Development of a Digital Temperature Transducer ASIC in a 28 nm FD-SOI CMOS Process for a Spaceborne Low Power Sensor Bus

P. P. Bora^a, M. Roner^b, D. Borggreve^a, A. Hurni^b, E. Isa^a, L. Maurer^c

Fraunhofer

EMFT

^aFraunhofer EMFT, Munich, Germany ^bOHB System AG, Oberpfaffenhofen, Germany ^cUniversität der Bundeswehr, Neubiberg, Germany

13.06.2016

This work is funded through project THINGS2DO under the ENIAC grant agreement number 621221 and the national grant agreement number 16ES0240.

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion

Background

- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator

Background Housekeeping in Geostationary Satellites

Housekeeping Data tells:

- where the satellite is pointing
- which parts are working properly
- what its temperature is

Importance of temperature sensing

- Large temperature difference
- To support the onboard Thermal Control System
- Temperature requirements of equipments for reliable operation

Background Conventional vs Serial Sensor Network

Conventional Sensor Network

- Star topology
- Lot of cables
- Extra weight
- Inflexible for future

Future Sensor Bus System

- Hybrid Bus topology
- Serial Bus line: reduction in wiring
- Electrical and fiber optical sensor network

Background

- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator

28 nm FD-SOI Technology Process Features

Characteristics [1]

- Low C_{ds} and I_{leakage}
- High Speed (LVT, Forward BB)
- Low leakage (RVT, Reverse BB)
- High Body-biasing tuning range and sensitivity [3]
- Robust against latch-up
- Radiation tolerance
 - Thin front oxide
 - Reduced sensitive volume
 - Robust against SEL
 - High TID tolerance due to 25 nm BOX

EMFT

 ^[1] S. Shopov, S.P. Voinigescu, "Characterization of the High Frequency Performance of 28-nm UTBB FDSOI MOSFETs as a Function of Backgate Bias", Compound Semiconductor Integrated Circuit Symposium (CSICs), 2014 IEEE
 [2] http://cmp.induiti/idocuments/doc/UTBB-FDSOI%20Design%20and%20Migration%20Methodology_.pdf
 [3] S. Le Tual et al, "A 20GHz-BW 6b 10GS/s 32mW Time-Interleaved SAR ADC with Master T&H in 28nm UTBB FDSOI

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator

System Requirements

Temperature Range	-40 °C to +125 °C
Accuracy	±1 °C in [-20 °C, +20 °C] and ±3 °C outside
Measurement Resolution	0.1 °C
ADC Resolution	≥ 11 bits
SEU LET threshold	≥ 20 MeV·cm²/mg
TID tolerance	≥ 300 krad
Interface type	Serial (I ² C)
Lifetime	15 years in-orbit operation

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator

System Description Block Diagram

System Description Radiation Hardening

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator

Demonstrator AMBER1: Top Level

- Developed under THINGS2DO project
- Aim:
 - Validate core design components
 - Validate process features (Body-biasing, Passive devices)
- 92 pins, QFN 100 package
- 1.0 V (Core) and 1.8 V (I/O) Supplies
- Features design blocks for:
 - ΣΔ Modulator, SAR ADC, DAC, LNA, DCO, Mixer, Transmission line, Band Gap Reference.

Demonstrator Sigma-Delta Modulator

- Modulator:
 - Operation voltage 1.0 V (nominal)
 - Fully-differential
 - 1st order, discrete time
 - 1-bit quantization
 - Bandwidth = 500 Hz
 - $f_{sampling}$ = 200 kHz
 - Symmetrical Layout
- Operational Transconductance Amplifier
 - DC Gain = 65 dB
 - Gain Bandwidth = 20 MHz

Demonstrator Sigma-Delta Modulator

[1] Enz, Christian C., and Gabor C. Temes. "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization." *Proceedings of the IEEE* 84,11 (1996): 1584-1614.

[2]Roh, Jeongjin, et al. "A 0.9-V 60-µW 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range." Solid-State Circuits, *IEEE Journal of* 43.2 (2008): 361-370.

- Background
- 28 nm FD-SOI Technology
- System Requirements
- System Description
- Demonstrator
- Conclusion

Conclusion

Digital Temperature Transducer ASIC:

- Sensing, data-conversion and communication
- <u>28 nm FDSOI CMOS Process</u>:
 - Reduced parasitics, back-gate biasing, good radiation tolerance
- System Requirements:
 - Up to ±1 °C accuracy in [-20 °C, +20 °C] with 0.1 °C resolution
- Demonstrator: AMBER1 IC
 - $\sum \Delta$ Modulator:1st order, discrete-time, correlated double sampling
- Next Steps:
 - Validate 1st order $\sum \Delta$ Modulator on AMBER1 IC
 - Integrate sensor core and digital circuitry
- Outlook:
 - Digital intensive design: exploit low-power features of 28 nm FD-SOI CMOS process
 - Further integration of components for space applications based on FD-SOI

THANK YOU

