accessing other resources on a network. The PROM stores the

boot and DSP program data, which can be uploaded from a

SpaceWire/SpaceFibre network. A simple Error Detection and

Correction (EDAC) technique is utilised to protect data in the

PROM. These functionalities are covered by the Boot

Management module.

For fast access to program and data, a 32-bit wide large

SDRAM memory block is attached to the EMIF interface. An

EDAC function is also included, inside Memory Management

module, to protect data integrity in the SDRAM memory,

which is susceptible to SEU events. The Memory

Management also controls which SDRAM regions are

allowed for a task to access. When a task performs an access

to a region which is not allowed, the SDRAM data masks are

turned on to prevent further data access.

The Memory Management module has control over the

DMA Bus B, from which it can access DSP memory via a

DMA controller. It also can access the DSP peripheral Bus,

which allows the DSP processor to access various memory

mapped registers, along with Slave Access and Checker

modules. The Slave Access and Checker Modules are used to

exchange information and share memory data between the

primary HPPDSP unit and the redundant HPPDSP unit when

necessary. Both the Slave Access and Checker modules have

access to an RMAP Initiator attached to SpaceFibre

Master/Slave interface, so can start a RMAP transaction to the

other unit of the Master/Slave pair.

SpaceFibre interface 1 and SpaceFibre interface 2, each

have four Virtual Channels (VCs). VC0, connected to a

RMAP Target accessing the Configuration Bus, is used to

configure/control all modules attached to this Bus, which

includes configuring the SpFi and SpW operating parameters.

The rest of VCs, from VC1 to VC3, are connected to DMA

Bus A for DMA data in-to/out-of DSP memory via the DMA

controller. These two SpaceFibre interfaces can be configured

to work as a prime/redundant pair to achieve dual redundancy.

The SpaceFibre Master/Slave interface has eight VCs.

VC0 is used for configuration/control purposes. The rest of

the VCs, from VC1 to VC7, are connected to DMA Bus A for

sending a copy of any incoming IO data stream to the slave

HPPDSP unit.

All these SpaceFibre interfaces use STAR-Dundee

SpaceFibre Codec IP, which has direct interface to connect

with an external serialiser/de-serialiser (SerDes) device, i.e.

TI TLK2711[7] in this design.

There is a five port SpaceWire Router on the Control

FPGA, with two external SpaceWire ports and three internal

ports. Two of the internal ports are connected to DMA Bus A

for DMA data in-to/out-of DSP memory, and the other

internal port is connected to an RMAP Target accessing the

Configuration Bus so that it can configure or control modules

attached to this Bus.

There are many occasions where the Control FPGA needs

to interrupt the DSP processor, for instance when a data error

is detected by the EDAC circuit for SDRAM data and the

error is not a one-bit error i.e. not self-correctable. All

interrupts are gathered from their sources and then an

interrupt signal is connected to a pin of UHPI interface which

can be configured as an interrupt input pin to the DSP

processor.

B. SpaceWire Router

A five port SpaceWire router is provided on the HPPDSP

unit. It has two SpaceWire ports (ports 1 and 2), two ports

connected to the DMA Bus A inside the Control FPGA (ports

3 and 4) and a configuration port (port 0) connected to the

Configuration bus inside the Control FPGA. If nominal and

redundant ports are required the two SpaceWire ports may

each be given a nominal and redundant external LVDS

driver/receiver. The SpaceWire Router is illustrated in Figure

2.

Figure 2: SpaceWire Router

The two SpaceWire interfaces are connected to a routing

switch as ports 1 and 2. Ports 3 and 4 are attached to pairs of

VCBs which are connected to the DMA Bus A. Port 0 is

attached to an RMAP Target attached to the Configuration

Bus. Configuration of the SpaceWire interfaces (e.g. link

speed) and router (e.g. routing tables) is performed over the

Configuration Bus. They can therefore be configured by any

of the SpaceFibre or SpaceWire interfaces.

C. SpaceFibre Interfaces

There are three SpaceFibre interfaces on the HPPDSP.

Two of them, SpFi 1 and SpFi 2, are for connecting to

instruments or other HPPDSP units operating in parallel. Each

of these SpaceFibre interfaces has three VCs that can be used

for data transfer to/from DSP memory. These VCs are

connected to the DMA Bus A. A fourth VC is used for

configuration/control purposes and is connected to an RMAP

Target that is attached to the configuration bus. The VC

SpW
CODEC

ROUTING
SWITCH

DMA
BUS
I/F

wr addr

rd addr

data

wr

rd

DMA
Bus
A

DMA
Requests

Configuration
Bus

SpW
Interface

SpW
CODEC

SpW
Interface

VCB out

VCB in

VCB out

VCB in

RMAP
TARGET

0

1

2 3

4

35

attached to the RMAP Target provide a means of configuring

the HPPDSP system remotely over SpaceFibre.

The SpaceFibre interfaces use external SerDes devices (TI

TLK2711) which are available in space qualified version.

A block diagram of the SpaceFibre interfaces is given in

Figure 3.

Figure 3: SpaceFibre Interface Block Diagram

D. DMA Controller

The DMA Bus interface connects the DMA Bus A to the

input and output VCBs in the SpaceFibre interface. When

writing to a SpaceFibre interface the output VCBs are

addressed. When reading the input VCBs are addressed. The

output VCBs are multiplexed by the MUX into a single

stream of SpaceFibre data frames into the SpaceFibre

CODEC. The SpaceFibre CODEC encodes the data frames,

adding any link control characters that are required and passes

the resulting symbol stream to the external SerDes for 8B/10B

encoding and transmission. Symbols received from the

SerDes device are passed to the SpaceFibre CODEC and the

data frames are extracted and passed to the DEMUX for

writing into the appropriate input VCB. The data in the input

VCBs are taken out when the DMA Controller reads the

VCB.

There is an input and output pair of VCBs that are not

attached to the DMA Bus A. These are connected to an

RMAP Target and used for configuring and controlling the

HPPDSP unit.

SpFi 1 and SpFi 2 each have four pairs of VCBs (three

attached to the DMA Bus A and one pair to an RMAP Target)

and SpFi M/S has eight pairs (seven attached to the DMA Bus

A and one pair to an RMAP Target).

The DMA Controller takes DMA requests from DMA Bus

B, for a small amount of data access at any memory location.

The DMA Controller also manages transfer of data from

the SpaceFibre, SpaceWire, to and from DSP memory. It does

this under control of the DSP i.e. the DSP processor

determines where in DSP memory the data is to be placed and

how much data is to be read in a burst.

In a Master HPPDSP unit, the DMA Controller copies the

data being read to the SpaceFibre master/slave interface. This

is done at the same time as the data is being read out of one of

the interface by the DMA controller by providing a concurrent

write strobe and IO write address that specifies where the data

is to be copied to. In this way the data is read from one of the

interfaces, written to DSP memory and concurrently written to

the SpaceFibre master/slave interface for transferring to the

slave HPPDSP.

For Slave unit, the DMA Controller accesses the

SpaceFibre master/slave interface in place of the SpaceFibre,

and SpaceWire interfaces. It DMAs data from VCBs in the

SpaceFibre master/slave interface as if it were coming from

VCBs in the SpaceFibre, SpaceWire interface. For slave unit,

if the DSP processor requests to write data to a SpaceFibre or

SpaceWire interface via the DMA Controller it simply

discards the information.

The DMA Controller contains several channels each

channel may be programmed by the DSP processor to perform

the required data transfer.

III. FFT PROCESSOR

In this section the FFT Processor being developed for the

THz Radiometer is described. A block diagram of the FFT

Processor is provided in Figure 4. The FFT Processor system

comprises a Control Processor board and one or more FFT

Processor boards.

A Control Processor which is responsible for controlling

the FFT Processor, gathering data from the FFT boards

formatting that data and sending it to the downlink telemetry

system. The control processor board uses an ARM Cortex-M1

processor chip implemented on a Microsemi RTG4 FPGA.

This FPGA comprises an ARM Cortex-M1 processor, on-chip

memory, an off-chip memory interface, three SpaceWire

protocol engines which offload the processor from

communication intensive tasks, a SpaceWire router with eight

external ports, and various other input/output interfaces

including SPI. EDAC protected DDR memory will be

provided on the processor board. A reference clock generator

and reset distributor will be included on the Control

Processor. The reference clock will be a 10 MHz low jitter

reference clock. The reference clock generator will be

configured by the ARM processor on the RTG4 FPGA via an

SPI interface. The processor board is connected to each FFT

board via separate SpaceWire link, reference clock and reset

for each FFT board.

One or more FFT boards that take in analogue signals

sampled by two ADC chips at 2.4 Gsamples/s and compute

the power spectrum of those signals. This board is controlled

by the control processor via a SpaceWire link and passes

accumulated power spectra back to the control processor via

that SpaceWire link. Each FFT board can be programmed to

process 2 GHz bandwidth signals acquired using the two

ADCs as an in-phase and quadrature pair, or to process 1 GHz

bandwidth signals acquired separately as real signals from

each ADC. Each FFT board contains its own voltage

controlled crystal oscillator (VCXO) and clock

generation/distribution chip. This allows for very low jitter

SpFi
CODEC

MUX

VCB out

VCB out

VCB out

…
…

VCB in

VCB in

VCB in

DMA
BUS
I/F

wr addr

DMA Req

rd addr

data

wr

rd

DMA
Bus
A

…
…

DMA
Requests

Direct
VCB
Interface

SpFi
SerDes
Interface

DEMUX

36

clock generation with the ADC clocks being locked to the 10

MHz reference signal from the Control processor board.

The number of FFT board can be adjusted to help trade-off

bandwidth vs power consumption. The prototype system will

have one FFT board owing to the cost of components.

IV. RC64

The RC64, is a novel rad-hard 64-core digital signal

processing chip, with a performance of 75 MACS, 150 GOPS

and 38 GFLOPS (single precision) and low power

consumption, dissipating less than 10 Watts. The RC64

integrates sixty-four advanced DSP cores, a hardware

scheduler, 4 MBytes of multi-port shared memory, a

DDR2/DDR3 memory interface, and twelve 3.125 Gbps full-

duplex, high-speed SpaceFibre serial links, four of which can

also support serial Rapid IO.

The RC64 architecture is illustrated in Figure 6. A central

scheduler assigns tasks to processors. Each processor executes

its task from its cache storage, accessing the on-chip 4MByte

shared memory only when needed. When task execution is

done, the processor notifies the scheduler, which subsequently

assigns a new task to that processor. Access to off-chip

streaming channels, DDR2/DDR3 memory, and other

interfaces happens only via programmable DMA channels.

This approach simplifies software development and it is found

to be very useful for DSP applications, which favour

streaming over cache-based access to memory. Hardware

events, asserted by communication interfaces, initiate

software tasks through the scheduler. This enables high event

rates to be handled by the many cores efficiently.

Shared Memory

M M M M M M M M

SpFi DDR2/3 AD/DA SpW NVM

DMA

D
SP

D
SP

D
SP

D
SP

D
SP

D
SP

D
SP

D
SP

$ $ $ $ $ $ $ $

Scheduler

M
O

D
EM

EN
CR

PT

Figure 4: RC64 Architecture (only 8 DSP processors are shown)

The RC64 is implemented as a 300 MHz integrated circuit

on a 65nm CMOS technology, assembled in a hermetically

sealed ceramic CCGA624 package and qualified to the

highest space standards. Supported communication

applications include frequency multiplexing, digital beam

forming, transparent switching, modems, packet routing and

higher-level processing.

V. CONCLUSIONS

This paper described the use of SpaceWire and SpaceFibre

to provide input and output facilities for high performance

DSP systems. Three examples are provided: the ESA funded

High Processing Power DSP (HPPDSP) which uses a

radiation tolerant DSP from TI, a spectrometer which

implements a high performance FFT in an FPGA, and the

Ramon Chips RC64 Many Core programmable DSP which

incorporates 12 SpaceFibre interfaces.

VI. REFERENCES

[1] S. Parkes, A. Ferrer and A. Gonzalez, “SpaceFibre Standard”,

Draft H, August 2015.

[2] S. Parkes et al, “SpaceFibre: Multi-Gigabit/s Interconnect for

Spacecraft On-board Data Handling”, IEEE Aerospace

Conference, Big Sky, Montana, 2015.

[3] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008, available from

http://www.ecss.nl.

[4] S. Parkes, P. Armbruster and M. Suess, “SpaceWire On-Board

Data-Handing Network”, ESA Bulletin, Volume 145, pp 34-45,

February 2011.

[5] S. Parkes, “SpaceWire Users Guide”, ISBN: 978-0-9573408-0-

0, STAR-Dundee, 2012.

[6] Texas Instruments, “TMS320C6727B Floating-Point Digital

Signal Processors – Data Sheet,” SPRS370E, September 2006.

[7] Texas Instruments, “TLK2711A 1.6 TO 2.7 GBPS

TRANSCEIVER”, SLLS908A, September 2009.

37

DSP
Program/Data

SDRAM

EDAC Parity
SDRAM

UHPI I/F

IO
DMA

RA
DMA

SpFi 2 RMAP
TARGET

req

SpFi M/S RMAP
INITIATOR

req

ADC/DAC
FIFOs

req

SpW
Router

req

RMAP
TARGET

5

1

2 3

4

Boot Mgmt
FLASH EDAC

req

SCRUBBER FIFO

SEU
SIM

EDAC

MMU

ASYNC
I/F

INTR

DSP
RESET

CHECKER

Memory
Mapped

Registers &
DSP Task
Control

Watchdog

Time Mgmt

LCD Display

Power Control

V & T Monitor

GPIO

External Intr

LEDs

Shared
RAM

FLASH
Boot PROM

FLASH
FPGA PROM

intr

intr

intr

intr

intr

Data
Mask

JTAG

req

Immediate Scrub
Location + Data

Control
FPGA

RMAP
TARGET

IO
DMA
Bus

Configuration
Bus

Slave
Access Bus

DSP
Peripheral

Bus

intr

Slave Access

intr

EMIF bus

UHPI Reset

FLASH
Programme

intr

JTAG

EMIF SDRAM
Write Monitor

User EEPROM

ADC/DAC, SpFi,
IO/RA DMA,

Boot Mgmt, …

EMIF
SDRAM IF
Decoder

Figure 5: Block Diagram of HPPDSP FPGA Architecture

REF_CLK &
SYSRESET
DISTRIB.

I1 Q1 I2 Q2 I3 Q3 I4 Q4REF
CLK

R1 R2 R3 R4 R5 R6 R7 R8

Complex Inputs:

Real Inputs:

ARM
Cortex-M1
Processor

MEM

MEM

SpW
Nom.

SpW
Red.

SpaceWire
+ Triggers

SPI

PSU

5V Power

Power

Backplane

REF_CLK + SYSRESET

FFT
FPGA

ADC ADC

CLK
GEN

FFT
FPGA

ADC ADC

CLK
GEN

FFT
FPGA

ADC ADC

CLK
GEN

FFT
FPGA

ADC ADC

CLK
GEN

Figure 6: WBS V Architecture

38

Session 4:

DSP Day Reception and Poster Session

39

CHARACTERIZATION AND QUALIFICATION OF MICROCONTROLLERS AND

DSPs IN EXTREME TEMPERATURES

F. Dozolme, R. Guetard, P. Lebosse, A. Pastre
E² Lab, THALES Communications & Security, Toulouse, France

Abstract

Microcontrollers and DSPs are key components of
embedded systems for most applications (space,
avionics, industry…). The reliability of these
components has to be asserted to ensure the correct
working of the system for the duration of its mission
while preserving its performances.

Designers are currently greatly tempted to use
commercial components for their applications; they are
easier to use and buy while providing higher
calculation performances. However, these components
generally have not been tested in extreme
environments.

From these facts, it seems mandatory to consider the
importance of testing microcontrollers and DSPs
before employing them in space applications, or any
other application that comes with an extreme
environment. That is the reason why the electrical test
and reliability team of THALES Communications &
Security worked on the subject.

THALES holds a partnership with CNES in regards to
expertise and failure analysis of electronic components.
They share the ITEC-laboratory at the Toulouse Space
center.

This document summarizes test methods and shows
some results in regards to testing and qualification of
microcontrollers and DSPs in high temperatures.

I. Characterization

A. TEST METHOD

Characterization tests were performed on a few
components to quantify performance and behavior
drifts relatively to temperature. In order to obtain the
most precise and repeatable measurements, the part
under test is mounted on a daughter board plugged into
an ATE (Automatic Test Equipment). High
temperature environment is achieved using an air
stream temperature forcing system (see picture below).

Figure 1: Mutest ATE with ThermoStream to characterize
components

A firmware including several test scenarios is
programmed into the device. The ATE then orders the
component to perform the various test scenarios with
voltage, clock frequency, and temperature variations.
More exactly, the following parameters can be tested:

• Core functionalities (boot sequence, multi-
core communication, voltage supervisor,
interruption)

• Clock structure (internal clocks, external
clocks, PLL, timers)

• Processing modules (ALU, FPU, TMU)

40

• Internal memory (volatile and non-volatile,
user and program memory)

• Peripheral communication modules (ex:
UART, SPI, I2C, CAN, Ethernet)

• Analog blocks (ADC, DAC, comparator,
PWM)

• Operating and low power consumption modes
• I/O characteristics (leakage current, input and

output voltage)

B. PARAMETERS EVOLUTION

1) ELECTRICAL CHARACTERISTICS

A) CURRENT LEAKAGES

This type of parameter is an image of the evolution of
package & chip materials along with temperature.
There are actually four parameters to monitor:

• IIL: Input leakage current (low)
• IIH: Input leakage current (high)
• IOZL: Output leakage current (low)
• IOZH: Output leakage current (high)

The chart below shows these variations according to
temperature.

Figure 2: Leakage Currents against Temperature

On this particular part, leakages show a considerable
increase between 25°C and 150°C. It indicates serious
internal modifications that could affect the
component’s performances (consumption, maximal
frequency, voltage threshold).

B) OUTPUT VOLTAGES

The output voltage of the component can vary too.
Typically, Output Low Voltage (VOL) increases with
temperature while Output High Voltage (VOH)
decreases.

Figure 3: Output Voltages against Temperature

This behavior can be accentuated depending on the
load current of the output pin. In this example, Output
Low Current (IOL) and Output High Current (IOH)
were set to 100uA; which explains why the relative
voltage variations are low (45mV).

In the end, with small enough current loads on the
DSP’s output pins, this part should remain able to drive
data to other digital chips on the same system (external
memory, different processor, communication driver
…).

C) INPUT VOLTAGES

To communicate with other digital chips, it is
important to determine whether the DSP is able to
understand a correct data on its inputs.

The behavior of electronic cells voltage threshold in
regards to temperature is well known; the threshold
values are expected to rise as temperature increases.

That is why Input low Voltage (VIL) and Input High
Voltage (VIH) parameters are to be monitored too.

Figure 4: Input Voltages against Temperature

In this case, variations are relatively small, which
indicates that the DSP studied should be able to
correctly understand data on IO pins.

However, the study of input and output voltages isn’t
sufficient to ensure that the DSP can communicate
properly with external systems.

41

D) IO FREQUENCY

The highest frequency at which the chip’s output pins
can function has its importance in regards to the use of
its communications modules. To determine if there has
been any degradation, a comparison is made between
one IO pin set to a given frequency and another IO pin
set to a division of the first frequency.

Figure 5: Output frequencies of two DSP IOs against
Temperature

The frequency of the output with division does not
vary, while the one without division is not able to drive
the proper frequency over 100°C. It means that the
reference clock used does not change with temperature
but the highest output frequency of an IO decreases as
temperature goes up.

This fact means that the effective communication rate
of the DSP with other digital chips is affected by
temperature. This information is critical for the global
design space systems because DSPs have to
communicate before processing (to get data to
compute) and after processing (to save data on external
memories or transfer it to other units).

E) CURRENT CONSUMPTION

One of the most critical parameter very sensitive to
temperature is current consumptions

Figure 5: Current consumption of tested
microcontroller in low power mode against

Temperature

The chart above shows component consumptions in a
low-power mode at different power supply voltages
(2.5V and 3.3V) across temperature.

The high increase around 200°C corresponds to a low
power mode functionality break, with currents reaching
normal run mode levels.

This result can lead designers to choose one specific
supply voltage level (here 3.3V rather than 2.5V) in
order to get best robustness versus temperature.

F) INTERNAL VOLTAGE
REGULATOR

Several component characterizations have confirmed
an increase of the minimum operating supply voltage at
high temperature.
.
This phenomenon can be linked with the negative trend
of regulator outputs across temperature, as shown on
the graph below.

The application report “Understanding the Terms and
Definitions of LDO Voltage” [2] mentions this
particular behavior relative to voltage regulators.

Figure 6: Regulator output voltage vs output current
draw

This phenomenon is also observed on internal
“Analog-to-Digital” module characterization.

The graph below plots the ADC output code converted
from a stable input voltage (VCC/2), using the internal
voltage regulator as voltage reference:

Figure 7: ADC measurements with internal reference
against Temperature

42

On the other hand, performing the same test with an
external reference gives stable result up to at least
190°C. In the case of the internal reference, the ADC
output code increase at high temperature comes from a
negative drift of the voltage reference. What’s more,
the higher the voltage supply, the higher the ADC code
gets.

It goes without saying that these examples are only a
few among other parameters to show both functional
and parametric behavior changes along with
temperature.

2) CLOCK ARCHITECTURE

A good processor’s clock architecture is important to
ensure equal performances in each environment
relative to the application.

The core clock has to remain stable (particularly so for
DSPs) in order to maintain homogeneous calculation
performances. Peripheral clocks also need to remain
stable so as to allow communications modules to work
properly.

A) INTERNAL OSCILLATORS

DSPs and microcontrollers often integrate on chip
oscillators. They can be used to generate clocks for the
cores and the various peripherals.

Figure 8: Low Frequency Internal Oscillator against
Temperature

The figure above displays the results of a study
performed on a 32.7 kHz low frequency internal
oscillator. The part was submitted to two voltage
polarization settings and various temperatures.

A lower voltage clearly leads to a slightly lower
frequency and a steeper degradation curve of the
generated frequency as temperature goes up.

The performance degradation due to temperature being
similar for both configurations, it can be inferred that
internal oscillators are not stable with temperature and

that it may be safer to use dedicated external oscillators
providing better performances.

B) PLL

PLLs are often integrated on processors to allow
designers to improve timing performances. A
degradation of a PLL’s characteristics with temperature
would then considerably impact the performances and
functionalities of its associated processor.

Figure 9: PLL multiplication factor against
Temperature

In a given DSP, a PLL was set to generate a clock
multiplied by 2920 while monitoring the real
multiplication value. A little difference can be
observed between expected and real multiplication
factor as the component voltage varies. A degradation
(-0.1%) is also noticeable as temperature increases.

Even though the variation does not look so significant
in this case, this behavioural change of a PLL element
could very well prove to be more important for
different processors.

3) INTERNAL FLASH MEMORY

Internal user flash memories inside microcontrollers
can be used to save data without using an external
memory and to protect it against unplanned chip
reboots. However, as for other specific flash memories,
the ones embedded in DSPs show decreases of timing
performances with temperature, as shown in the chart
below.

43

Figure 10: Integrated flash memory timings against
Temperature

Performed with 1kB data packets, this test shows a
clear increase of the time needed to write or erase a
sector of the embedded flash memory.
In this light, the use of the flash memory could have an
effect on the maximum time needed by the DSP to treat
data, even if its calculation modules were to maintain
their performances at all temperatures.

Given that the processor’s instructions are mainly
stored inside this memory, the program’s execution
may not be safe if the core is fed a clock frequency too
high for the high temperature flash memory timings.

II. Qualification

A. AGEING METHOD

Assessing the functional configurations of the device
under test is one thing, ascertaining its ability to remain
in working conditions for the duration of its application
is yet another.

As for the characterization, several scenarios are
implemented into the embedded firmware. A digital
sequencer outside the oven continuously and
sequentially calls all scenarios executed by the devices
under test inside the oven.

Figure 11: SANSA architecture

This homemade system is named SANSA, which
stands for Solution to Activate Numerical Systems for
Ageing. Its aim is to simulate as well as possible the

working conditions of the devices under test (extreme
environment for thousands of hours).

Such a testing methodology allows the quantification
of drifts over time of both parametric and functional
performances of the tested parts.

B. POSSIBLE FAILURES

1) PROGRAM MEMORY RETENTION

A critical parameter to monitor during such an ageing
test is the complete retention of the program memory
embedded in the DSP. Data corruption might reach
error rates that cannot be compensated by correction
algorithms such as ECC.

The JEDEC standard JESD218 [3] defines the decrease
in retention time capabilities of a typical FLASH
memory in regards to temperature by using models
from the JEDEC standard JEP122G [4]. For example,
the Arrhenius equation can be used to compute the
acceleration factor due to a temperature increase, and
to get an estimation of the retention degradation caused
by temperature.

2) INTERMETALLIC BREAKING

Gold-Aluminum intermetallics are compounds used in
semiconductors to connect bonding wires to chips.
Those connections can be seriously damaged by
sudden temperature changes, which, by instance, can
happen in some space environments. It is then
important to ensure a component’s robustness before
selecting it.

This type of phenomenon can be successfully
reproduced by performing thermal shocks in ovens (for
example, between -55°C and +125°C). The picture
below features a semiconductor which, after a couple
hours of cycling test, shows intermetallic compounds
failures.

44

Figure 12: Intermetallic failure on a chip’s pad

On this picture, compound is formed between the wire-
bond and the pin, and may cause the failure. It
happened after 2000 hours at 225°C.

3) DEEP-SUBMICRON TRANSISTOR
FAILURES

After stress activation on DSPs during a few hours in
extreme temperature conditions, it is possible to
observe several kinds of failure on its MOS transistors:

• HCI (Hot Carrier Injection): In MOSFETs,
this phenomenon occurrs when electrons are
trapped into the gate dielectric after their
injection from substrate. This induces changes
in the transistor’s characteristics, such as
voltage threshold, current leakage and
maximal switch frequency, so it impacts
considerably a DSP’s performances and its
mission.

• TDDB (Time Dependent Dielectric
Breakdown): It occurs when a short-circuit
appears between the transistor’s gate oxide
and the substrate. It causes transistor
breakdown, and may impact the workings of
all of the DSP’s sub-modules along with its
cores.

• NBTI (Negative Bias Temperature

Instability): This phenomenon is observed on
P-MOS transistors. The apparition of interface
traps and oxide charges is due to a negative
gate bias. The result is an increase of the
absolute threshold voltage, a degradation of
mobility, drain current and transconductance.
The list type of failure also impacts the chip’s
performances.

Symptoms of these failures may be observed by
analyzing characteristics drifts during the ageing

process, but visual inspections are necessary in order to
be sure.

III. Conclusion

This document summarizes test methods to ensure
performance and reliability of a microcontroller or a
DSP in high temperatures, and shows test results.

The main information to remember is the importance
of testing DSPs in order to assert by how much their
electrical parameters and performances drift with
temperature but also to determine which of their
modules are or are not in working order when in the
environment specified by the mission.

Ensuring that their internal structure will not lead to
what can be called a premature failure is equally as
important, especially if designers are going for
commercial grade parts.

In addition, this methodology can also be applied to
test devices’ behaviors in a radiation environment,
especially to test internal memory resiliency.

To finish, this qualification process can just as well be
implemented to qualify FPGA devices for space
applications, and to compare their performances with
DSPs’.

IV. References

 [1] “Extreme Environment Electronics”,
John D. Cressler, Alan Mantooth

[2] “SLVA079: Understanding the Terms and Definitions of
LDO Voltage Regulators”, Bang S. Lee, Texas Instrument

[3] “JEDEC standard JESD218: Solid-State Drive (SSD)
Requirements and Endurance Test Method”

[4] “JEDEC standard JEP122G: Failure Mechanisms and
Models for Semiconductor Devices”

[5] “High-performance chip reliability from short-time-tests-
statistical models for optical interconnect and
HCI/TDDB/NBTI deep-submicron transistor failures”,
A. Haggag, W. McMahon, K. Hess, K. Cheng, J. Lee, J.
Lyding

45

Radiation Intelligent Memory Controller IP Core

P-X. Wanga , C. Selliera
a 3D PLUS, 408 Rue Hélène Boucher, 78530 Buc, France

pwang@3d-plus.com

Abstract
A radiation intelligent memory controller (RIMC) IP core

is proposed to work with a specific DDR2 SDRAM structure
to reach a Radiation Hardened (RH) DDR2 SDRAM Solution.
The IP core provides protection against Single Event Upset
(SEU) and Single Event Functional Interruption (SEFI),
combines the TID and SEL guarantee from the memory die to
reach a hardened solution. This high performance RH DDR2
solution is suitable for all space applications such as
commercial or scientific geo-stationary missions, earth
observation, navigation, manned space vehicles and deep
space scientific exploration.

I. INTRODUCTION
DDR2 SDRAM is a very attractive technology for space

application thanks to its high density and high speed.
However, o move it into space application, it is quite
complicated to handle it because of the following reasons:

• Complex behaviour under radiation – No Rad Hard
device available

• Volatile – Data loss risk if any functional issue
• Difficult to handle Micro-BGA for Space

applications
• Short life cycle – new device every 6 months

That is the motivation to develop a RIMC IP core

provided a full protection against the DDR2 radiation soft
effects such as SEFI and SEU. From user point of view, all
radiation protections are transparent, and the RIMC provides a
standard AMBA/DFI compatible interface to targeted most
space FPGAs. Figure1 shows the solution’s architecture
overview.

Figure 1: Overview

II. RIMC ARCHITECTURE
The RIMC is defined by 2 interfaces (see Figure 2):
• The user interface, AMBA compliant. This interface

contains at least one AHB bus, and may contain an

optional APB bus for user dynamic configuration.
These busses are compatible to AMBA 2.0

• The DDR PHY interface, compliant to DFI 2.1
(depends on different FPGAs). This interface is used
to send commands and data to the DDR components
through the DDR PHY.

The RIMC controller can be configured by the core logic

using 2 different AMBA interfaces:

• Slave AHB interface with specific address mapping
(1 area dedicated to DDR memory array and 1 area
dedicated to internal registers)

• Slave APB interface dedicated to internal registers

Figure 2: RIMC Interface

The RIMC is highly configurable to be compatible with
most of user designs:

• User data width (from x8 to x128)
• Hamming or Reed-Solomon(RS) ECC selectable
• Configurable up to 8 AHB slave interfaces
• Configurable DDR2 ranks to increase memory

capacity
• Clock & ODT setting compatible with 3D PLUS

modules
• Capability to manage memory redundancy design

The RIMC first version is to address FPGA development,

and it is fully commercial available.

46

mailto:pwang@3d-plus.com

III. PAGE NUMBERS MEMORY RADIATION ERRORS &
IP CORE PROTECTIONS

The DRAM radiation errors can be simply classified as
below in 2 categories: Hard Errors and Soft Errors. The Hard
Errors create irreversible errors when the threshold or limit
have been passed. 3D PLUS propose a radiation tolerant
DDR2 memory die with the guarantee of TID>100Krad(Si)
and SEL>60Mev.cm²/mg. This paper will not present detail
results on TID & SEL guarantee of the memory die.

On the other hand, as semiconductor feature size scaling
down, the soft errors (SEU and SEFI in case of DDR2) easily
can be dominated events, especially SEFI, to DDR2 memories
under radiation environment. However, each semiconductor,
even each DDR2 Part Number from same semiconductor, will
bring totally different SEU & SEFI results. To reach a real
Rad-Hard DDR system, a well-evaluated specific DDR2
memory and its tailored controller, for example: identify
memory different types of SEFI and select the correspondent
mitigation strategies to guarantee no data loss, are mandatory.

A. IP Core SEU Mitigation
The RIMC can be configured at different types of ECC

based on error rate tolerance, and here is an example of Reed-
Solomon code as in figure 3 for 32b data and 50% overhead
[RS(12;8), m=4, Global Bus = 48bits].

Figure 3: Example of data path with RS code, component
Data Bus = 8 and DDR Data Bus = 32

 As this RS ECC structure, The RIMC IP core(3D PLUS
P/N: 3DIPMC700) can correct up to 8 bits error (row error) in
one die per 48b, and 2 SEUs in the same address of different
die per 48b. In case of scrubbing applied, the worst case (one
particle create 2 upsets in 2 dice) in correctable error rate will
be 3.8E-9 upset/day/module. Please note that 3DIPMC700
provides several different types of ECCs, and here is the error
rate with Figure 3 data structure. The other ECCs (ex:
Hamming) or other structures will bring other results.

B. IP Core SEFI Protection
Single Event Functional Interruption (SEFI) - a condition

which causes a temporary non-functionality or interruption of
normal operation induced by an energetic particle in the

affected device, are very critical to space design. Mentioned at
the beginning of this chapter, as feature size scaling down, the
modern DRAM components have lower SEFI threshold and
bigger cross section, which makes the SEFI easily becoming
the dominated event. Moreover, unlike the SEU correctable
by ECC, SEFI can easily bring system interruption or data
loss and damage the whole sub-systems.

Traditionally, SEFI mitigation is to power cycle or reset
the component after SEFI happened, which means to restore
or recover the component from a SEFI; However, power
cycling will lead data loss, and in most case power lines are
merged together, so not only the SEFI die data lost, but also
all the dice managed by same power lines will have data loss.

To avoid all these negative impacts from SEFI, a patent-
pending SEFI protect technique has been designed and
embedded in RIMC IP Core to prevent SEFI to replace
traditional “after SEFI happened and recover” strategy. This
SEFI protection is transparent to user and integrated in the
RIMC IP core. Verification test had been performed at
Radiation Effects Facility, University of Jyväskylä, Finland
(RADEF) to confirm the protection, here below is the result:

Table 1: 3D PLUS DDR2 Memory module SEFI results under
RIMC Protection [1]

Ion LET
[MeV/mg/

cm2]

Rang
[micron

s]

Fluence
[p/cm²]

Sample
 /Runs

SEFI

20Ne+6‡ 3.63 146 >1E6 1 No
40Ar+12‡ 10.2 118 >1E6 5 No
56Fe+15 18.5 97 >1E6 5 No
82Kr+22 32.2 94 >1E6 >10 No

131Xe+35 60.0 89 >1E6 6 No

No SEFI observed till LET>60Mev-cm2/mg.
As a general use purpose controller IP core, RIMC is

designed for any JEDEC standard DDR2 SDRAM. But please
note that this patent-pending SEFI protection technique is not
a universal solution, and only can be used to the die
embedded in 3D PLUS DDR2 modules. On the other words,
RIMC IP core can be used with any other DDR2 die, and the
SEFI protection should be deactivated.

IV. CONCLUSION
A RIMC IP core has been proposed to reach a radiation

hardened DDR2 solution. The solution includes the radiation
tolerant DDR2 module with SEL immune and TID guarantee
and RIMC IP core to specifically manage the SEU and SEFI
of the DDR2 module to reach:

TID>100Krad(Si)
SEL immune > 80Mev.cm2/mg
SEU immune by design (3.8E-9 upset/day/module)
SEFI immune by design (LET>60Mev-cm2/mg)

V. REFERENCES
RADEF Cyclotron cocktail information: https://www.jyu.fi/
fysiikka/en/research/accelerator/radef/cocktail

47

https://www.jyu.fi/%20fysiikka/en/research/accelerator/radef/cocktail
https://www.jyu.fi/%20fysiikka/en/research/accelerator/radef/cocktail

DVB-S2 Software Defined Radio Modem

on the RC64 Manycore DSP

Peleg Aviely, Olga Radovsky and Ran Ginosar

Ramon Chips, Ltd., 5 HaCarmel Street, Yoqneam Illit 2069201, Israel

[peleg, olga, ran]@ramon-chips.com

Abstract

This paper describes high performance implementation of

DVB-S2 modem on the rad-hard manycore RC64 DSP.

Multi-level simulation and development methodologies are

described. Modem algorithms are specified, together with

implementation details. Efficient parallel processing is

enabled by the shared memory architecture, by PRAM-like

task oriented programming and by dynamic allocation of

tasks to cores. The modem achieves in excess of 2 Gbps

transmission and 1 Gbps reception.

I. INTRODUCTION

RC64 is designed as a high performance rad-hard manycore

DSP processor for space applications [1][8]. The architecture

is shown in Figure 1. 64 DSP cores (CEVA X1643) are

integrated together with hardware accelerators, a hardware

scheduler, multi-bank shared memory, a logarithmic network

on chip connecting the cores to the memories, and multiple

I/O interfaces.

RC64 is designed for space applications. Software Defined

Radio (SDR) and modems constitute very demanding

applications. This paper investigates the implementation of

DVB-S2/DVB-S2x modems on RC64. An LDPC hardware

accelerator is included in RC64 to support efficient modems,

and as a result RC64 achieves in excess of 2 Gbps transmit

rate and 1 Gbps receive rate. Earlier works in this area

include [6] and [7].

The RC64 DVB-S2 modem has been developed using a

multi-level methodology and simulators. The development of

a modem on a manycore processor combines communication

theory, parallel algorithm design, parallel programming and

profiling, and software engineering.

The paper presents the simulator, the modem algorithms,

implementation details, parallel programming of the model,

and performance evaluation.

Figure 1. RC64 Many-Core Architecture. 64 DSP cores,

modem accelerators and multiple DMA controllers of I/O

interfaces access the multibank shared memory through a

logarithmic network. The hardware scheduler dispatches fine

grain tasks to cores, accelerators and I/O.

II. RC64 DVB-S2 SIMULATOR

Figure 2 depicts the RC64 DVB-S2 simulator structure. The

data generator creates baseband frames. The transmitter

encodes and modulates the frames according to DVB-S2 and

DVB-S2X standards. The channel simulator adds noise and

impairments. The receiver demodulates and decodes the

signal, and the analyzer compares the sent and received

signals.

The simulator enables testing and performance optimization

regarding modem quality (bit error rate for a range of channel

impairments, signal to noise ratio and bandwidth), modem

48

bitrate (performance of RC64 executing the modem

application), bottleneck analysis (identify required

accelerator(s) for the modem) and hardware accelerators type

and capacity (validation before hardware integration).

RC64 TX
simulator

Channel
simulator

RC64 RX
simulator

Data generator
and

Analyzer

Transmit data Receive data

Figure 2. RC64 DVB-S2 Simulator

Modem development is carried out through six levels of

refinement, as shown in Table 1. Algorithm development

starts by coding in Matlab a high level model of the modem,

and proceeds through stages until finally parallel C code is

employed to program the actual RC64. We start with an

unrestricted algorithm, implemented in Matlab (level 1). The

accelerators code is replaced by a Matlab executable (mex)

file generated from RTL descriptions of the accelerators.

Level 1 serves as golden model, to which subsequent level

models may be compared.

Level 2 takes into account architectural restrictions of RC64

such as limited memory and real-time constraints. For

instance, receiver input samples are processed in pre-defined

sample groups rather than in frame size sample groups. In the

third level, Matlab floating-point computations are replaced

by Matlab fixed point at a word precision of 16 bits,

compatible with high-speed arithmetic on the DSP cores of

RC64. Accelerator models are replaced by more precise ones

driven from RTL. Outputs are carefully compared with the

results of the floating-point models, to assure minimal signal

degradation.

At level 4, Matlab code is replaced by code in the C language,

compatible with the compiler for the DSP cores in RC64. The

Matlab simulator models of the transmitter and receiver are

replaced by models for the cycle accurate simulator of RC64,

executing the compiled C code. The output must be exactly

the same as produced in level 3. The accelerator code is a

function in C representing the hardware accelerator,

embedded in the cycle accurate simulator of RC64.

At level 5, the code is parallelized to execute on RC64 and

further optimizations are performed to take advantage of

specific hardware features of the DSP cores. The accelerators

function is executed as a separate task, in parallel with other

tasks. In level 6 the entire modem is executed on RC64

hardware

Table 1. Levels of Simulation and Modem Development

Level Level Name Language Precision Style Accelerators

1 High Level Modem Matlab Float Virtual unlimited architecture FloatC-to-mex

2 Matlab DSP Modem Matlab Float Restricted to real-time DSP of RC64

Restricted memory sizes

Translate input frames to samples on TX, input

sample stream to frames on RX.

FloatC-to-mex

3 Fixed Point Matlab

DSP Modem

Matlab Fixed 16 Rounding and saturated computation

Use CEVA lib functions

RTL-to-mex

4 C-Fixed Modem C Fixed 16 Bit-exact to Level 3 C function

5 C-Parallel Modem C Fixed 16 Compliant to Plural shared-memory programming

model [8]

C function as a

separate task

6 RC64 Modem C Fixed 16 Task on accelerator

hardware

III. RC64 DVB-S2 MODEM ALGORITHMS

In this section we describe the algorithms of the transmitter,

the communication channel, the receiver and the data

generator and analyzer.

A. Transmitter

The DVB-S2 and DVB-S2X transmitter includes the

following functional blocks to modulate input streams, as

specified and recommended in [2][3][4] (Figure 3): CRC-8

encoder, baseband (BB) header insertion and stream

adaptation, BB Scrambling, FEC encoding (comprising BCH

and LDPC encoders and bit interleaver), bit mapping into

constellations, physical layer framing (PL header insertion,

followed by pilot adding and scrambling) and BB shaping

(up-sampling and low-pass filtering). Output I/Q samples are

provided to two DACs, generating I and Q baseband signals.

This series of functional blocks can be clustered into Pre-

LDPC stage, the LDPC encoder, and Post-LDPC stage.

49

Figure 3. Functional block diagram of the DVB-S2 transmitter (following [3])

Figure 4. Channel simulation model

50

B. Communication Channel Simulation

Physical layer impairments in the communication channel

include those introduced by the channel, such as reflections

and interference, as well as those induced by various

components in the system, such as tuner I/Q imbalance and

amplifier non-linearity. These impairments degrade the

received SNR and may in some cases affect the convergence

behavior of various computation loops in the receiver.

In order to test the demodulator performance, different

realistic conditions that can affect the quality of received

signals are simulated. Physical layer impairments in DVB-S2

receivers are discussed in [4]. A simpler channel model is

implemented in Matlab (Figure 4). Every noise source is set

independently, allowing flexible channel simulation.

C. Receiver

The functional block diagram of DVB-S2 receiver according

to DVB-S2 guidelines [2] is depicted in Figure 6. The

Receiver application includes the following functional

blocks.

Signal Processing Chain

 Adjacent Channel Filtering using BB FIR.

 I/Q imbalance compensation, an iterative algorithm to

estimate I, Q and compensate for imbalance.

 DC offset removal, using a simple IIR.

 Frame Synchronization, using a 25 taps correlator and a

peak detector.

 Symbol Timing Recovery, using a Farrow cubic

interpolator and a Gardner detector.

 Decimator and Matched Filter.

 Carrier Frequency Recovery (coarse and fine recovery)

based on a pilot. Coarse recovery employs a second order

feedback loop based on a delay-and-multiply frequency

error detector. Fine recovery employs a feed-forward (FF)

estimation algorithm, derived from the L&R (Luise and

Reggiannini) technique.

 Phase Recovery (coarse and fine recovery), using FF ML

estimator.

 Digital AGC, based on a pilot assisted vector tracker

mechanism.

 LMS Equalizer, employing DFE with a small number of

taps.

Decoder Chain

 Descrambler, identical to the TX scrambler

 LLR calculation, finding the logarithm of the distance

between the soft symbol and the nearest hard symbol.

 De-interleaver, identical to the TX interleaver.

 LDPC Decoder, BCH Decoder, BB Descrambler and BB

Header CRC Decoder.

Similar to the transmitter, the receiver, too, may be clustered

into Pre-LDPC, LDPC and Post-LDPC stages. The RF Front

End, ADC and AGC blocks are not implemented in the

simulator. Figure 5 describes the state machine of the

receiver. Steady-state is entered when acquisition stages

complete successfully. The main computation during this

state consists of filtering, PHY descrambling, de-mapping

and de-interleaving. The FEC LDPC decoder is implemented

as a hardware accelerator. The rest of the computation

includes BCH decoding (in some cases), descrambling and

header decoding. In parallel, tracking is performed for the

next incoming frame, enabling fast reaction to channel

impairment changes, modulation changes and end-of-stream

detection.

Figure 5. Receiver state machine

The performance of the DVB-S2/DVB-S2X link (consisting

of transmitter, channel and receiver) is evaluated by the

signal analyzer (Figure 2). The signal analyzer compares

reconstructed bits with transmitted bits and calculates Frame

Error Rate (FER), Packet Error Rate (PER) and Bit Error Rate

(BER). In a communication chain without channel

impairments, the reconstructed data should be exactly the

same as transmitted. The DVB-S2 standard defines the

expected error performance for different modes. PER is the

ratio between the useful transport stream packets (188 bytes)

correctly received and affected by errors, after forward error

correction.

51

FEC Decoder

Signal Processing Chain

AFE Interface

I/QDown
Sample

RF
Front
End

2XADC
I

Q
IF

I

Q
DC Cancel

AGC

I/Q
Imbalance

I

Q

Adjacent
Channel
Filtering

I

Q

Timing
Recovery
(Gardner)

Correlator
+ State

Machine

Coarse
Freq.

Correction
NCO dF

I/Q I/QX
Fine Freq.
Correction

L&R

Coarse
Phase

Correction
I/Q DAGCI/Q

Fine Phase
Correction

(PLL)
I/Q

Equlaizer
(DFE)

Slicer+
LMS Loop

I/Q I/Q

PHY
Descrambler

Soft
Demapper

(Metric Calc)

De
Interleaver

LDPC
Decoder

BCH
Decoder

BB Descrambler
Header

Recovery
I/Q

Soft
Bits

I/Q

Frame sync

Figure 6. Functional block diagram of DVB-S2 Receiver

IV. MODEM IMPLEMENTATION

Details of modem implementation are described in this

section. We first discuss hardware accelerators, followed by

data streaming, scheduling and mitigation of overhead.

A. Accelerators

A major computation bottleneck was identified during

profiling of the fourth level of simulation (C-Fixed modem).

Forward error correction (LDPC encode/decode) was found

to limit the throughput of the modem when executed by the

cycle accurate simulator.

The bottleneck can be eliminated using hardware

acceleration, implemented either by a dedicated on-chip

accelerator or by an external accelerator (ASIC or FPGA).

RC64 was extended with on-chip LDPC encode/decode

hardware accelerator that is capable of 1 Gbps receive rate

and 2 Gbps transmit rate. A second accelerator was added for

turbo coding, required for DVB-RCS modem. Other types of

accelerators are supported by dedicated parallel interfaces to

external FPGA or ASIC.

B. Data Streaming

Early analysis of the shared memory capacity required for the

transmitter and receiver algorithms showed that special care

should be taken regarding buffers for intermediate data. The

transition between bit-stream representation and symbol and

sample representations of the data requires minimizing

buffering of symbol and sample representation of data frames

in favor of bit-stream representation when possible.

52

Shared Memory (4MByte)

Frames
buffer
queue

(Bit-stream)

Pre-LDPC
compute

LDPC
Encoder

Accelerator

Pre-LDPC
frames buffer

queue
(Bit-stream)

Post-LDPC
frames buffer

queue
(Bit-stream)

Post-LDPC
compute

Output samples double
buffer

(Sample-stream)

DMA
Out

DMA
In

Shared Memory (4MByte)

Frames
buffer
queue

(Bit-stream)

Post-LDPC
compute

LDPC
Decoder

Accelerator

Post-LDPC
frames buffer

queue
(Bit-stream)

Pre-LDPC
double buffer
(LLR stream)

Pre-LDPC
compute

Input samples double
buffer

(Sample-stream)

DMA
In

DMA
Out

Transmit data flow

Receive data flow

Figure 7. Modem data flow

Buffering structure, modeled within the fourth level of

simulation (Table 1), define the partitioning of parallel

activity of the transmit and receive applications as described

in Figure 7, indicating buffering in shared memory. Bit-

stream representation of the data enables the most efficient

storage in shared memory, accessed as byte stream by the

DMA and DSP cores. A normal size frame is about 8 Kbyte

long. LLR-stream employs 16 bits to represent each data bit,

accessed as word stream by the DMA and the DSP cores.

Thus, a normal size frame occupies 128 Kbyte. Sample-

stream representation requires 16 bits per sample. Sample

representation depends on symbol count (due to different

possible constellations) and interpolation factor. A normal

size frame, in sample representation, occupies between 128

Kbyte (QPSK) and 32 Kbyte (256APSK). Memory allocation

is optimized by minimizing the buffer size for the sample-

stream.

C. Scheduling

The compute sequence for both transmitter and receiver is

driven by the transmit/receive sample rate. A continuous

sample stream must be transmitted to the DAC or received

from the ADC using DMA. Figure 8 presents the iterative

task graph used for scheduling the tasks (initial and final parts

are eliminated for clarity). When fully utilized, the modem

iteratively performs the following steps.

 Get-data through input interface (ADC for receive, digital

interface for transmit).

 Pre-LDPC compute stage, processing multiple frames

each iteration. The number of frames is limited by frame

size, data rate, available storage and available incoming

data.

 LDPC stage that encodes or decodes data from the Pre-

LDPC stage.

53

 Post-LDPC compute stage processing multiple frames

each iteration.

 Put-data through output interface (DAC for transmit,

digital interface for receive).

Figure 9 presents the double buffer queues used for

supporting parallel operation during each iteration of the

transmitter. The input stream DMA stores data into one of the

two queues dedicated for input frames. The Pre-LDPC tasks

process concurrently the queue of input frames from the

previous iteration and store the results into one of the two Pre-

LDPC queues. The LDPC encoder accelerator processes the

data in its input queue and stores the result in one of its output

queues. The Post-LDPC tasks process concurrently the post-

LDPC queue of the previous iteration and store the results

into one of the two output sample queues. Finally, the output

stream DMA reads samples data and outputs the samples. By

the end of each iteration, input queues becomes output queues

(double buffers are switched), and the next iteration may start

Get Data
Pre-
LDPC

LDPC
Post-
LDPC

Put Data

Iteration
control

Figure 8. Task map for transmit/receive application

54

Input frames
double-buffer

queue

Pre-LDPC
double-buffer

queue

Input
frames

LDPC
Encode

Accelerator

Input
stream
DMA

Output
stream
DMA

Start of iteration k
Post-LDPC

double-buffer
queue

Output
samples

double-buffer
queue

Frames of
iteration k

Frames of
iteration k-1

Frames of
iteration k-2

Frames of
iteration k-3

Samples of
iteration k-4

Input frames
double-buffer

queue

Pre-LDPC
double-buffer

queue

LDPC
Encode

Accelerator

Input
stream
DMA

Output
stream
DMA

End of iteration k
Post-LDPC

double-buffer
queue

Output
samples

double-buffer
queue

Frames of
iteration k

Frames of
iteration k-1

Frames of
iteration k-2

Frames of
iteration k-3

Samples of
iteration k-4

Output
Samples

DMA

Pre-LDPC task in cores

LDPC Accelerator

Post-LDPC task in cores

Figure 9. Iterative computation during transmit

Core #0

Core #3
Core #4

Core #7
LDPC Encoder

(a) Unbalanced load
on 8 cores

Core #0

Core #3
Core #4

Core #7

(b) Fine grain and
work distribution
help to balance

the load on 8 cores

LDPC Encoder

Core #0

Core #3
Core #4

Core #35

(c) Shorter iteration
time on 36 cores

LDPC Encoder

Core #0

Core #7
Core #8

Core #50

(d) Even shorter
execution time

on 51 cores;
higher parallelism

of both tasks

LDPC Encoder

Pre-LDPC task in cores

LDPC Accelerator

Post-LDPC task in cores

iteration time iteration time iteration time iteration time

Figure 10. Alternative schedules for load balancing

55

Figure 10 presents load balance scheduling alternatives for

the three types of tasks using available processing resources

(LDPC accelerator and DSP cores). In (a), four cores execute

Pre-LDPC tasks and four other cores execute Post-LDPC

tasks, in parallel with the LDPC encoder. The Post-LDPC

tasks constitute a bottleneck. In (b), the Post-LDPC tasks are

broken up into 32 instances of fine grain tasks. Once Pre-

LDPC jobs are completed, Post-LDPC instances are allocated

to all eight cores and computation is accelerated. In (c), 36

cores are made available, all instances are allocated at the

same time, and Pre-LDPC becomes the bottleneck. Last, in

(d), the Pre-LDPC tasks are split into eight smaller tasks and

additional cores are made available. Consequently,

computation time is shortened.

D. Overhead mitigation

Ideal modem implementation, when execution is most

efficient and iteration time is minimized, depends on the

following architectural aspects.

Scheduling overhead minimized—When a many-core

solution is required to perform fine grain tasks to accelerate

computation such as in Figure 10 (d), the time between task

executions on cores must be negligible compared to tasks

duration. RC64 scheduler offloads this activity from run-time

software, and provides minimal overhead for task switching

time. The overhead relates to both allocating multiple

available tasks to many cores, as well as to recognition of task

terminations. Task terminations enable new task allocations,

which happens every iteration in such iterative task graphs.

Shared memory access efficiency—Dynamic scheduling of

tasks to cores, requiring cores to perform different code with

different data along each iteration, makes shared memory

access latency and throughput critical. Shared memory

phenomena such as data read hot-spots call for special care,

to prevent serialization in memory access. In some cases,

when data handling is interface dependent, queue

management requires critical section handling for inter-core

synchronization. The RC64 multi-bank and network on chip

optimize memory access by cores. The memory appears as a

flat address space, flexible for any type of data-set allocation

very similar to the PRAM model, significantly simplifying

the programming model.

Shared memory coherency—The programming model and

non-preemptive run-to-completion tasks enable keeping

shared memory with coherent data available for next task

allocation. Each core is responsible for storing all its

computational results into shared memory (using write-

through cache) before the task terminates. It then invalidates

its data caches automatically before starting a new task that

may accidently use the wrong data content in its cache. This

storing activity is supported in RC64 by its write-through

cache configuration of the DSP cores, together with the

minimal invalidation overhead at task terminations.

Local core computing efficiency—Processing cores

computing efficiency may suffer due to low compute-to-data

ratio or due to inefficient cache behavior. A major efficiency

factor is using the VLIW and SIMD capability to achieve

peak performance. RC64 cores are optimized for DSP

computations, having four multiply-accumulate functional

units along with two load/store units and two additional

general purpose instruction units. A main compute-intensive

part of the modem is the filters. Each DSP can perform a

complex multiplication every cycle continuously, as long as

the memory system can deliver the data. The local data

memory (cache and scratchpad) supports 16Kbyte data and

8Kbyte program memory, sufficient for many algorithms.

Data streaming efficiency—Data in shared memory should

be available for parallel memory read access to any of the

cores during each iteration. Output data queues in shared

memory should be accessible efficiently and concurrently by

any of the cores for writing during each iteration. Streaming

data to and from shared memory queues must not degrade the

computing throughput. RC64 DMA controllers are optimized

for this purpose, both for memory buffer management in

shared memory and for very high throughput to and from

shared memory, without degrading memory access rate by

the cores. Many DMA controllers can operate concurrently

to serve many different I/O activities.

Programming model simplicity—Programming a many-core

processor can become a very complex undertaking, requiring

deep knowledge of the micro-architecture and the special

mechanisms for solving the above challenges. RC64 task

oriented programming model emphasize parallel code

decomposition for application acceleration, in accordance

with algorithm and memory capacity requirements. Other

issues, such as shared memory access efficiency, coherency

and streaming may incur only minor effect on performance,

while the application developer enjoys a PRAM-like

abstraction, similar to a single core program design.

V. PERFORMANCE

This section reports performance results as computed with

the RC64 DVB-S2 simulator and cycle-accurate simulations

of RC64 [8].

A. Transmitter Performance

When simulating transmission of short frames using 32APSK

modulation and LDPC code of 8/9, the Pre-LDPC stage

requires 16,000 cycles, LDPC encoding takes 560 cycles, and

Post-LDPC is 100,000 cycles. Since there are 3402 32APSK

symbols in a short frame, Post-LDPC can be considered as

incurring 30 cycles per symbol. As shown in Figure 11, a

useful balance between pre-LDPC and post-LDPC can be

achieved with nine frames per iteration for pre-LDPC,

generating a total of 3402×9=30,618 symbols. Parallel

processing of these symbols in Post-LDPC tasks is achieved

by the remaining 55 cores. Each Post-LDPC task processes

30,618/55=557 symbols, taking 557×30=16,710 cycles. This

schedule translates to a data rate of

14232 [𝑏𝑖𝑡]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 2.3 𝐺𝑏𝑝𝑠 .

56

Each symbol contains two samples, and there are 6,804

samples per frame. The sample output rate is

6804 [𝑠𝑎𝑚𝑝𝑙𝑒𝑠]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1.1 𝐺𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 .

Another way of estimating performance is based on

considering that 116,000 cycles are required to process

14,232 data bits at 300M cycles/sec, and 64 cores are

available, or:

64 ×
14,232 [𝑏𝑖𝑡]

116,000 [𝑐𝑦𝑐𝑙𝑒]
×

300𝑀 [𝑐𝑦𝑐𝑙𝑒]

[𝑠𝑒𝑐]
= 2.3 𝐺𝑏𝑝𝑠

The accuracy of these performance estimates is expected to

be within 30% of actual performance, based on simulator

accuracy and code optimization.

B. Receiver Performance

When receiving short frames in a steady state, the receiver

spends 220,000 cycles in the Pre-LDPC stage, 4,000 cycles

on average in the LDPC decoder, and 32,000 cycles in Post-

LDPC. The schedule of Figure 12 shows 8,000 cycles per

iteration, receiving two frames per iteration, using 54 DSP

cores to perform Pre-LDPC, eight DSP cores to perform Post-

LDPC. The resulting bitrate is

14,232 [𝑏𝑖𝑡] ∙ 2 [𝑓𝑟𝑎𝑚𝑒𝑠] ∙ 300 [𝑀𝐻𝑧]

8,000 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1 𝐺𝑏𝑝𝑠.

16K cycCore #0
Time

Core #8
Core #9

Core #63

Iteration time=16.7K cyc

16K cyc

LDPC Encoder
16.7K cyc

6K cyc

16.7K cyc

16.7K cyc

16K cyc

Figure 11. Transmit performance (32APSK, LDPC 8/9)

8K cycCore #0
Time

Core #7
Core #8

Core #63

Iteration time=8K cyc

8K cyc

LDPC Decoder
8K cyc

8K cyc

8K cyc

8K cyc

8K cyc

Figure 12. Receive performance (32APSK, LDPC 8/9)

VI. CONCLUSIONS

We have described a high-performance implementation of

DVB-S2 transmitter and receiver on RC64, predicted to

exceed 2Gbps transmission and 1Gbps reception. A six-

levels development and simulation process has been

described. Dynamic scheduling of tasks to cores, using the

hardware scheduler and based on task oriented programming,

resulted in a flexible solution that can easily be adapted to

other modem parameters and other standards.

ACKNOWLEDGEMENT

Funding has been provided in part by Israel Space Agency

and by the European Union's Seventh Framework Program

for research and demonstration under grant agreement no.

607212 (MacSpace)

REFERENCES

[1] Ran Ginosar and Peleg Aviely, RC64 – Many-Core

Communication Processor for Space IP Router. In Proceedings

of International Astronautical Conference, pp. IAC-15-B2.6.1.

Jerusalem, Israel, Oct. 2015.

[2] DVB (2005). User guidelines for the second generation system

for Broadcasting, Interactive Services, News Gathering and

other broadband satellite applications (DVB-S2). User

guidelines ETSI TR 102 376 V1.1.1 (http://www.etsi.org).

[3] Morello, Alberto, and Vittoria Mignone. "DVB-S2: The second

generation standard for satellite broad-band services."

Proceedings of the IEEE, vol. 94, no. 1, pp. 210-227. IEEE,

2006.

[4] Nemer, Elias. "Physical layer impairments in DVB-S2

receivers." In Second IEEE Consumer Communications and

Networking Conference, CCNC, pp. 487-492. IEEE, 2005.

[5] Savvopoulos, Panayiotis, Nikolaos Papandreou, and Th

Antonakopoulos. "Architecture and DSP Implementation of a

DVB-S2 Baseband Demodulator." In Digital System Design,

57

http://www.etsi.org/deliver/etsi_tr/102300_102399/102376/01.01.01_60/tr_102376v010101p.pdf

Architectures, Methods and Tools, 2009. DSD'09. 12th

Euromicro Conference on, pp. 441-448. IEEE, 2009

[6] Beadle, Edward R., and Tim Dyson. "Software-Based

Reconfigurable Computing Platform (AppSTAR TM) for

Multi-Mission Payloads in Spaceborne and Near-Space

Vehicles." In International Conference on Reconfigurable

Systems and Algorithms. ERSA 2012.

[7] Dalio, B. A., and K. A. Shelby. "The implementation of OFDM

waveforms on an SDR development platform supporting a

massively parallel processor." In SDR'09: Proceedings of the

Software Defined Radio Technical and Product Exposition.

2009.

[8] Ginosar, Ran, Peleg Aviely, Tsvika Israeli and Henri Meirov.

“RC64: High Performance Rad-Hard Manycore.” DSP Day,

2016.

58

Session 5:

DSP Software and Applications

59

 DSP Benchmark Results of the GR740 Rad-Hard Quad-Core LEON4FT

Topics: Status and results of DSP related ESA contracts, Space qualified DSP components

Javier Jalle, Magnus Hjorth, Jan Andersson
Cobham Gaisler, Kungsgatan 12, SE-411 91, Göteborg, Sweden

Tel: +46 31 775 86 50
{javier.jalle,magnus.hjorth,jan.andersson}@gaisler.com

Roland Weigand, Luca Fossati
European Space Agency, Keplerlaan 1 – PO Box 299, 2220AG Noordwjik ZH,

The Netherlands, Tel: +31 71 565 65 65
{roland.weigand,luca.fossati}@esa.int

ABSTRACT

The GR740 microprocessor device is a SPARC V8(E)
based multi-core architecture that provides a significant
performance increase compared to earlier generations of
European space processors. The device is the result the
European Space Agency's initiative to develop a
European Next Generation Microprocessor (NGMP).

Engineering models have been manufactured in 2015
and tested during the first quarter of 2016. Space
qualification of flight models is planned to start in the
second half of 2016. GR740 is the highest performing
European space-grade general purpose microprocessor
and, due to the presence of four powerful floating-point
units, it is suitable for executing DSP applications. This
abstract provides an overview of the GR740 and a
subset of the benchmarks used within the ESA activity's
functional validation effort.

BACKGROUND

The LEON project was started by the European Space
Agency in late 1997 to study and develop a high-perfor-
mance processor to be used in European space projects.
Following the development of the TSC695 (ERC32) and
AT697 processor components in 0.5 and 0.18 μm tech-
nology respectively, ESA initiated the Next Generation
Microprocessor (NGMP) activity targeting a European
Deep Sub-Micron (DSM) technology in order to meet
increasing requirements on performance and to ensure
the supply of European space processors. Cobham
Gaisler was selected to develop the NGMP system that
is centred around the new LEON4FT processor.

Throughout 2014 and 2015, the architecture was de-
signed and manufactured in the C65SPACE platform
from STMicroelectronics [4]. This chip, now called
GR740, constitutes the NGMP Engineering Model. Be-
sides the chip development, the existing SPARC soft-
ware development environment has been extended with
support for the GR740.

Figure 1: GR740 Block diagram

60

ARCHITECTURAL OVERVIEW

Figure 1 shows an overview of the GR740 architecture.
The four LEON4FT processors are connected to a
shared bus which connects to a 2 MiB EDAC protected
Level-2 cache before reaching external EDAC protected
SDRAM. Each LEON4FT processor has a dedicated
pipelined IEEE-754 floating-point unit. While the
GR740 implementation of LEON4FT lacks support for
dedicated multiply-and-accumulate instructions this is
mitigated by the presence of the large number of
processor registers, L1 cache memory and high
operating frequency.

The main communication interfaces of the device
include eight external SpaceWire ports connected to an
on-chip SpaceWire router, two 10/100/1000 Mbit
Ethernet ports, MIL-STD-1553B and 32-bit PCI.

The design makes use of extensive clock gating for the
communication interfaces and the processors, that can
be put in a power-down mode to conserve power when
some or all cores are unused.

The four parallel CPU / FPU cores, each running on
dedicated separate instruction and data L1 caches
(Harvard architecture), at 250 MHz clock frequency, can
theoretically provide up to 1 Gflop/s in single or double
precision. Together with the multiple Spacewire and
Ethernet interfaces, this makes the GR740 suitable for
DSP applications, provided that the application
implementation succeeds in making an efficient
parallelisation and streaming of data across the shared
on-chip buses. This can be demonstrated with the
implementation of dedicated DSP benchmarks, as for
example those suggested in [1].

The NGMP architecture has already been evaluated in
an effort where the GAIA VPU application was adapted
to take advantage of a multi-core system. The
conclusion from this effort was that the GR740 is fast
enough to run the GAIA VPU application [2].

FUNCTIONAL VALIDATION AND DSP
BENCHMARKS

The functional validation of the GR740 device builds on
existing tests used in the frame of the NGMP activities.
The tests include both functional and performance
benchmarks.

PARSEC 2.1 benchmarks: PARSEC are a set of
multithreaded shared-memory benchmarks. We run
them with different number of cores. To show the
benefit of multiple cores, we calculate the speedup as:

where T1 is the execution time with one core and

T2 the execution time with different number of
cores.

In an ideal parallel application with no overheads, the
speedup obtained with 4 cores would be 4x. Figure 2
shows the speedup of a set of the PARSEC 2.1 small
workloads under Linux. We observe an speedup up to
almost 3.5x on the swaptions benchmark and 1.83x on
average for the 4 cores.

Barcelona Supercomputing Center Multicore OS
benchmarks: These benchmarks were designed to
evaluate the multicore interference for different OS [5].
We use a subset of the benchmarks that continuously
access the L2 cache with different patterns: L2-128K
and L2-256K use 128K and 256K of L2 space, L2-miss
is designed to miss on the L2 cache and ST performs
store operations that hit on the L2 cache. These four
benchmarks are highly sensitive to interference when
running in multicore. We execute these benchmarks in
single core without interference and with all other cpus
running L2-miss to generate an extreme interference
scenario. We calculate the slowdown (as the inverse of
the speedup) which effectively measures the impact of
the interference that the cores are generating. Figure 3
shows the slowdown for the above mentioned
benchmarks. We observe that the slowdown reaches up
to almost 3.1x for the ST benchmark, which is the most
sensitive since in the absence of interference, store
operations are very efficient due to the write-buffers.

Sup=
T 1

T 2
Figure 3: BSC Multicore OS benchmarks
slowdown

Figure 2: PARSEC benchmarks speedup

61

EEMBC benchmarks: We have successfully compiled
and run EEMBC CoreMark, Autobench, FPMark and
Multibench benchmark suites. In this paper, we present
the results of the Coremark and Autobench suites which
might be interesting for a DSP audience.
In order to compare the GR740 with previous LEON
processors, we run the Coremark in a single core on the
UT699, GR712 and GR740. Figure 4 shows the
CoreMarks [3] when running in a single core. We can
see a significant increment on the GR740 with respect to
the previous processors, mainly due to the frequency
increment (250 MHz vs 50 MHz). This increment would
become even bigger if we consider the four cores in
comparison with the 2 core GR712RC or the singlecore
UT699.

Figure 5 shows the iterations/sec of the EEMBC
Autobench suite under singlecore Linux OS, which
allows to compute an AutoMark score of 111.97,
comparable with the scores shown in [3].

CCSDS 123 Image Compression: This software
implements the lossless multispectral & hyperspectral
compression according to the draft standard CCSDS
123.0-R-1. We have run 4 compressions under Linux
using one and four cpus, showing an speedup factor of
3.43x.

CONCLUSION

The GR740 is a SPARC V8(E) based multi-core
architecture that provides a significant performance
increase compared to earlier generations of European
space processors, with high-speed interfaces such as
SpaceWire and Gigabit Ethernet on-chip. The platform
has improved support for profiling and debugging, and
software tools have been upgraded to this new
architecture. Moreover, a rich set of software is
immediately available due to backward compatibility
with existing SPARC V8 software and LEON3 board
support packages.

The GR740 constitutes the engineering model of the
ESA NGMP, which is part of the ESA roadmap for
standard microprocessor components. It is developed
under ESA contract, and it will be commercialised under
fair and equal conditions to all users in the ESA member
states. The GR740 is also fully developed with
manpower located in Europe, and it only relies on
European IP sources. It will therefore not be affected by
US export regulations.

The functional validation effort aims to validate
functionality of the device and of the development
board that will be made available to the space industry.

The GR740 is the highest performing European
space-grade processor to date and results of DSP

benchmarks will be presented to allow industry to assess
the GR740's suitability for DSP applications.

News about the GR740 device can be found at the
following link:

http://www.gaisler.com/gr7 40

REFERENCES

[1] Next Generation Space Digital Signal Processor
Software Benchmark , Issue 1.0,
TEC-EDP/2008.18/RT, 01 December, 2008

[2] RTEMS SMP Executive Summary, Issue 1,
Revision 2, RTEMSSMP-ES-001, March 2015,
http://microelectronics.esa.int/ngmp/RTEMS-SMP
-ExecSummary-CGAislerASD-OAR.pdf

[3] EEMBC – The Embedded Microprocessor
Benchmark Consortium http://www.eembc.org/

[4] P. Roche, G. Gasiot, S. Uznanski, J-M. Daveau, J.
Torras-Flaquer, S. Clerc, and R. Harboe-Sørensen,
“A Commercial 65 nm CMOS Technology for
Space Applications: Heavy Ion, Proton and
Gamma Test Results and Modeling”, IEEE
TRANSACTIONS ON NUCLEAR SCIENCE,
VOL. 57, NO. 4, AUGUST 2010

[5] Francisco J. Cazorla et. al. Multicore OS
benchmarks. Technical Report Contract
4000102623, European Space Agency, 2012.

Figure 5: EEMBC automotive benchmarks

Figure 4: Coremarks per core for different
LEON processors

62

http://www.gaisler.com/gr740
http://www.eembc.org/
http://microelectronics.esa.int/ngmp/RTEMS-SMP-ExecSummary-CGAislerASD-OAR.pdf
http://microelectronics.esa.int/ngmp/RTEMS-SMP-ExecSummary-CGAislerASD-OAR.pdf
http://www.gaisler.com/gr740

A Lightweight Operating System for the SSDP

A. Luntzer
a

, F. Kerschbaum
a

, R. Ottensamer
a

, C. Reimers
a

a
Department of Astrophysics, University of Vienna, 1010 Vienna, Austria

 armin.luntzer@univie.ac.at

Abstract

The Department of Astrophysics at the University of Vienna is

a provider of payload instrument flight software. Among the

projects under development is a custom, lightweight operating

system for the upcoming Scalable Sensor Data Processor

(SSDP) based on prior experience with its predecessor, the

Massively Parallel Processor Breadboard (MPPB). The

objective of this project is to create easy to use software that

is capable of efficiently driving the SSDP’s Xentium DSP

cores. Through its unique concept of driving the DSPs, it

allows the user to make full use of the resources of this

specific platform.

I. INTRODUCTION

A common problem of space missions is the limited

processing power of available space-qualified hardware, as

Payload data processors of on-board spacecraft and satellites

are subject to high levels of radiation. While there is the

LEON to fill the role of a general purpose processor (GPP),

the only radiation hardened digital signal processor (DSP)

available in Europe is the already dated ADSP-21020, if

ITAR/EAR regulations are taken into account.

The need for a new processor or System-on-Chip (SoC)

computer design for on-board payload data processing is high.

This is mainly due to the ever increasing quantity of sensor

data, as modern instruments produce ever larger volumes of

measurements. Available down-link bandwidth however, is

limited by available power, antenna sizes and in the end,

physics.

In recent years, ESA has been pursuing the development

of a next generation payload processor. One of the outputs of

this effort is a prototype SoC called the MPPB (Massively

Parallel Processor Breadboard) developed by Recore Systems

under ESA contract 21986 [1]. The MPPB is built around a

Very Long Instruction Word DSP architecture named Xentium.

In this platform, a LEON processor is acting as a supervisor,

controlling a Network-on-Chip (NoC) with multiple DSPs,

memory and I/O devices attached to it.

II. MOTIVATION

In the course of the NGAPP (Next Generation Astronomy

Processing Platform) activities, an evaluation of the MPPB

was performed in a joint effort of RUAG Space Austria

(RSA) and the Department of Astrophysics at the University

of Vienna (UVIE). While the original intent of the work of

UVIE was to quantify the performance of the Xentium DSPs

and the MPPB as a whole with regard to on-board data

treatment and reduction in an astronomical mission setting, it

was found that, given the highly innovative nature of this new

processing platform, a novel approach was needed concerning

the management of system resources, DMA mechanics and

DSP program design for best efficiency and turnover rates.

Consequently, the University of Vienna developed an

experimental operating system to stably drive the DSP cores

and the MPPB close to its performance limit. This was

achieved by splitting processing tasks into a pipeline of small

units (kernels) that are dynamically scheduled to run on the

Xentium DSPs, as required by the amount of data in the

pipeline stages, thereby overcoming bottlenecks resulting

from memory transfer overheads and cache sizes that would

inevitably emerge when using large, monolithic programs

with the particular characteristics of the MPPB.

At present, activities are carried out by Thales Alenia

Space España and Recore Systems in an effort to create the

Scalable Sensor Data Processor (SSDP) hardware, where an

ASIC is being developed based on the MPPB 2.0, which is an

update of the original MPPB with adapted specification [2].

This new implementation was made available to UVIE in Q1

2016 as a firmware update to the existing MPPB hardware

box.

In order to support this new hardware, a more refined

version of the experimental operating system is under

development at the University of Vienna under a nationally

funded ASAP 11 project, which also aims to become space-

qualifiable, supporting applicable documentation and S/W

standards.

The software is tailored to the NoC concept present in the

SSDP and is optimised for best performance in key areas of

system and resource management. These include fast and

efficient interrupt handling to ensure low response times and

high memory throughput for DMA transfers that service the

Xentium data caches and fast I/O interfaces like SpaceWire or

ADC/DAC.

Supporting functionality, for example device drivers,

threads and schedulers, timing and a system

configuration/information interface will be provided. Great

effort is made to keep CPU and memory footprints at a

minimum, so the LEON processor is available for duties other

than DSP and data processing control, such as handling of

tele-commands or instrument-related control tasks.

63

mailto:armin.luntzer@univie.ac.at

A major aim is to make the operating system as easy to use

as possible, by providing appropriate, well designed interfaces

in order to keep the need for configuration and extra

programming effort at a minimum.

To encourage use, modification and redistribution of the

operating system, it will be made available under an open-

source license, including all drivers, modules and example

DSP program kernels, as well as the documentation.

III. SSDP/MPPB 2.0 HARDWARE OVERVIEW

The MPPB 2.0 (hereafter referred to as just MPPB)

platform is a representative "preview" of the future SSDP

hardware. It consists of two VLIW DSPs, called Xentiums,

which are connected to a high-speed Network-on-Chip (NoC)

along with distributed SDRAM memories and external high-

speed interfaces, such as SpaceWire, to satisfy requirements

for space-based platforms. Attached to the NoC is a

conventional AMBA bus, which serves as an inter-connect for

a LEON GPP. The LEON is intended to control, manage and

serve the nodes of the NoC and other payload oriented

interfaces (e.g. the real time clock). It can also be used to run

legacy software for satellite control operations beside its NoC

servicing tasks. The system is clocked at 50 MHz.

A. Network-on-Chip

In high-performance multi-core computing, input/output

bandwidth and data transport capability are most critical

issues. In the MPPB, this is addressed by a Network-on-Chip

(NoC), which is a packet-switched network based on an XY

routing scheme. XY routing is a simple method of routing

packets through a network, where first the horizontal (X)

direction is taken, followed by a turn to the vertical (Y) path

at the targets X location. For this reason, the forward and

return paths are different most of the time and are guaranteed

to be safe from deadlocking.

The 3x3 NoC mesh connects the following devices:

 2 Xentiums,

 a bridge to the ADC/DAC

 an 8-channel DMA controller

 2 SpaceWire connections

 DDR (SDRAM) controller

 SRAM memory tile

 AMBA Subsystem

Every mesh routing node has 5 ports and serves 4 channels

per port, each of them with different priorities. A channel

offers a bandwidth of 1.6 Gbit/s at a system clock of 50 MHz.

Two high-priority channels are dedicated to DMA transfers,

while the low-priority channels serve single read/write

operations and interrupts. The high-bandwidth design is

important to the NoC concept, which intends to contain all

high-volume data flows to the network, never crossing the

slow AMBA bridge.

B. Xentium DSP

The Xentium is a little-endian Very Long Instruction Word

(VLIW) type digital signal processor IP core developed by

Recore Systems, The Netherlands.

A Xentium DSP consists of three main parts: the Xentium

local bus, the data path (processing core) and a tightly-

coupled memory (TCM) bank composed of 4 sub-banks of

8 kiB each. The Xentium local bus is an AHB-like bus that

allows the attachment to already existing compatible hardware

if needed.

Most instructions work on 32 bit or pairs of 16 bit

complements of data-words. The different units offer different

functionality:

A0, A1 32 bit and 2x16 bit arithmetic with 40 bit wide add

registers

S0, S1 32 bit and 2x16 bit arithmetic with 40 bit wide add

registers, shift operations

M0, M1 multipliers for 32-bit operands or 2x16-bit operands

E0, E1 load/store functionality

C0 32 bit and 2x16 bit arithmetic, loop and branch control

instructions

P0 32 bit and 2x16 bit arithmetic, compare and packing

instructions

The TCM provides access to 4 different memory banks at

the same time. As the data path can load and/or store 4x32 bit

values simultaneously using these banks, enough bandwidth is

available to all different parallel execution units in the

Xentium.

IV. FUNDAMENTAL REQUIREMENTS OF THE OS

A set of core prerequisites that are crucial to the usability

of an operating system has been identified and are described

in short below. These are not unusual for an operating system

of this category, the features that are particular or less

common are presented in more detail in the next sections.

A. Interrupts and Traps

CPU traps are a central element in the run-time

environment of the SPARC architecture, they provide means

to treat hardware exceptions and interrupt requests. Interfaces

to manage and install higher level trap handlers are available

and default handlers for different traps typed are provided.

Effort is made to reduce interrupt entry and exit times as

much as possible, as the SSDP tends to have higher rates than

comparable systems under load. This is a consequence of

necessary signalling with the Xentium DSPs and other

platform-specific devices, so reducing even small amounts of

systematic overhead can have great effects in the long run.

64

Interrupt call-back support for both hardware and software

interrupts are provided. These will not only allow fast and

easy (de-)registration of an arbitrary number of call-backs per

interrupt with associated user-data, but also deferred low-

priority interrupt handling in a dedicated thread or OS idle

loop.

B. Multi-Core Support

In order to make it future-proof and interesting for use

with other LEON-based platforms, the OS is written with

multi-core support in mind, including dedicated per-CPU

interrupt stacks, cross-CPU synchronisation and locking, as

well as task migration with according support in the threading

library.

C. Timers

In addition to the usual facilities, emphasis is put on tick-

less (i.e. non-periodic) timing functionality, so unnecessary

wake-ups of the GPP and inherent waste of CPU cycles can

be avoided.

D. Threads and Schedulers

Along fixed priority based scheduling, a modified earliest

deadline first scheduler with priority execution in overload

conditions is implemented. This, along with dynamic ticking,

gives an option to optimise thread CPU utilisation with the

added benefit of predictable execution for certain high-

priority threads in conditions, where the total load

unexpectedly exceeds 100%.

E. DMA Driver

The 8 channels of the DMA 2D-transfer feature in the

MPPB/SSDP are essential to its computational performance.

Low overhead and ease of use are desirable for this driver.

Special care must be taken to avoid access conflicts to

channels since the Xentiums have gained the faculties to

receive transfer-completion signalling with version 2 of the

MPPB and can now be used to initiate transfers themselves,

thereby reducing the interrupt load of the GPP significantly.

As there are (by the nature of the NoC) no atomic loads/stores

possible, the usage state of a DMA channel might change

unexpectedly during programming, if channels are

dynamically used, rather than being statically assigned to

either a DSP or the GPP. The former is clearly more desirable,

as there is less downtime when more transfers need to be

started than channels are assigned to a node.

F. I/O Interface Drivers

The major I/O devices, i.e. ADC/DAC and SpaceWire that

are common to both the MPPB and the SSDP are supported,

others (FLASH, GPIO, LEDs, LCD, ...) as they are present or

needed for OS operations or development support.

G. FDIR and Error Reporting

Fault detection and recovery with regard to hardware

devices is part of the drivers themselves. EDAC handling and

memory scrubbing is present as part of the OS. A central error

reporting facility is in place that is being used by drivers or

other software components.

H. Miscellaneous

Additional functionality to support application software

development is available. This includes an interface to the

debug support unit (DSU) of the LEON, generation of stack

traces and register dumps on hardware traps, along with any

NoC/Xentium focused debugging facilities.

V. XENTIUM KERNEL SCHEDULER

Within the NoC of the MPPB, functional components may

be viewed to behave similarly to hosts in a computer network.

Any data transferred between nodes of the NoC, even

dedicated memories, are sent via datagrams. This means, for

example, that a data load from an SDRAM bank executed on

a Xentium node is executed via its Xentium Network

Interface (XNI), which effectively constructs a request packet

that is sent to the SDRAM node. The receiving node then

reads the requested memory locations and sends a number of

packets holding the data back to the DSP. The communication

overhead and subsequent packet creation time generated for

every single request of a program instruction or data word

read from a larger memory store inevitably inserts significant

latency into every operation of the Xentium that requires

external interaction, as the possible throughput is 4x32 bit

words per clock cycle, if the DSP program is properly written.

A way to avoid these delays is to restrict Xentium memory

access to the local TCM banks and, in order to forgo stalls in

the instruction pipeline, restrict program sizes to be at most

the size of the local instruction cache (16 kiB).

The contents of the TCM can be exchanged with bulk

memory via the DMA feature of the MPPB, as of version 2.0,

transfers can also be locally controlled by the Xentium. The

DMA function is essentially the same feature that is used for

data transfer in the opaque XNI, but may be used to initiate

larger, more complex (2D) data block transfers, so network

overhead is minimized and transfers can happen at much

higher rates, limited only by the mass memory throughput

and, to a lesser extent, NoC bandwidth.

65

On-board processing pipelines, at least in the astronomical

use cases that were explored in the NGAPP performance

study, typically require many steps in data treatment, resulting

in binary sizes that easily exceed the capacity of a Xentium's

instruction cache. Instead, the monolithic program code can

be broken down into arbitrarily small functional fragments

(kernels) that are executed on the Xentium DSP as they are

needed (see Figure 1). Such a science data processing chain is

briefly described in [3]. Each step in there would be

implemented in the SSPD as a processing kernel. These

kernels require a generic data exchange interface for input and

output, so data can be passed between arbitrarily chained

processing nodes. This is done via dynamically defined

metadata containers, which hold information about data type,

references to location and size, previously applied processing

steps and other configuration parameters, thus allowing the

receiving kernel to act on the input data accordingly and to

record its own data operations to the container when passing it

on. In between operations, the metadata containers are held in

circular buffers, which act as both a connecting intermediate

and a measure of the state of the pipeline.

A. Scheduling

Since Xentium kernels act upon their input only as a link

in a chain and do no further processing than what is their

purpose, they must occasionally be exchanged, or the pipeline

would stall eventually, because either the output of the kernel

would run full, or the input would run empty. This is a task

that is supervised by the MPPB's LEON GPP. A very simple,

yet effective metric is used to determine whether the DSP

should be assigned another kernel.

During pipeline construction, each kernel is assigned an

input and an output circular buffer, which is configured with

two parameters: total size and critical fill state. The latter is

used as a threshold trip point that results in a scheduling event

signal when it is exceeded. The signal is emitted by the

circular buffer itself, hence no periodic polling overhead is

generated on the GPP and as long as the critical level is

sensibly defined, it provides enough hysteresis for the pipeline

not to stall. This applies to all but the last buffers in the

processing chain, which is ignored, or rather, has no critical

fill state, since its contents are typically sent to a bulk storage

device or via a network interface.

On a buffer criticality signal, the kernel scheduler selects

the most critical buffer based on its location in the pipeline,

with later buffers having less priority. It then selects a

Xentium based on their kernel input buffers fill state and

position in the pipeline and switches the running program.

This is done so that data are buffered towards the end of the

pipeline, rather than the beginning, allowing input to be

accepted as long as possible, even if there are issues with

output network interface or mass storage device.

Figure 2 shows a test of the self-balancing nature of this

approach. The processing pipeline of a fine guidance sensor

and photometer instrument was implemented and fed 512x512

pixel-sized input frames with simulated stars via two

SpaceWire links running at 100 Mbits at maximum data rate

(~34 frames per second). In the initial processing step, a

region of interest of 100x100 pixels was masked, which was

then examined by a center-of-gravity (COG) algorithm to

determine the precise position of the guide star on the frame.

The output of the COG step consisted of the object shift

relative to the center of the input frame and photometric flux

data for a 40x40 region of interest. This region was deglitched

and calibrated in the next nodes of the processing chain,

followed by de-correlation via integer wavelet transform and

finally compressed by arithmetic coding (ARI).

The resulting load curves, represented by the fill states of

the circular buffers, demonstrate the quick emergence of a

periodic pattern that clearly demonstrates the effectiveness of

this approach (see Figure 2).

VI. RUN-TIME CONFIGURATION INTERFACE

A core necessity of any type of on-board software is the

ability to generate housekeeping data to be sent to ground, in

Figure 1 Chaining concept of individual, pipelined program kernels.

Data arriving via a SpaceWire link are processed by Xentium DSPs

as needed by dynamically changing the running kernel. The data

progresses through the pipeline and are sent to their destination via

outgoing SpaceWire link.

Figure 2: Successful test of a processing chain. Only buffers that

show usage > 0 during any sampling period are included in the

diagram.

66

order to provide information about the prevailing run-time

parameters of both hardware and software.

While requirements of update rates and number of

variables – especially regarding software – may vary greatly

for different mission profiles, there are generally hundreds of

these data that are available for selection to form a

housekeeping telemetry message. Usually, these are not solely

read-only variables, but may also be patched by an

appropriate tele-command in order to induce a mode change

or adjust parameters to modify the behaviour of the software.

These variables are often stored in large, monolithic,

globally accessible "data pools". Such simplistic structures

may at first glance be the logical choice, suggesting ease of

both use and implementation, but are however very

susceptible to breakage, particularly in top-down designs,

where the data type of the implemented variables is not

uniform and interaction with the data structure is only

intended to occur via opaque accessor functions. If

adjustments are made during development, memory violations

may occur during runtime, and those can result in erratic,

unpredictable, opaque bugs that are very difficult to track

down. Another objection to this type of design is its re-

usability, as there may exist multiple points of adaption,

especially in circumstances where a great number of

internally used variables, which are elemental to a software

module or function, are stored in an externally administered

data structure.

Highly modular, encapsulated software modules with an

as minimalistic as possible external interface are very

preferable for re-use. Ideally, for example, a SpaceWire driver

would only provide an interface to send or receive packets

and handle all configuration of the underlying hardware

internally. This however poses a problem to a user that would,

for example, configure a particular link speed or continuously

monitor data transfer rates.

For such purposes, an interaction point is needed that

exposes certain internal attributes via a generic interface and

acts as a conduit between operating system elements and user-

space. There are essentially four fundamental requirements for

such functionality. First, internal interfaces or variables must

not be slower to use than when not exposed. Second, all

exposed functionality is defined by the module and exported

to the generic interface when initialised. Third, the exposed

functionality must not result in unpredictable behaviour, i.e.

the software module must be insensitive to sudden changes in

states or variables, or care must be taken by the module

designer, so that interactions are properly handled. In any

case, this must never be a concern for the user. Finally, any

access must be on the user's processing time, not on that of

the module.

Given that the interaction point has to be completely

generic to accommodate any kind of mapping defined by a

module without restrictions, it must consequently be very

simple. This is most easily achieved by implementing a

character-buffer based interface that interacts with a module

via functions provided by the latter to the generic interface

structure. The necessary parsing or value conversion of text

buffers on the user side is obviously slow compared to raw

variable access, but given the underlying assumption that this

system control interface is to be accessed in the order of no

more than a few hundred or at most several thousand times

per second, the overhead is effectively negligible.

The concept is very similar to the sysfs and sysctl

interfaces found in Linux and BSD operating systems, with

the former being file-system driven, while the latter is

implemented as a system call. Since a file-system in the

classic sense is not foreseen to be implemented in the OS, the

actual implementation can be seen as a hybrid of the two,

which represents nodes in the configuration in the same

fashion as a virtual file system tree, while all access is

performed via a call interface.

To create a system object for exporting items, a software

module must define at least one attribute structure that

configures the name and the appropriate show and store

methods of that attribute. The object is then registered to an

existing logical set of objects. For instance, a SpaceWire

driver would register its attributes under a /sys/drivers tree,

while an interrupt manager would register under /sys/irq,

provided that these sets were already defined. Optionally, a

new sub-set to hold the system objects of particular attributes

may be created before attaching an object. If the SpaceWire

driver was to manage multiple interfaces, it could create a

logical sub-set /sys/drivers/spw and group interfaces SpW0,

SpW1, ... under that set.

Since there are no formal restrictions on what qualifies to

this system configuration tree, application software running

on top of the operating system can (and should) make use of it

as well. The aforementioned housekeeping data generation

makes a good example for an application that both uses the

the data provided by the registered software modules to

generate housekeeping packets and is itself configured via this

interface, e.g. its polling rate and the definition of

housekeeping data to collect.

VII. SUMMARY

Given the unique nature of the SSDP/MPPB hardware

concept, a custom approach is needed to efficiently run

computational operations in an (astronomical) on-board data

processing and compression setup of instrument payloads.

The operating system currently under development at the

Department of Astrophysics of the University of Vienna

addresses this challenge. To encourage its use, modification

and redistribution, it will be published under an open source

license in all of its parts.

VIII. REFERENCES

[1] Massively Parallel Processor Breadboarding Study, ESA

Contract 21986, Final presentation, ESA DSP Day, (2012)

Available: http://www.spacewire.esa.int/edp-page/events/DSP

Day - RECORE MPPB presentation - part 1.pdf

[Online; accessed 13-May-2016].

[2] Berrojo, L. et al. (2015, 09). Scalable Sensor Data Processor: A

Multi-Core Payload Data Processor ASIC. DASIA 2015

[3] Ottensamer, R. et al. Open-Source Instrument Flight Software

for CHEOPS. AMICSA & DSP Day (2016)

67

http://www.spacewire.esa.int/edp-page/events/DSP%20Day%20-%20RECORE%20MPPB%20presentation%20-%20part%201.pdf
http://www.spacewire.esa.int/edp-page/events/DSP%20Day%20-%20RECORE%20MPPB%20presentation%20-%20part%201.pdf

MacSpace

Jamin Naghmouchi(1) , Sören Michalik(1), Rolf Scheiber(2), Adreas Reigber(2), Peleg Aviely(3), Ran
Ginosar(3), Ole Bischoff(4), Hagay Gellis(5), Mladen Berekovic(1)

(1) TU Braunschweig, Pockelsstrasse 14, Braunschweig, 38106, Germany, naghmouchi@c3e.cs.tu-bs.de
(2) DLR - Microwaves and Radar Institute - SAR Technology Department, 82230 Wessling, Germany
(3) Ramon Chips Ltd, 5 HaCarmel Street, Yokneam, 2069201, Israel
(4) DSI GmbH, Otto-Lilienthal-Strasse 1, Bremen, 28199, Germany
(5) CEVA Inc., 1174 Castro Street, Suite 210, Mountain View, CA 94040, USA

ABSTRACT
The evolution of the Earth Observation mission is
driven by the development of new processing
paradigms to facilitate data downlink, handling and
storage. Next generation planetary observation
satellites will generate a great amount of data at a very
high data rate, for both radar based and optical core
applications.
Real-time onboard processing can be the solution to
reduce data downlink and management on ground.
Not only commonly used image compression
techniques (like e.g. JPEG2000) and signal processing
can be performed directly on board, but also
compression techniques based on more detailed
analysis of image data (like e.g. frequency/spectral
analysis).
The MacSpace RC64 is a prototype DSP/ASIC for
novel onboard image processing, which is being
designed, developed and benchmarked in the
framework of an EU FP7 project and targets these new
demands for making a significant step towards
exceeding current roadmaps of leading space agencies
for future payload processors. The DSP featuring the
CEVA X-1643 DSP IP core will deliver performance
of 75 GMACs (16bit), 150 GOPS and 38 single
precision GFLOPS while dissipating less than 10
Watts.

1. INTRODUCTION
Nowadays, leading space agencies plan for high
resolution and wide swath radar imaging systems
aboard satellites such as the one to be employed in
future Sentinel-1 (HRWS) or potential Venus orbiter
missions. Part of the processing could be shifted from
the ground station to the satellite itself, requiring
powerful real-time on-board processing [1].

Typical applications include, SAR imaging and data
compression. A large set of these applications comprise
of computationally intensive kernels.

These ambitions – far beyond well-known benchmarks,
comprising of mostly basic signal processing
algorithms like Fast Fourier Transform (FFT) and
Finite Impulse Response (FIR) filtering – depend on
the availability of flexible and scalable hardware and
software solutions, since applications most likely will
change and develop over time and therefore space
systems will need to adapt within limited time frames.
Unlike currently employed applications such as e.g.
FFT processing and BAQ compression on SAR
satellites that usually do not change during the life-time
of a satellite and therefore are mostly realized in
hardware (e.g. FPGA accelerators). More modern
applications - due to longer development time and
relatively high development costs - can’t be
implemented on special purpose hardware accelerators
economically. We have detected the need for a
platform that allows enough flexibility for space
application developers and mission planners in order to
determine feasibility of new ground breaking missions
and to determine their parameters.
The aim of the MacSpace project is to drive on-board
processing of complex applications such as SAR
imaging forward, eliminating the need for continuous
transfer of huge data streams to ground stations, saving
significant energy, time and bandwidth that are
required for data transfers and especially for planetary
observation. Besides enabling latency critical
workloads, energy for data transmission can be saved
and spent instead for onboard high-performance
computing. One key challenge of MacSpace therefore
is matching potential application requirements.

2. SAR IMAGE PROCESSING

Modern Synthetic Aperture Radar (SAR) systems are
continuously developing into the direction of higher
spatial resolution and new modes of operation. This

68

requires the use of high bandwidths, combined with
wide azimuthal integration intervals.

For focusing such data, a high quality SAR processing
method is necessary, which is able to deal with more
general sensor parameters. Wavenumber domain
(Omega-K) processing is commonly accepted to be an
ideal solution of the SAR focusing problem. It is
mostly applicable on spaceborne SAR data where a
straight sensor trajectory is given.

Therefore, within the MacSpace project the TU
Braunschweig in close connection with the DLR is
conducting experimental benchmarks on a
representative SAR application excluding
preprocessing steps.

The application consists of:

i) Range FFT
ii) Range compression
iii) Azimuth FFT
iv) Modified Stolt Mapping
v) Range IFFT
vi) Azimuth Compression
vii) Azimuth IFFT

Computation-wise one single RC64 chip could be
capable of processing data of 8192x8192 complex
values (single precision floating point, i.e. in total
512MB) in under 2 seconds @ 300MHz and 100%
compute utilization (based on a computation count:
60G Floating Point Operations @ 38 GFLOPS). Since
the onboard data bandwidth (per core: L1 data - peak
128bit read/write per cycle per core from/to registers,
L1 from/to shared memory ('L2') 128bit @~50%
utilization read and 32bit write) potentially can sustain
the demand by computations, reaching the best-case
performance will be a matter of latency hiding. In the
worst-case scenario, we still expect the application to
finish processing the above described data in under 1
minute.

3 MACSPACE DEMONSTRATOR

The development of a MacSpace demonstrator is part
of the project to validate the usability and functionality
of the system. The processor architecture is
implemented in a high-performance FPGA (Xilinx
Virtex 7) representing the MacSpace RC64 prototype,
which executes the image processing. A personal
computer performs the management and the payload

data handling. The GSEOS V software package is used
to send preprocessed radar data, control and monitor
the prototype as well as to analyse the results and
qualify the performance.

Its high computing performance of 150 GOPS and 38
GFlops per RC64 chip, which could scale to an
interconnected system that meets any defined
performance level, can maintain high processing
resources utilization using innovative parallel
programming technics. The main approach is to
parallelize compute kernels on a base of sufficiently
small-split independent tasks that each work on local
data, while using shared memory.
A hardware (task) scheduler dynamically allocates,
schedules, and synchronizes tasks among the parallel
processing cores according to the program flow.
Hence, it reduces the need for an operating system
(OS) and eliminates large software
management/execution overhead. No OS is deployed to
the cores.

4 RELATED WORK AND COMPARISON

Most existing processors for space applications, such
as Atmel AT697 [5], Aeroflex UT699 [6], Aeroflex
Gaisler GR712RC [7] and BAE Systems RAD750 [8],
provide performance levels below 1,000 MIPS, and are
thus unsuitable for executing high-performance “next
generation digital signal processing” (NGDSP) tasks in
space missions [1]. While NGDSP requirements are
listed at 1,000 MIPS/MFLOPS, a more practical goal is
10,000 MIPS. Even the fastest, currently available
space processor, SpaceMicro Proton200K [9], achieves
only about 4,000 MIPS/900MFLOPS. Performance of
some space processors versus year of introduction is
plotted in figure 2.

Figure 2: Performance Comparison of the RC64 based
on MacSpace RC64 Prototype with other space
processors

69

Recently, the US government has adopted Tilera’s Tile
processor for use in space, in the framework of the
OPERA program and the Maestro ASIC [10].
Integrating 49 triple issue cores operating at 310 MHz,
it is expected to deliver peak performance of 45,000
MIPS. Software development experience for the
Maestro chip has encountered difficulties in
parallelizing applications to the mere 49 cores of the
Maestro. Some of the developments have
underestimated the inter-core communication latencies
involved in the tiled architecture of Maestro. Due to
such difficulties, programmers are forced to cram
multiple different applications into the many-core,
resulting in additional difficulties regarding protection
of each application from the other ones.

REFERENCES

[1] ESA, Next Generation Space Digital Signal Processor
(NGDSP),
http://www.esa.int/TEC/OBDP/SEMR88NO7EG_0.html, July
2012

[2] Ginosar, Aviely et al., RC64: A Many-Core High-Performance
Digital Signal Processor for Space Applications, DASIA 2012

[3] Gao, B.-C., A. F. H. Goetz and W. J. Wiscombe, Cirrus Cloud
detection from airborne imaging spectrometer data using the

1.38 µm water vapor band, GRL,20,301-304, 1993
[4] Hyperspectral Image Processing for Automatic Target

Detection Applications Dimitris Manolakis, David Marden, and
Gary A. Shaw, VOLUME 14, NUMBER 1, LINCOLN
LABORATORY JOURNAL, 2003

[5] Atmel Corp., Rad-Hard 32 bit SPARC V8 Processor AT697E
(datasheet), http://www.atmel.com/Images/doc4226.pdf

[6] Aeroflex Gaisler, UT699 32-bit Fault-Tolerant LEON3FT
SPARC V8 Processor,
http://www.gaisler.com/index.php/products/components/ut699

[7] Aeroflex Gaisler, GR712RC Dual-Core LEON3FT SPARC V8
Processor,
http://www.gaisler.com/index.php/products/components/gr712r
c

[8] BAE Systems, RAD750®radiation-hardened PowerPC
microprocessor (datasheet),
http://www.baesystems.com/download/BAES_052281/Space-
Products--RAD750-component

[9] Space Micro, Proton200k DSR-based SBC,
http://www.spacemicro.com/assets/proton-200k-dspv22.pdf

 [10] M. Malone, OPERA RHBD Multi-Core, MAPLD, 2009

70

Space Debris Detection on the HPDP, A Coarse-Grained Reconfigurable Array
Architecture for Space

D. Suáreza, b , J. Weidendorfera, T. Helfersb, D. Bretzb, J. Utzmannc

aTechnische Universität München, Boltzmannstraße 3, 85748 Garching, Germany

bAirbus Defence and Space GmbH, Robert-Koch-Straße 1, 85521 Ottobrunn, Germany
cAirbus Defence and Space GmbH, Claude-Dornier-Straße, 88090 Immenstaad, Germany

diego.suarez@airbus.com

Abstract
Stream processing, widely used in communications and

digital signal processing applications, requires high-
throughput data processing that is achieved in most cases
using ASIC designs. Lack of programmability is an issue
especially in space applications, which use on-board
components with long life-cycles requiring applications
updates. To this end, the HPDP architecture integrates an
array of coarse-grained reconfigurable elements to provide
both flexible and efficient computational power suitable for
stream-based data processing applications in space.

In this work the capabilities of the HPDP architecture are
demonstrated with the implementation of a real-time image
processing algorithm for space debris detection in a space-
based space surveillance system. The implementation
challenges and alternatives are described making trade-offs to
improve performance at the expense of negligible degradation
of detection accuracy. The proposed implementation uses
over 99% of the available computational resources.
Performance estimations based on simulations show that the
HPDP can amply match the application requirements.

I. INTRODUCTION
A hardware architecture supporting parallelism, such as

pipelining and data-flow parallelism is of high importance in
stream-processing applications, in which conventional
processors do not deliver the required performance efficiently.
An Application-Specific Integrated Circuit (ASIC) achieves
low power consumption with the best performance, but lacks
of any reconfiguration capabilities needed especially in space
applications where the on-board hardware has long life-cycles
and might require application upgrades. On the other hand, a
Field-Programmable Gate Array (FPGA) allows
reconfigurable hardware design at gate level, offering more
flexibility than an ASIC at expenses of higher power
consumption, more silicon and at a relatively reduced
maximum clock frequency, but capable of achieving better
computational performance than processors in stream-based
applications [2]. However, fine granularity reduce
performance in an FPGA because of the complexity of the
programmable connections used to build logic blocks [3].

As a result, architectures are evolving towards hardware
with reconfigurable capabilities that integrates modules that
can be configured to efficiently perform frequently used

operations. The eXtreme Processing Platform (XPP) is the
core of the High Performance Data Processors (HPDP)
architecture [4]. The XPP allows runtime reconfiguration of a
network of coarse-grained computation and storage elements.
The algorithm's data-flow graph is implemented in
configurations, in which each node is mapped to fundamental
machine operations executed by a configurable Arithmetic
Logic Unit (ALU) [5].

The present work aims to determine the effectiveness,
portability and performance of an image processing algorithm
in the HPDP architecture. Space debris is a major issue for
operational satellites and spacecraft. A Space Based Space
Surveillance (SBSS) mission using an optical telescope has
been proposed [1] in order to detect and track such debris.
The required frame rate for the instrument calls for an
efficient on-board image processing implementation in order
to keep payload data volume within limits. Such on-board
data reduction can be implemented by detecting features of
interest (debris, stars) while omitting the remaining image
content (noise, space background).

The main objective of porting the algorithm to the HPDP
architecture is to fulfil the requirement of real-time detection
of space debris. Portability analysis covers use of hardware
resources among different implementation alternatives, its
parallelisation capabilities, throughput, memory usage (size
and required bandwidth) and errors derived from rounding
and data truncation.

The paper is structured as follows. The first section
introduces the HPDP architecture with its constitutive
elements. Next, the theory behind the boundary tensor
algorithm as a feature detection method is explained. Then,
the implementation of the algorithm in the HPDP is described.
In the following section, the cycle-accurate simulation results
are presented to measure the throughput of the algorithm
running on the HPDP, estimate the performance in the
expected hardware, and quantify the detection error. Finally,
the objectives are evaluated and conclusions are given.

II. THE XPP AS THE CORE OF THE HPDP

 The XPP is a runtime-reconfigurable data processing

architecture, that combines a coarse-grained reconfigurable
data-flow array with sequential processors. This allows
mapping regular control-flow algorithms that operates over a

71

stream of data and achieve high throughput. Control-flow
dominated tasks can be executed in the programmable
processors [5].

The XPP Core consists of three types of Processing Array
Elements (PAE): arithmetic logic unit PAE (ALU-PAE),
random access memory with I/O PAE (RAM-PAE) and the
Function PAE (FNC-PAE). ALU-PAE and RAM-PAE
objects are arranged in a rectangular array, called the XPP
Data-flow Array [6].

Figure 1: Overview of the HPDP architecture [4]

For the implementation of the feature detection algorithm
the XPP-III 40.16.2 core is used, consisting of 40 ALU- PAE
objects arranged in a 5x8 array, 16 RAM-PAE and two FNC-
PAE. For the HPDP project the XPP core has been selected
by Airbus DS due to the availability as HDL source code
among others. This enables the implementation on the
STM65nm semiconductor technology, using a radiation
hardened library. The elements in the library are designed
such that radiation effects such as bit flips in storage elements
and transients on control signals lines are very much limited.
This makes the resulting HPDP chip suitable to operate in all
earth orbits and be- yond. The development of this chip is
currently on-going, first prototypes are expected in the second
half 2016.

III. ALGORITHM FOR SPACE DEBRIS DETECTION
The objective of the used algorithm is to detect linear

streaks formed by space debris trails. A linear feature is
defined as a neighbourhood of image pixels with an intensity
distribution forming a patter fitting in a line with some width
and length, and with a high enough signal-to-noise ratio
(SNR) to be detected.

The boundary tensor [7][8] combined with thresholding is
used as the detection algorithm to obtain a binary image
containing the detected objects.

The boundary tensor is constructed combining the results
of applying a set of polar separable filters to the input image.
It has been demonstrated that an adequate linear combination
of the results of applying a set of polar filters to an image,
produces a single peak of energy when an edge is found,
regardless of the type of symmetry in the feature: step edges
that exhibit even symmetry or roof edges that has odd
symmetry [7]. Filtering is performed in the spatial domain,
saving computational efforts compared with filters working in

the frequency domain where Fourier transformations are
required. For this purpose, a set of even and odd filters are
used and the filtering operation is implemented as a set of 1-D
Convolutions along the columns and rows of the image,
generating a set of odd and even responses. Their energies are
combined to obtain the boundary tensor. Seven filter kernels
are used, which are calculated from the Gaussian function and
successive derivatives.

Figure 2: Boundary tensor and thresholding data-flow graph for
space debris detection

IV. PORTING THE DATA-FLOW GRAPH TO THE XPP
ARRAY

Convolution is the basic operation of most signal
processing algorithms. For the boundary tensor algorithm
seven row-wise convolutions and seven subsequent column-
wise convolutions are used to calculate the even and odd
responses. The convolution process accounts for 80% of the
data processing required for the whole boundary tensor
algorithm. Thus, its implementation has a high impact in the
final performance. Four types of operations are required to
complete the convolution stage as illustrated in Figure 3.

Figure 3: Data-flow graph of the convolution stage in the boundary
tensor algorithm for feature detection

72

A. 1-D Convolution Implementation
The reference design of boundary tensor [8] requires, in

first instance, floating-point arithmetic. However, hardware
for signal processing often uses fix-point arithmetic because
floating-point support needs more hardware resources. This in
turn increases power consumption. Furthermore, issues may
arise in time-constrained applications since operations could
take an unpredictable amount of time [9]. Therefore,
convolution is implemented using fix-point arithmetic in this
work. Kernels with radius r = 3 are used.

1) Bit-Width for Data Representation in XPP computations
The XPP array does not have enough computational

elements to calculate several convolution sets in one
configuration. And it has neither enough internal memory
elements to perform convolution rounds with different
kernels, without having to stream-out intermediate results to
the system's memory. Therefore, the bit-width value
representation used in the XPP computations has great
influence in the volume of data exchanged between the XPP
array and the system memory and, in consequence, impact in
the performance. The input pixels are unsigned 16 bit values
(uint16), signed arithmetic is required due to the negative
elements of some kernels, and that the 4-Dimensional Direct
Memory Access (4D-DMA) can transfer data at a maximum
of 64 bits/cycle. A trade-off between accuracy and
performance is possible. If the full-resolution input pixels are
used for computation, two 16 bits data buses from the XPP
array are required to hold computation values. This means
that a pixel is represented by an int32 value and the 4D-
DMA is only capable to transfer 2 pixels/cycle. However, if
the least significant bit (LSB) of the input pixels is truncated,
all computations fit into 16 bits, therefore 4 pixels/cycle can
be streamed to the XPP array. Additionally, the int16
implementation requires the transfer of half the data volume
than the int32, at expenses of inducing an error in the
detection result. This LSB truncation approach is used and
detection error is analysed.

2) Overflow consideration
Kernels that are derived from the Gaussian function are

normalised, which means that the sum of the absolute value of
the kernel elements is equal to one. In addition, for kernels
obtained from the successive derivatives of the Gaussian
function, it can be demonstrated that the sum of the absolute
values is a positive number less than one.

3) Resource Optimisation based on Kernel symmetry
To convolve a full row (or column), a convolution is

executed over all its pixels. At the end of this process, each
kernel element is assumed to be multiplied with all pixels in
the row (column). This rule applies to all pixels except the
ones near the borders, i.e. the first and last r pixels in the row
or column. These are not multiplied by all kernel elements,
but only by r of them. In first instance, it is possible to assume
that for each pixel convolution 2r+1 multiplications must be
done and 2r additions must be calculated.

Symmetry in a kernel is advantageous for the
implementation, because it reduces the number of necessary

multiplications between kernel elements and pixels. In the
case that the kernels show even symmetry, the values at each
side of the vertical axis are a reflection of the other side. As a
result, only r+1 multiplications are necessary. For kernels
with odd symmetry, the central element is always zero and the
elements at one side of the vertical axis have the same
magnitude with opposite sign than the values at the other side.
This means that using this kind of kernel, only r
multiplications are needed per pixel convolution.

B. Boundary tensor trace calculation.
Boundary tensor calculation is performed only once at the

end of the algorithm and its complete implementation fits in a
single XPP array configuration. For this reason, there are no
intermediate values that must be temporarily stored in the
system memory to be streamed-back to the XPP array for
further processing. As illustrated in Figure 4 calculations are
carried out using the given bit-width.

a) Even tensor calculation

b) Odd tensor calculation

73

Figure 4: data-flow graph of the even tensor calculation, with data
type and value ranges

III. RESULTS
In this section the performance of the feature detection

algorithm executed in the HPDP is evaluated. The HPDP chip
is not yet available. The following runtime estimates are
derived from a cycle-accurate simulation of the XPP array and
the expected clock frequencies as given in the following
section.

C. XPP Array Throughput
For determining the throughput of the complete

implementation, each pipeline in every of the six
configurations (i.e. row and column-wise convolution with
even and odd symmetry, transpose and boundary tensor
calculation) is executed in the HPDP simulator. The
maximum average throughput is 3.98 Bytes/cycle, which is
achieved by the configurations computing convolution with
odd symmetry kernels.

For an XPP array working with a 200 MHz clock, after the
data flow in the pipelines has been balanced, a maximum of
796 MBytes/s will be flowing into the XPP array for
processing and, at the same bit rate, results will be generated.
Thus, for a single memory port, the minimum bandwidth to
provide and store-back a continuous data stream to the XPP
array is 1592 MBytes/s. However, this requirement is not met
by the assumed HPDP hardware specification which
integrates two 64-bit wide memory ports: one with an internal
4 MBytes SRAM operating at 100 MHz (i.e. 800 MBytes/s)
and another with an external DRAM attached running at 50
MHz (i.e. 400 MBytes/s). So the maximum theoretical bit
transfer of the SRAM is nearly half the bit rate at which the
XPP array is consuming data and generating results for the
implemented algorithm.

1) Sub-image Processing
To achieve the best performance for the given

specifications, the SRAM should be used for all memory
transactions required for the convolution and boundary tensor
calculation. This implementation requires eight image buffers
for complete execution. One stores the input image, and the
other seven hold the row-convolution results. Because the
transposition operation reads the input image column-wise
and writes the result row by row, it is not possible to use the
same origin and destination buffer for this operation,
otherwise loss of data will occur. Splitting the 2048x2048
pixels input image in 16 parts, produces sub-images that can
be processed one at a time using eight 512 KBytes sub-image
buffers stored in SRAM. DRAM is used to store the input and
result image.

2) Estimated Computation Time
The performance of the algorithm on the specified HPDP

hardware is determined by the memory speed. Based on the
number of write and read operations needed for the complete
algorithm, an estimation of the execution time of the feature
detection algorithm is computed. The algorithm completion

time for the expected HPDP hardware is 734 ms using sub-
image processing with SRAM, compliant with the maximum
one second requirement for processing a 2048x2048 pixels
image.

3) Detection Accuracy
For each detected streak in the binary image obtained from

the HPDP simulation, there are approximately 10% less
detected pixels compared with the reference implementation,
as shown in Figure 5 for an input image containing a streak
with an SNR of 7.19 dB. The error is negligible since the
detection information per object can then be used to store full
streak pixel values in order to not lose accuracy with respect
to the position and brightness in a further processing step on-
ground.

Figure 5: Comparison between reference and HPDP implementation.
Detection values present in the reference implementation but not in
the HPDP results are highlighted in red, and represent 10% of miss-

detected pixels.

V. CONCLUSIONS
In this paper, we showed that the boundary tensor

algorithm can be mapped to a data-flow graph and a simple
control flow is only required for filter kernel update, border
replication and pipeline cleaning tasks. Thus, the XPP array is
appropriate for its implementation, reaching in average 4.7
GOp/s, for 16-bit fixed-point multiplication-addition
operations. The model used for the convolution
implementation makes possible to implement pipeline
parallelism, because the image input stream is multiplied first
by all kernel elements and the adder module receives the
required multiplication results as they are produced.
Moreover, convolution is appropriate for task parallelism in
XPP array, since four consecutive pixel streams are received,
and four pipelines can compute the convolution of four pixels
simultaneously, without data dependencies. The utilisation of
99% of XPP array computation elements (e.g. ALU-PAE),
and the use of the maximum transfer mode of the 4D-DMA,
shows that this implementation is taking advantage of all the
capabilities of the architecture.

Additionally, it has been determined that for a noise-less
detection, the SNR of the feature must be greater than 7.19
dB. This specifies the capabilities of the implemented
algorithm and shall be used as a detection-effectivity
benchmark for comparison with other detection algorithms.

In terms of scalability, the XPP array configuration (use of
array objects and connections) implementing this algorithm is

74

independent from the dimensions of the input image. The size
of the kernel has direct impact in the required operations and
as consequence more XPP array resources are needed if the
kernel radius is increased. This is determined by the deviation
of the Gaussian function that generates the filters. The
deviation value has an impact on the geometry of the features
that can be detected.

Finally, the LSB truncation is an effective alternative to
meet the real-time requirement because the gain in
performance is greater (twice as fast) than the error caused in
the detection, evidenced by a loss of only 10\% of high-
detection pixels. Integer arithmetic keeps the hardware
implementation at the lowest level of complexity, using less
resources, reducing power consumption and assuring
computation time determinism, with negligible error.

To summarize, our experience from implementing the
given algorithm shows that the coarse-grained reconfigurable
array approach successfully can achieve typical requirements
in space. A key feature is the fast re-configurability, which
not only makes programmability possible in the first place,
but also allows even complex data flows to be implemented in
multiple configurations with modest hardware resources and
still high data streaming throughput.

REFERENCES
[1] Utzmann, J., Wagner, A., Silha, J., Schildknecht, T., Willemsen,

P., Teston, F., Flohrer, T. (2014, October). Space- Based Space
Surveillance and Tracking Demonstrator: Mission and System
Design. 65th International Astronautical Congress, Toronto,
Canada.

[2] Bailey, D. (2011, June). Design for Embedded Image
Processing on FPGAs John Wiley & Sons.

[3] Bobda, C. (2007). Introduction to Reconfigurable Computing:
Architectures, Algorithms, and Applications. Springer
Netherlands.

[4] Syed, M., Acher, G., Helfers, T. (2013, May). A High
Performance Reliable Dataflow Based Processor for Space

Applications. Proceedings of the ACM International Conference
on Computing Frontiers.

[5] Schüler, E., Weinhardt, M. (2009). XPP-III: Reconfigurable
Processor Core. In: A. R. Nikolaos Voros and M. Hübner, Eds.
Dynamic System Reconfiguration in Heterogeneous Platforms:
The MORPHEUS Approach, Chap. 6, Springer Netherlands.

[6] PACT XPP Technologies AG. (2006). XPP-III Processor
Overview White Paper. Germany.

[7] Köthe, U. (2003, October). Integrated edge and junction
detection with the boundary tensor. Ninth IEEE International
Conference on Computer Vision.

[8] VIGRA Homepage, Heidelberg Collaboratory for Image
Processing. http://ukoethe. github.io/vigra/

[9] Owen, M. (2007). Practical Signal Processing. Cambridge
University Press.

75

Session 6:

IP Cores, FPGAs, and their Synergies with DSPs

76

Multi-core DSP sub-system IP

G. Rauwerda, K. Sunesen, T. Bruintjes, T. Hoang, J. Potman

Recore Systems B.V., P.O. Box 77, 7500 AB Enschede, The Netherlands

Gerard.Rauwerda@RecoreSystems.com

Abstract

Next generation digital signal processors for space

applications have to be programmable, high performance and

low power. Moreover, the digital signal processors have to be

tightly integrated with space relevant interfaces in System-on-

Chip (SoC) solutions with the required fault tolerance.

We present DSP and Network-on-Chip IP technology to create

multi-core architectures for payload data processing. The IP

complements existing general purpose processing solutions

and can be seamlessly integrated to extend processing and

interconnect capabilities in next generation DSP multi-cores.

I. INTRODUCTION

On scientific missions to deep space a wealth of data is

gathered, analysed and compressed on-board before being

relayed back to earth. The data cannot be sent to earth in its

entirety since modern instruments gather much more data than

can be communicated back to earth. For a correct interpretation

of what is going on in space, and valid answers to exciting

questions it is key that the compressed and processed data is

correct.

Next generation digital signal processors for space

applications have to be programmable, high performance and

low power. Moreover, the digital signal processors have to be

tightly integrated with space relevant interfaces in System-on-

Chip (SoC) solutions with the required fault tolerance.

With the planning for the Cosmic Vision programme in

mind, ESA plans to have a standard ASIC with a space

qualified rad-hard Digital Signal Processor and a performance

of at least 1000 MFLOPS in its portfolio. In this paper, we

present multi-core DSP sub-system IP, built of fixed-/floating-

point Xentium DSP cores connected in a Network-on-Chip

[6][7][8].

This paper is organized as follows: Section II presents the

architectural aspects of a heterogeneous multi-core DSP

system. Section III provides an overview on the Xentium DSP

processor. In Section IV the software development process for

mulit-core DSP architectures is discussed. Section VI

concludes with ideas towards realization of the next-generation

many-core DSP for space.

II. MULTI-CORE DSP ARCHITECTURE

We present a multi-core DSP architecture for streaming

Digital Signal Processing for on-board payload data processing

(OPDP) applications. In the Massively Parallel Processor

Breadboarding (MPPB) study [2][5] and in the Scalable Sensor

Data Processor (SSDP) [10] a Network-on-Chip (NoC) based

multi-core DSP sub-system is integrated together with a

conventional general purpose processor (LEON) sub-system in

a System-on-Chip (SoC).

Figure 1: Multi-core processor comprising a NoC sub-system

(scalable DSP subsystem) and AMBA sub-system (GPP subsystem)

Figure 1 shows the multi-core DSP processor architecture

comprising two main parts: the NoC sub-system and the

AMBA sub-system. Generally, the LEON sub-system acts as

the host processor, initializing and controlling the multi-core

DSP sub-system. After initialization by the host processor, the

multi-core DSP sub-system will autonomously run compute-

intensive DSP functions. The architecture combines the

AMBA legacy subsystem with the performance of the DSP

subsystem. Existing AMBA-based hardware IP components

can be easily integrated and legacy software can be easily

ported.

77

The multi-core DSP subsystem comprises the following

key building blocks:

 The Xentium® is a programmable high-performance

DSP processor core that is efficient and offers high-

precision;

 Network-on-Chip (NoC) technology provides

sufficient bandwidth, flexibility and predictability

which are required for interconnecting DSP cores and

I/O interfaces in streaming DSP applications.

Figure 2: NoC-connected multi-core sub-system

Mainly the high bandwidth peripherals are connected to the

NoC while the others are connected to the AMBA system. The

AMBA system also provides the ability to attach the well-

known LEON core processor to support execution of existing

software with minimal changes to the source code.

A. Network-on-Chip

Tomorrow’s many-cores for (streaming) DSP applications

will be interconnected by a network-on-chip (NoC) instead of

a bus. Currently, most multi-core architectures rely on a central

bus for interconnecting the (digital signal) processor cores.

Such a central bus creates a major bottleneck and impedes

performance, scalability and composability of such systems. A

NoC approach does not suffer from these limitations. A NoC

scales with the number of cores in the design. The more cores

there are, the larger the network, and, hence, the more

aggregate bandwidth is available in the SoC. Other advantages

include that a NoC inherently supports short and structured

wires, enabling increased clock rates and easier link

optimization. NoCs allow disabling inactive parts of the

network, which is essential for energy-efficiency and

dependability. Finally, a key feature of NoCs is their

predictable performance.

Using transparent I/O interfaces it is even possible to extend

the NoC across the chip boundaries creating a network-of-

chips. Hence, NoC technology enables true scalability of

many-core systems-of-chips.

The NoC sub-system is connected with the AMBA sub-

system through an AHB-NoC Bridge (as depicted in Figure 2).

All components connected on the NoC use memory-mapped

communication, and, hence, are available as memory-mapped

components in the AMBA sub-system. So, NoC-connected

components are accessible by devices on the AMBA and vice

versa. This makes it possible for every master on the system to

read and write data anywhere in the system. The LEON can for

example read and write in local Xentium memories and the

Xentium can read and write directly in the AMBA peripherals.

1) XY-routing and QoS

The NoC consists of a set of 5-port packet-switched routers

that use service flow control. One port is the local port

connected to the NoC peripherals; the other ports are connected

to the neighbouring routers.

The services are used to provide Quality of Service (QoS)

for individual data transfers between two communicating

entities (i.e. NoC-connected devices) in the NoC architecture.

The NoC interface consists of 32-bit data in both directions.

The NoC employs XY-routing, i.e. the direction in each

router is determined by the router coordinates and the

destination coordinates. Hence, the routing is fixed and

depends on the topology of the 2D mesh. The use of a fixed

XY-routing scheme ensures in-order delivery of transfers and

prevents deadlocking.

2) NoC Transactions and Performance

The NoC links are full-duplex bidirectional. Each network

link can handle 32 bit concurrently in each direction. The NoC

supports burst transfers with a maximum bandwidth of 32 bits

per clock cycle.

The NoC protocol supports single read/write, block

read/write and (2D) stride-based transfers. With (2D) stride

support data transformations can be done efficiently as part of

the data transfer..

3) Network Interface

A Network Interface (NI) is a component to connect IP

components (including internal/external IO interfaces) to the

NoC. For the connected IPs, the NI hides the implementation

details of a specific interconnect. NIs translate packet-based

NoC communication on the NoC side into a higher-level

protocol that is required on the IP side, and vice versa, by

packetizing and de-packetizing the requests and responses.

Using the transparent NI it is even possible to extend the

NoC across the chip boundaries. Several I/O interfaces are

available on the multi-core DSP architecture, such as

SpaceWire bridge interfaces, bridges to external Analog-to-

Digital Convertor (ADC) and Digital-to-Analog Convertor

(DAC) devices. Through the NI, all these I/O interfaces

become memory-mapped interfaces in the multi-core processor

system.

III. XENTIUM DSP

The Xentium is a programmable high-performance 32/40-

bit fixed-point DSP core for inclusion in multi-core systems-

on-chip. High-performance is achieved by exploiting

instruction level parallelism using parallel execution slots. The

R R R R

R R R R

R R

R R

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

Xentium 0

NI-MS

AHB-NoC
Bridge

NI-MS

Router

Link

Channel

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

NI-MS
NoC IF

IP

78

Very Long Instruction Word (VLIW) architecture of the

Xentium features 10 parallel execution slots and includes

support for Single Instruction Multiple Data (SIMD) and zero-

overhead loops. The Xentium is designed to meet the following

objectives: high-performance, optimized energy profile, easily

programmable and memory mapped I/O.

Figure 3: Top-level of the Xentium DSP

The core modules of the Xentium DSP are the Xentium

core, tightly coupled data memory, and a NoC interface as

shown in the block diagram in Figure 3. The size of the data and

instruction memories is configurable at design-time of the

multi-core processor SoC. A default instance of the Xentium

DSP contains 32 kB tightly coupled data memory and 16 kB

instruction cache.

A. Xentium Datapath

The Xentium datapath contains parallel execution units and

register files. The different execution units can all perform 32-

bit scalar and vector operations. For vector operations the

operands are interpreted as 2-element vectors. The elements of

these vectors are the low and high half-word (16-bit) parts of a

32-bit word. In addition several units can perform 40-bit scalar

operations for improved accuracy. Most operations can be

executed conditionally.

The Xentium datapath provides powerful processing

performance:

 4 16-bit MACs per clock cycle, or

 2 32-bit MACs per clock cycle, or

 2 16-bit complex MACs per clock cycle

The Xentium architecture has two M units, four S units, two

P units and two E units. The M units can perform multiply

operations. The S and P units perform ALU operations (e.g.

additions and subtractions) including shift and pack

instructions, respectively. The E units are responsible for load

and store operations.

Figure 4: The Xentium datapath

B. Xentium Control

The control block in the Xentium core performs instruction

fetching and decoding, and controls the execution units in the

datapath. Instructions are fetched from Xentium-external

memory (e.g. on-chip or off-chip memory in the NoC sub-

system) and are stored in the Xentium instruction cache. The

programmer can indicate that a section of a Xentium program

has to be pre-fetched by the control to ensure that the

instructions of that section of the program are cached. This

prevents cache misses during execution, which makes the

execution time of the pre-fetched section of the program

predictable.

C. Tightly-coupled data memory

The tightly coupled data memory is organized in parallel

memory banks to allow simultaneous access by different

resources. The data memory can be simultaneously accessed by

the Xentium core as well as by the Xentium NoC interface (i.e.

other components in the NoC sub-system have access to the

Xentium memories).

The size of the memory banks is parametrizable at design-

time. By default the data memory in the Xentium tile is

organized in 4 banks of 8 kBytes each, implemented using

SRAM cells.

The memories in the Xentium processor are protected by

Error Detection and Correction (EDAC) logic.

D. Debug Support

Xentium processor IP includes debug hardware for remote

debugging. The Xentium debug units supports stepping, watch

points, break points, back tracing, and full access to registers

and memory.

E. Application Profiling

In order to facilitate profiling of Xentium DSP programs, a

number of software configurable counters (i.e. performance

counters) are integrated in the Xentium processor IP. Through

a configuration register, these counters can be configured to

monitor different events in the Xentium including events such

as cache misses and load/store wait cycles.

79

IV. SOFTWARE DEVELOPMENT

Xentium Software Development Environment (SDE) is C-

based and includes a standard tool chain consisting of a C-

compiler with standard C-library, an assembler, a linker, a

simulator, and a debugger.

Figure 5: The Xentium toolchain

The tools in the tool chain are based on well-known tools

such as the LLVM compiler infrastructure, the GNU binary

utilities, and the GNU debugger, offering a familiar user

interface to allow a quick start. A Xentium Eclipse plug-in

integrates the Xentium tool chain in the Eclipse C/C++ IDE to

provide a familiar graphical user interface for editing, building,

simulating and debugging Xentium programs.

 C-compiler supports C99 and built-in functions for

Xentium instructions. It comes together with a Newlib-

based standard C-library.

 The assembler has clean and readable assembly syntax and

a pre-processor with macro functionality to facilitate

optional hand-programming.

 The Linker, which is based on the GNU linker, has support

for linker scripts which allow developers to describe the

memory layout of executables.

 The archiver lets developers create reusable code libraries.

 With the Xentium Instruction Set Simulator, developers

can test, time and trace execution of Xentium executables

on their PC.

 The Xentium Debugger allows debugging a Xentium

executable running in the Xentium Simulator or on the

Xentium hardware. The debugger is based on GDB, the

GNU debugger, and therefore offers a familiar user

interface.

 The Xentium Profiler allows the user to get detailed cycle

information of an application running on the Xentium

Simulator.

V. TOWARDS MULTI- AND MANY-CORE NEXT-

GENERATION DSP ARCHITECTURES

We have presented the Xentium DSP and Network-on-Chip

technology to create multi-core SoC architectures for on-board

payload data processing. We integrated the Xentium DSP and

NoC IP the Massively Parallel Processor Breadboard (MPPB)

[2][5], tested the IP in XentiumDARE IC [11] and improved

the IPs in the scope of the Scalable Sensor Data Processor

(SSDP) [10].

The journey of integrating more Xentium DSP cores with

advanced features, such as floating-point support, continues to

further increase the performance of the next-generation data

processor for space. Moreover, fault-tolerant features to protect

against permanent and transient errors due to radiation effects

will be added to the NoC technology.

Using CMOS65Space we estimate a many-core DSP

architecture with 8 floating-point Xentium DSP will provide a

performance of at least 8 GFLOPS, opening new opportunities

for advanced data processing in for example scientific

instruments.

VI. REFERENCES

[1] European Space Agency, “JUICE Definition Study Report”,

ESA/SRE(2014)1, 2014

[2] Recore Systems, “Massively Parallel Processor Breadboarding

Study”, 2012

[3] European Space Agency, “Next Generation Space Digital

Signal Processor Software Benchmark”, TEC-

EDP/2008.18/RT, 2008

[4] R. Trautner, “Next Generation Processor for On-Board Payload

Data Processing Applications – ESA Round Table Synthesis”,

TEC-EDP/2007.35/RT, 2007

[5] G. Rauwerda, “Massively Parallel Processor Breadboarding

(MPPB) Study – Final Presentation”, ESA DSP Day, ESTEC,

Noordwijk, The Netherlands, August 2012

[6] K. Sunesen, “Multi-core DSP architectures”, Adaptive

Hardware and Systems Conference, Torino, Italy, June 2013

[7] K. Walters et al., “Multicore SoC for On-board Payload Signal

Processing”, Adaptive Hardware and Systems Conference, San

Diego, USA, 2011

[8] K.H.G. Walters, “Versatile Architectures for Onboard Payload

Signal Processing”, PhD thesis, University of Twente, The

Netherlands, 2013

[9] .M. Souyri et al., “NGDSP European Digital Signal Processing

Trade-off and Definition Study – Final Presentation”, ESA

DSP Day, ESTEC, Noordwijk The Netherlands, August 2012

[10] R. Pinto et al., “Scalable Sensor Data Processor: Development

and Validation”, DASIA, Tallinn, Estonia, 2016

[11] K. Sunesen, “XentiumDARE IC DSP SoC Demonstration

ASIC”, DARE+ Final Presentation, ESTEC, Noordwijk,

The Netherlands, December 2014

80

DSP and FPGA – Competition, Synergy, and Future Integration in Space ASICs

R. Trautnera , J. Botha, D. Merodioa, R. Jansena, R. Weiganda

aESA/ESTEC, 2200 AG Noordwijk, The Netherlands

Roland.Trautner@esa.int

Abstract
Digital Signal Processors (DSPs) have been popular devices
for computation-intensive data processing for many decades.
More recently, programmable logic devices (PLDs) have seen
a dramatic evolution in terms of performances, popularity and
capabilities of devices and programming tools.
The application spectrum for programmable devices with
respect to General Purpose Processors (GPPs) and DSPs has
therefore evolved from a complementary, supportive role to a
more competitive/ synergetic one.
The evolution of chip technology follows a long-term trend
towards increasingly complex Systems on Chip (SoC),
integrating fixed design elements with reconfigurable blocks
and in many cases also mixed signal elements into
Application Specific Integrated Circuits (ASICs). For
commercial digital data processing chips, a trend towards
increased mix of reconfigurable logic with fixed digital
functions can be observed. This is where we see a major
opportunity for future Digital Signal Processing in space
applications.

In this paper, we first recall the basic technology trends for
the implementation of data processing chains. We then
summarize and compare the specific advantages and
drawbacks of processor ASICs and FPGAs in the area of
space based data processing. The advantages expected for
systems on chip that integrate processors and FPGA fabric are
explained, and typical application cases are addressed. The
SoC design trade spaces for the mix of processor and FPGA
IP are discussed, and relevant technology developments in
Europe are summarized. The Scalable Sensor Data Processor
(SSDP) as a promising technology basis for future, large
flexible DSP SoCs is presented, and an architecture concept
for a new high performance flexible European FPGA-
equipped DSP is introduced.

I. INTRODUCTION
Digital Signal Processors have been popular devices for

computation-intensive data processing for many decades. In
comparison to General Purpose Processors (GPPs), their
specific architectural designs support efficient processing of
digital data via separate data and instruction memories,
combined operations such as multiply-accumulate (MAC),
hardware support for efficient loop execution, execution of
multiple parallel operations (SIMD / VLIW), Direct Memory
Access (DMA) mechanisms and other specific features. Ever
increasing clock speeds and, more recently, many-core
designs have led to significant performance increases, a trend
that is still continuing. Recent chip developments for space

applications such as the Scalable Sensor Data Processor
(SSDP) [1] include the combination of GPP and DSP cores,
combing their respective strengths in execution of control
code and efficient processing of data samples.

On the other hand, programmable logic devices (PLDs)
have been developed towards impressive levels of
performance. Originally starting from relatively modest
complexity level that allowed the implementation of glue
logic and other specific circuitry, the recent generation of
programmable devices, in the form of memory based Field
Programmable Gate Arrays (FPGAs), allows not only to
complement dedicated ASICs including GPPs and DSPs, but
can replace them entirely in many application cases.

However, both FPGAs and ASICs have specific
advantages but also drawbacks, which cannot be overcome by
choosing one of these technologies while discarding the other.
In the commercial world, an increasing number of products
provide evidence for a trend to integrate reconfigurable logic
with hard-wired functionality within complex SoCs. The
combination of these technologies is expected to provide a
maximum of application versatility and performance for
future data processing systems and applications, including
those for on-board payload data processing in space
applications.

II. ASICS AND FPGAS – A BRIEF COMPARISON
When implementing a digital design in ASIC or FPGA, a

number of important considerations and tradeoffs apply. For
ASICs, new developments or use of commercially available
ASICs are possible. For FPGA, one is restricted to
commercially available products. For the purposes of this
comparison, we assume an identical or similar technology
node (like 65nm, 180nm) for both technologies.

Application performance / speed is often a key
requirement. Dedicated ASIC developments are providing the
highest performances, often by a factor of 4 up to 10 higher
than FPGA implementations. However, for projects that are
restricted to commercially available parts and involve
solutions that do not map well onto an existing ASIC
products, FPGAs typically provide superior performances.

Power consumption is typically among the key
drawbacks of FPGA solutions. Dedicated ASICs or
commercial ASIC products that meet the performance
specifications provide more power efficient solutions.

Radiation hardness is another factor favouring ASICs
over re-programmable FPGAs. While the TID is typically
adequate also for FPGAs, in the past ASICs have generally
been superior in SEE tolerance. However, the application of
TMR techniques and the use of antifuse FPGAs as well as the

81

mailto:Roland.Trautner@esa.int

upcoming use of flash-based FPGAs does enable the design of
very robust FPGA based systems.

Development time is a key criterion in favour of FPGA
based solutions. The manufacturing, testing and validation,
and space qualification of a dedicated ASIC typically
consumes between 1 and 2 years (even more in case of
complications) of additional development time.

Flexibility is another key FPGA advantage. Late design
changes, design modifications towards derived products, or
even in-orbit re-programming are all possible with FPGAs.

Cost is a factor that depends on some key parameters.
The NRE cost of an ASIC development is typically high
(several M€), but with moderate or even high numbers of use
cases the ASIC’s unit cost may drop significantly below the
cost of a comparable FPGA solution. For functions that are
highly recurrent (GPP, GNSS ASICs, etc.) ASICs beat
FPGAs easily. However, for one-time product development,
or small series up to few 10 products, FPGA solutions are
typically superior or competitive.
Today, it is in most cases the available time for product
development, and the envisaged market size / sales volume
for a product, that drives the decisions for development of a
dedicated ASIC or an FPGA based solution. Commercially
available ASICs (standard products) are typically used
wherever they can meet the application’s performance needs.

III. FPGA-EQUIPPED PROCESSORS
For space applications, the combination of processors with

FPGAs has so far mostly been done on Printed Circuit Board
(PCB) level. . More recently, FPGA dies have been combined
with processor silicon in Multi-Chip Modules (MCMs) such
as Intel’s combination of commercial Xeon® processors with
Altera® FPGAs [2], and the Atmel ATF697FF [3] which
combines a AT697 SPARC processor with an ATF280
SRAM based FPGA for space applications.
In the commercial world, a next step – the integration of
FPGA and GPP / DSP on the same die – is already taking
place [4, 5], with a trend towards increasingly complex SoCs.
It is common knowledge that commercial processor
technology trends are arriving in the space processor
technology area with a typical delay of 10-15 years. Therefore
it is reasonable to assume that the integration of processors /
DSPs and FPGAs on the same chip is about to arrive in
qualified space ASICs around 2020, probably first in the form
of Multi-Chip Modules (MCMs) or in FPGAs with integrated
processor macros, and – possibly some years later - followed
by DSPs and processors with integrated FPGA fabric. In the
following paragraphs, we summarize the added value of such
designs for space applications, and discuss the related
tradeoffs and design spaces available to SoC developers.

A. Added value of FPGA integration
So far, the development of increasingly powerful

processors and more and more capable FPGAs has been done
independently, with HDL and software development done
separately and often for similar applications. An efficient
combination of FPGA and processor(s) in the same SoC
would not only allow to combine the specific advantages of
these technologies, but could also allow to re-use software
and HDL from the traditional separate development lines for

the specific elements where they perform best: software for
control code, real-time needs, FDIR, fast application
switching and FPGA reconfiguration, and HDL for high speed
co-processing, glue logic, and interfacing.
It is therefore expected that the flexibility and application
performance of a new DSP chip can be maximized when
traditional processor architectures are combined with on-chip
FPGA fabric. This is illustrated in Fig. 1.

Figure 1: Postulated advantages of an FPGA equipped Many-core

DSP chip

For space applications, many advantages of integrated
FPGA fabric on space qualified DSP chips are obvious.
The hard-wired functionality (such as GPP, DSP cores, NoC
infrastructure, interface IPs) could provide

• Reliable and efficient control and FDIR functions for the
application

• Software programmable processing power for algorithms
that map well on programmable IPs

• High energy efficiency and small footprint for these hard-
wired elements

• GPP-like real time performances / properties (short
reaction time in software via branch / interrupt)

• Management of the FPGA configuration as a soft-ware
function via the GPP / control processor

On the other side, the on-chip FPGA fabric could provide

• Functionality in line with application needs (logic
dominated or DSP slice dominated FPGA tiles)

• Reconfigurable and quickly re-programmable acceleration
of specific functions

• Flexible glue logic for external companion chips such as
ADC, DAC, accelerator chips

• Flexible logic for non-standard I/Os, tailored protocols,
additional I/O functions

The integration of FPGA fabric on-chip would also reduce the
pin-count and increase associated reliability (in comparison to
solutions using separate processor and FPGA), reduce the
power consumption, and lower the system cost, as DSP/GPP
plus separate FPGA could be replaced by a single chip. The
TID of the system would be uniform, and the SEE sensitivity /
radiation related FDIR could be managed on chip level. The
PCB footprint of the system would be reduced as well.

82

B. Typical Space Application Cases
Once a SoC that combines the advantages of hard-wired,

software-based processors and FPGAs is available, it is
expected that these features are exploited in a range of
relevant application cases. These would include

• Data Processing Units (DPUs): The very high
processing performance of both processor cores and
FPGA fabric would be utilized; in addition, different
and non-standard interfaces for DPUs on different
spacecraft could easily be implemented without board
/ hardware modifications. In comparison to separate
(processor + FPGA) solutions, the lower footprint,
smaller pin count, lower power consumption, and
uniform radiation hardness level would be
advantageous.

• Future platform OBCs: Following a recent trend /
desire to perform more subsystem related data
processing tasks on the platform processor (example:
star tracker / navigation software running on platform
OBC), a platform processor will need high – and
often specific - processing performance which could
be provided by the on-chip FPGA fabric.

• Payloads and instruments: In many payload
applications, an instrument controller (typically a
GPP or DSP) is needed in combination with detectors
/ image sensors / ADCs / DACs. In such applications
that are typically connected via FPGA. The envisaged
SoC would allow to replace two chips by one, and
provide the associated mass / power / footprint
savings at lower cost and higher reliability.

• Telecom processors: in telecom applications, high
bandwidth and processing power can be provided by
the SoC’s NoC, HSSL, and processor cores.
Application specific processing such as codecs can be
implemented in the FPGA fabric, and provide
flexibility via re-programming and re-configuration.

 In addition to these generic space-related application
cases, other uses may exist for niche applications and in
terrestrial areas like nuclear industry and specific R&D fields.

C. Tradeoffs and Design Spaces
For the design of a SoC that integrates hard-wired

processors and FPGA fabric, a wide design space exists
between the extremes of processor-only and FPGA-only
designs. Some of the intermediate options have been adopted
by commercial products already; these include the Xilinx
Zynq FPGAs [6] which combine quad-core and / or dual-core
processors with FPGA fabric, and some variations of the
Xilinx Virtex5 family which includes PowerPC processor
cores. For processors with small on-chip FPGA, so far no
commercial products have surfaced. For space, as of early
2016 no qualified products featuring on-chip FPGA and hard-
wired processors exist. Future versions of the European
FPGAs that are now under development may include a
processor core, but with a die footprint that is dominated by
the FPGA fabric. For the FPGA, further trade-offs between
logic-dominated or DSP slice dominated fabric are needed.

Therefore, the overall design space for FPGA-equipped
SoCs for space applications remains unexplored to a
significant degree, and invites associated R&D towards an
optimized mix of hard-wired and reconfigurable SoC
elements.

IV. RECENT TECHNOLOGY DEVELOPMENTS
A number of relevant technology developments have been

performed or started in ESA contracts in the past few years.
Here, we provide only a brief summary; more information is
available in the provided references, including [7].

A. DSP and NoC IP and related Chips
Recent ESA DSP chip and IP core developments can be
traced back to a study performed from 2008 onwards, called
“Massively Parallel Processor Breadboarding Study”, ESA
contract 21986 [8]. In this study, a heterogeneous multi-core
architecture (2 DSPs, 1 GPP) have been prototyped
successfully together with a proprietary NoC, space standard
interfaces, and other features. This was followed by an ASIC
prototyping activity that proved the DSP cores, NoC, and
other key features in rad-hard silicon (“DARE plus – ASICs
for Extreme Radiation Hardness and Harsh Environments”,
ESA contract Nr. 4000104087) [9]. The most recent
development in this line is the Scalable Sensor Data Processor
(SSDP) ASIC (ESA contract Nr. 4000109670). This chip
provides a LEON3 SPARC compatible GPP and two NoC-
connected VLIW Xentium® DSPs. At a system clock of 100
MHz, the chip provides up to 1600 MOps (800 MMACs) of
DSP processing power, space standard interfaces, and a wide
range of digital and mixed signal features that are expected to
be attractive for applications in space instrumentation, data
processing units, robotics, and various types of spacecraft
subsystems. SSDP will be available world-wide as a
commercial product via Cobham Gaisler [10]. More
information on SSDP is provided in a companion paper [1].

Based on the DSP and NoC IP used in MPPB and SSDP,
additional developments are ongoing for the development of a
floating point version of the Xentium ® DSP (CCN to ESA
contract 21986) as well as an advanced version of the NoC
(ESA contract 4000115252/15/NL/LF) which provides
enhanced features for reliability, radiation hardness, and
FDIR. Both developments are expected to be completed in
2017. A comprehensive overview on DSP and NoC IP, related
software, and ongoing ESA contracts is available in a
companion paper [11] and from [7].

B. FPGA IP and chips
ESA and CNES, together with European space industry,

have been working for several years on the European high-
performance, radiation hardened reprogrammable FPGA
family know under the acronym BRAVE for “Big
Reprogrammable Array for Versatile Environments”.
The first FPGA of the family, under development since 2015,
is the NG-MEDIUM (also known as NXP-32000) under ESA
contract 4000113670/15/NL/LvH [12]. NG-MEDIUM is
based on the STMicroelectronics 65nm ASIC technology and
the associated radiation-hardened library. In order to achieve
high-density (i.e. high capacity) and high performance, most
of the NG-MEDIUM design has been created using a full-
custom flow (i.e. not using the radiation-hardened library).
Radiation hardening has been the main focus, from the full-
custom cell-level to the system-level. For instance, at system
level it includes EDAC for the internal memories, as well as a
transparent configuration memory integrity check. The NG-

83

MEDIUM has a logic capacity similar to the Microsemi®
RTAX4000 FPGA with the advantage of including 112 hard-
macro DSP blocks that bring high-performance for any
algorithm requiring arithmetic operations.
The configuration of the BRAVE FPGA family is based on
radiation-hardened SRAM-memory cells, which provide
unlimited re-programmability of the FPGA. The re-
programmability allows BRAVE based systems to perform
different processing functions, and enables the
implementation of adaptive systems for space.
The first samples of NG-MEDIUM will be available in Q4
2016, with an expected qualification in Q4 2017. The next
FPGA of the family, called NG-LARGE, will use the same
65nm ASIC technology and will have a complexity similar to
the RTG4 FPGA: the first samples are expected to be
available in 2017. There are plans to have the third FPGA of
the family, NG-ULTRA, in 2018.

For integration into larger SoCs, it is possible to use an
embedded FPGA IP (eFPGA) based on the NanoXplore
BRAVE family. There are other European eFPGA solutions
(Menta and Adicsys) based on the use of standard-cell digital
flow: they are more portable solutions across ASIC
technologies, but they provide less density and performance.
Future SoC designers therefore have several options available
for their developments.

V. AN ARCHITECTURE CONCEPT FOR AN FPGA
EQUIPPED HIGH PERFORMANCE DSP

There are multiple options for the integration of FPGA
fabric with contemporary processor and DSP IP. For space
applications and related product acceptance, an evolutionary
approach that supports both software and HDL re-use is
considered advantageous. For ESA, such an approach would
suggest the evaluation of integration possibilities with
recently developed DSP core and NoC IP technology
performed by European companies. In this paper, we
therefore consider an example design (tentatively called
“FlexDSP”) that could be derived from the latest European
Space DSP, the Scalable Sensor Data Processor [1], in a
rather straightforward and evolutionary way.

A. SSDP
The SSDP has already been mentioned in chapter IV A,

and details can be found in the corresponding companion
paper [1]. Here, we limit the description to those elements and
concepts that are relevant for the derived “FlexDSP” concept.

SSDP is based on an architecture that uses a GPP
(LEON3) to control a NoC based subsystem (called
“Omnific”, illustrated in Fig. 2) via an AHB bus bridge and
interrupt signals. All high bandwidth data traffic takes place
within the NoC subsystem; the GPP controls data traffic and
related DMA transfers, assignment of jobs (data and binary
program code) to DSP cores, use of buffers, and overall
system con-figuration. Once DSP jobs or data transfers are
completed, the GPP is notified via interrupt and can schedule
the next activity within a data processing sequence. Some of
these tasks (like control of DMA transfers, or synchronization
of DSP cores) may be delegated to the DSPs in case a lower

Figure 2: SSDP’s “Omnific” NoC Subsystem

GPP interrupt rate is desirable; this may be especially useful
for future SoCs with significantly larger numbers of DSP
cores and NoC nodes, including the “FlexDSP” example.

DSP cores are controlled via their network interfaces
(NIs). These interfaces provide a number of registers
(“mailboxes”) which are used to pass information to the DSP,
and for assigning the DSP’s program code to be executed. A
typical DSP activity sequence may look as follows:

• Input data is transferred to the DSP’s local data
memory via DMA controlled by the GPP.

• The location (address) of the DSP’s assigned
program code is written to the NI’s mailbox.

• The NI then fetches the code and transfers it to the
DSP’s instruction cache; once this is completed,
the DSP is started and code execution commences.

• Once the DSP code execution is complete, the
GPP is notified via interrupt and the DSP core
changes to idle mode.

• Output data in the DSP’s local memory is
transferred to a suitable location via DMA under
GPP control.

• A new sequence as above can be initiated.

This concept is scalable to larger NoCs within certain
boundaries, and is re-used in the “FlexDSP” concept
introduced in the next section.

B. FlexDSP
Taking an evolutionary path towards future SoCs, and

specifically towards an FPGA-equipped many-core DSP as
discussed here, is desirable for a number of reasons, including

• Re-use of available GPP code and tools (LEONx
family, SSDP) to reduce cost / increase maturity

• Re-use of available DSP code and tools (SSDP) to
reduce cost / increase maturity

• Re-use of existing HDL for the embedded FPGA
fabric (glue logic to ADC/DAC, codecs, etc)

• Reducing development risk by re-using accessible,
well known and validated IP cores

84

• Exploiting the accumulated expertise and
familiarity with IP and underlying concepts
available in the user community

A concept for a new, FPGA-equipped many-core DSP
could therefore be based on the following features:

• GPP controller with local memory and associated
subsystem

• NoC with routers, bridges, DMA, network
interfaces

• DSP cores with their local memories / caches,
connected via network interfaces

• One or more FPGA tiles, connected via network
interfaces

• NoC connected memory tiles and external
memory controllers

In order to re-use the software concepts developed for
SSDP, the FPGA tiles could have an interface that supports a
utilization in a way that is similar or identical to that of the
DSP cores. The network interface could provide access to the
FPGA’s integrated memories (corresponding to the DSP
core’s local data memory) and support loading the FPGA’s
configuration bitstream (corresponding to loading code into
the DSP core’s instruction cache). The NI would also
facilitate access to NoC connected memories for the FPGA,
and provide configuration registers and interrupt outputs to
the GPP that controls the system.
The type of FPGA configuration memory could be chosen
between SRAM and FLASH; from a first assessment it seems
that SRAM based FPGA might be more advantageous, as
SRAM cells are available in the relevant DSM ASIC
processes (65nm, possibly 28nm) and would support fast re-
configuration as well as unlimited numbers of re-
programming cycles.
Final memory choice and aspects such as radiation effects
mitigation will need further study.as radiation effects
mitigation will need further study. From the foregoing
considerations, a concept arises that is depicted in Fig. 3. It
extends the basic architecture known from SSDP towards a

larger number of cores, and integrates FPGA fabric that is
connected to the NoC and to external I/Os. In all application
cases, the SoC would start up by booting the GPP which then
configures the on-chip resources. Then, depending on the
application, two distinct types of FPGA fabric utilization can
be considered:

Data processing with frequent re-configuration
Here, the FPGA fabric is used for data processing under

the control of the GPP. A configuration bitstream would be
assigned and loaded via the NI. Data can either be provided
via the NI-connected local FPGA memories, or stored in
memory tiles or external memories and accessed via the NI.
The FPGA fabric would then process the data in line with its
configuration, and notify the GPP via interrupt once the
output data is ready. The GPP can then assign new data and
either re-start the processing, or assign a different
configuration bitstream for a different type of job. The FPGA
bitstream may be loaded via the NoC from either on-chip
memory tiles, or from external (presumably DDR2/3
SDRAM) memory. It is expected that in this scenario, which
is depicted in Fig. 3, FPGA reconfiguration can occur in a
very short time span, much faster than in contemporary
SRAM based FPGAs for which the bitstream is provided via a
comparatively slow interface from external memory.

Static interfacing, pre-processing and glue logic
For applications where the on-chip FPGA is used for static

functions like interfacing to external chips (ADC, DAC, co-
processor chips), provision of custom / additional interfaces
(non-standard interfaces of specialized ASICs, additional
SpW / SPI / CAN / other interfaces) or simple pre-processing
(averaging / filtering / other pre-processing of input data) the
FPGA bitstream is loaded only once at the time of system
configuration, and kept static during the application
execution. For a product, interface configuration bitstreams
for popular companion devices might be provided with the
DSP’s SDE. The mitigation of radiation effects
(configuration memory scrubbing) would be performed
frequently under GPP or NI control. This scenario is depicted
in Fig. 4. It must be noted that the number of DSP cores, on-
chip memory tiles, IOs, and FPGA tiles depicted in the
example (Fig. 3 and Fig. 4) are chosen here for the purposes

Figure 3: FPGA-equipped many-core DSP example (FlexDSP”) configured for reconfigurable processing

85

Figure 4: FPGA-equipped many-core DSP example (“FlexDSP”) configured for static interfacing

of concept illustration, and are not the outcome of a
requirements analysis and trade-off that would be necessary
for a product development.

The performances that can be achieved for such a SoC
increase with the chosen number of DSP cores and FPGA
tiles. The following performances can be expected for the
individual SoC elements when implemented in a 65nm ASIC
process:

• System clock (GPP clock, DSP core and NoC) of
ca. 250 MHz

• DSP cores providing ca. 1 GFLOPS per core (2
MACs per clock cycle, 32 bit floating point)

• Ca. 8 Gbps NoC speed (32 bit parallel lanes, bi-
directional links)

• FPGA performance varying with fabric size and
type; several to several 10 GOPS can be expected

• Process typical TID, radiation hardened design,
6.25 Gbps HSSL, DDR2/3 expected

Upcoming 28 nm processes would further boost the
achievable performance and allowable SoC size. Related
considerations are however out of scope for this paper.

VI. SUMMARY
DSP ASICs and FPGAs enable different solutions for

space based data processing applications. Both technologies
have their advantages and drawbacks. Following a trend that
started in the commercial world, it is expected that an
optimized combination of hardwired GPP / DSP functionality
with FPGA fabric on the same chip will enable more power-,
size-, mass-, and cost-efficient solutions for future space
applications. The design space for such future SoCs is still
largely unexplored and invites further study, followed by
prototyping activities that enable future product developments.

The underlying technologies (GPP, NoC, DSP cores,
FPGA fabric, DSM ASIC processes) are available or under
development in Europe, and would support the envisaged SoC
developments in the near future. A first NoC-based DSP chip

is under development in Europe, and its scalable architecture
provides a possible basis for future SoCs that integrate FPGA
fabric. A conceptual example for a large, European FPGA-
equipped NoC based DSP SoC has been introduced. Its key
features and possible operating modes have been explained,
and areas inviting further study have been identified.

At ESA, further studies on FPGA integration into GPP and
DSP SoCs are planned, and are expected to inform future
design decision for the next generation of high performance
components for space based data processing applications.

VII. REFERENCES
[1] Scalable Sensor Data Processor: Architecture and Development

Status, R. Pinto, L. Berrojo, E. Garcia, R. Trautner, G.
Rauwerda, K. Sunesen, S. Redant, S. Habinc, J. Andersson, J.
López, ESA DSP Day, Gothenborg, 2016.

[2] http://www.eweek.com/servers/intel-begins-shipping-xeon-
chips-with-fpga-accelerators.html

[3] ATF697FF Rad-hard reconfigurable processor with embedded
FPGA, http://www.atmel.com/devices/ATF697FF.aspx

[4] https://www.altera.com/products/soc/overview.html
[5] http://www.microsemi.com/products/fpga-soc/soc-

fpga/smartfusion2#overview
[6] http://www.xilinx.com/products/silicon-devices/soc.html
[7] R. Trautner, Development of New European VLIW Space DSP

ASICs, IP cores and related software via ESA contracts in 2015
and beyond, Proceedings of DASIA, Barcelona, 2015

[8] Walters, K.H.G. and Gerez, S.H. and Smit, G.J.M. and
Rauwerda, G.K. and Baillou, S. and Trautner, R., Multicore soc
for on-board payload signal processing., AHS, 2011.

[9] G. Thys et al., Radiation Hardened Mixed‐Signal IP with Dare
Technology, AMICSA, 2012

[10] Cobham Gaisler, www.gaisler.com
[11] Multi-Core DSP sub-system OIP, G. Rauwerda, K. Sunesen, T.

H. Thanh, J. Potman, ESA DSP Day, Gothenborg, 2016.
[12] O. Lepape, NanoXplore NXT-32000 FPGA, SpacE FPGA Users

Workshop, 3rd edition, ESA/ESTEC, Noordwijk, 2016.

VIII. ACKNOWLEDGEMENTS
The authors would like to thank K. Sunesen (Recore Sys-

tems, NL), A. Notebaert (Airbus D&S, F), and P. Lombardi
(Syderal, CH) for their inputs and contributions to this paper.

86

