Development of a Digital Temperature Transducer ASIC in a 28 nm FD-SOI CMOS Process for a Spaceborne Low Power Sensor Bus

P. P. Boraa, M. Ronerb, D. Borggrevea, A. Hurnib, E. Isaa, L. Maurerc

aFraunhofer EMFT, Munich, Germany
bOHB System AG, Oberpfaffenhofen, Germany
cUniversität der Bundeswehr, Neubiberg, Germany

13.06.2016

This work is funded through project THINGS2DO under the ENIAC grant agreement number 621221 and the national grant agreement number 16ES0240.
Agenda

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
Agenda

- Background
 - 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
Background
Housekeeping in Geostationary Satellites

Housekeeping Data tells:
- where the satellite is pointing
- which parts are working properly
- what its temperature is

Importance of temperature sensing
- Large temperature difference
- To support the onboard Thermal Control System
- Temperature requirements of equipments for reliable operation
Background
Conventional vs Serial Sensor Network

Conventional Sensor Network
- Star topology
- Lot of cables
- Extra weight
- Inflexible for future

Future Sensor Bus System
- Hybrid Bus topology
- Serial Bus line: reduction in wiring
- Electrical and fiber optical sensor network

Current Star Topology

Future Bus Topology

Digital Temperature Transducer ASIC in 28 nm FD-SOI
Agenda

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
28 nm FD-SOI Technology

Process Features

- Characteristics [1]
 - Low C_{ds} and $I_{leakage}$
 - High Speed (LVT, Forward BB)
 - Low leakage (RVT, Reverse BB)
 - High Body-biasing tuning range and sensitivity [3]
 - Robust against latch-up

- Radiation tolerance
 - Thin front oxide
 - Reduced sensitive volume
 - Robust against SEL
 - High TID tolerance due to 25 nm BOX

Agenda

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
System Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-40 °C to +125 °C</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1 °C in [-20 °C, +20 °C] and ±3 °C outside</td>
</tr>
<tr>
<td>Measurement Resolution</td>
<td>0.1 °C</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>≥ 11 bits</td>
</tr>
<tr>
<td>SEU LET threshold</td>
<td>≥ 20 MeV·cm²/mg</td>
</tr>
<tr>
<td>TID tolerance</td>
<td>≥ 300 krad</td>
</tr>
<tr>
<td>Interface type</td>
<td>Serial (I²C)</td>
</tr>
<tr>
<td>Lifetime</td>
<td>15 years in-orbit operation</td>
</tr>
</tbody>
</table>
Agenda

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
System Description
Block Diagram

Temperature sensing concept

\[V_{REF} = V_{BE2} + V_{PTAT} \]

\[V_{PTAT} = \alpha \cdot (V_{BE2} - V_{BE1}) \]

\[V_{BE2} \]

\[-40 \quad +125 \quad \text{Temperature (°C)} \]
System Description

Radiation Hardening

System-level
- Redundancy techniques

![Diagram of FF1, FF2, FF3 connected to a Voter and Output]

Circuit-level
- Optimal transistor sizing
- Offset-compensation
- Back gate biasing

Device-level
- FD-SOI CMOS technology

![Image of FD-SOI CMOS technology]

Layout-level
- Placement of guard-rings

![Image of guard-rings]
Agenda

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
Demonstrator
AMBER1: Top Level

- Developed under THINGS2DO project
- Aim:
 - Validate core design components
 - Validate process features (Body-biasing, Passive devices)
- 92 pins, QFN 100 package
- 1.0 V (Core) and 1.8 V (I/O) Supplies
- Features design blocks for:
 - $\Sigma \Delta$ Modulator, SAR ADC, DAC, LNA, DCO, Mixer, Transmission line, Band Gap Reference.
Demonstrator
Sigma-Delta Modulator

- **Modulator:**
 - Operation voltage 1.0 V (nominal)
 - Fully-differential
 - 1st order, discrete time
 - 1-bit quantization
 - Bandwidth = 500 Hz
 - \(f_{\text{sampling}} = 200 \text{ kHz} \)
 - Symmetrical Layout

- **Operational Transconductance Amplifier**
 - DC Gain = 65 dB
 - Gain Bandwidth = 20 MHz
Demonstrator Sigma-Delta Modulator

CLK

\[V_{\text{in}} \] \[+ \] \[\sum \] \[- \] \[D_{\text{out}} \]

Dynamic Comparator with latch

Current-mirror OTA

Correlated-double Sampling (CDS)

\[f_{\text{in}} = 121.07 \text{ Hz} \]

\[\text{Input Amplitude} \ | \ 1.0 \text{ V}_{\text{pp}} \ (\frac{1}{2} \text{ Full Scale}) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOB</td>
<td>7.14 bits</td>
</tr>
<tr>
<td>SINAD</td>
<td>44.78 dB</td>
</tr>
<tr>
<td>SNR</td>
<td>64.94 dB</td>
</tr>
<tr>
<td>SFDR</td>
<td>44.82 dB</td>
</tr>
<tr>
<td>Power</td>
<td>64 µW (1.0 V Supply)</td>
</tr>
</tbody>
</table>

Agenda

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion
Conclusion

- **Digital Temperature Transducer ASIC:**
 - Sensing, data-conversion and communication

- **28 nm FDSOI CMOS Process:**
 - Reduced parasitics, back-gate biasing, good radiation tolerance

- **System Requirements:**
 - Up to ±1 °C accuracy in [-20 °C, +20 °C] with 0.1 °C resolution

- **Demonstrator: AMBER1 IC**
 - ∑Δ Modulator: 1st order, discrete-time, correlated double sampling

- **Next Steps:**
 - Validate 1st order ∑Δ Modulator on AMBER1 IC
 - Integrate sensor core and digital circuitry

- **Outlook:**
 - Digital intensive design: exploit low-power features of 28 nm FD-SOI CMOS process
 - Further integration of components for space applications based on FD-SOI
THANK YOU