65nm Technology Development

for electronics in the LHC at CERN

High Luminosity at the LHC

- PDR: Oct 2014; Ext. Cost & Schedule Review in Jan-Feb 2015;
- TDR: OCT 2015; TDR_v2: 2017
- Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018)
- Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)
- Start construction 2018 for IT, CC & other main hardware
- IT String test (integration) in 2019-20; Main Installation 2023-25
- Though but based on LHC experience feasible

PIONS

Charged pion spectrum, Strip barrel 1, inner

NEUTRONS

Neutron spectrum, Strip barrel 1, inner

- The radiation field in mainly photons, "light" charged particles, and neutrons
- "No" heavy ions
- Protons and neutrons, in their energy range, can interact with Silicium and produce ions by spallation. The highest LET of these ions is less than 15 MeV/cm2
- The spallation rate is such that the (protons induced) SEU cross section per bit is in the range 10⁻¹³ to 10⁻¹⁴ cm⁻²
- With appropriate TRM/redundancy the SEU cross section per bit is reduced by a factor ~100
- Also latchup risk is reduced
- The main issue is ionising dose effects in the oxides

Provides capability for:

High density pixel detectors:

 50umx50um with internal buffer and data processing per pixel

High speed links :

The trigger rates (that extracts data out of the detector) may increase by a factor 10, plus more detector channels

Technology roadmap in HEP

Radiation tests

Enclosed Layout Transistor exhibits no degradation

Standard layout exhibits parasitic leakage with a "shape"

Oxide and interface charges

June 14, 2016 AMICSA 2016 10

irradiation

Radiation tests

NMOS

"Radiation Induced Narrow Channel" effect

F.Faccio, G.Cervelli, "RadiaOon-induced edge effects in deep submicron CMOS transistors", IEEE Trans. Nucl. Science, Vol.52, No.6, December 2005, pp.2413-2420

W=min size

Radiation tests

Radiation tests

The PMOS drive capability degrades

Std PMOS device

Std NMOS device

Transistors' size: W=1um, L=60nm

Irradiation conditions:

T = 25C

Bias: |Vgs|=|Vds|=1.2V

Transistors' size: W=0.6um, L=60nm Irradiation conditions:

* Bias:

"Vgs" => | Vgs |= 1.2V, Vds=0V

"Diode" => |Vgs|=|Vds|=1.2V "Gnd" =>|Vgs|=Vds=0V

Std NMOS device

CERN

June 14, 2016 AMICSA 2016

(for the most damaged devices)!

Std PMOS device

Digital Libraries

Measured versus Model Pre-Rad and at 500Mrads

DRAD Chip: evaluation of variants of digital libraries

Models build at 200 and 500 Mrads

Bandgap reference

Bandgap with Diodes

Bandgap with DTNMOS

I/O cells

SLVS Receiver, 640Mb/s

SLVS Driver cell, 1.2GB/s

RAM Generator

Clock synchronous, pseudo dual-port memory

Write/Read operation @ same clock cycle

Operating speed: 80 MHz @ 1.2 V

Memory Compiler specifications:

Minimum size: 128 words of 8 bit Max size: 1k words of 256 bits

Generates: complete OA database, timing

library, datasheets

RadTol design techniques for TID and SET robustness

(Development by IMEC)

Other cells in preparation

PLL, DLL

Front-Ends (Amplifiers, filters, discriminators)

ADC: 12 bits dual ramp (monitoring)

DACs: 10 bits (biasing)

LDO

65 nm technology SEU cross section

Electronics in experiments

High density Pixel

Next generation of silicon pixel detectors for phase-2 upgrade of ATLAS and CMS at HL-LHC sets unprecedented design requirements

- Small pixels (50x50 μm2 / 25x100 μm2)
- Large chips (~2x2 cm2, ~109M transistors)
- Hit rate up to more than 3 GHz/cm2
 (high pileup ~200) Radiation
 tolerance: 1 Grad TID, 2x1016 neq/cm2
- Trigger rate up to 1 MHz, ~12.5 μs trigger latency

Electronics in experiments

- Data rates:
 - 5 to 10 Gb/s for up links
 - 2.5 Gb/s for down links
- Environment
 - Temperature: -35 to + 60 °C
 - Total Dose: 100 Mrad qualification (200 Mrad LpGBT chipset)
 - Total Fluence: 2x10¹⁵ n/cm2
 and 1x10¹⁵ hadrons/cm²

LpGBT

Bidirectional High Speed Serial Link

Goals of RD53 (65 nm technology)

- Radiation qualification and characterization in 65 nm → guidelines for radiation hardness
- Development of tools and methodology to efficiently design large complex mixed signal chips
- Design and characterization of circuits and building blocks needed for pixel chips
 → design of shared rad-hard IP library
- Design and characterization of full scale demonstrator pixel chip

RD53 Working Groups (WGs)

Radiation WG

Analog WG

IP WG

Simulation WG

Top level and chip integration WG

I/O WG

20 participating institutes: Bari, Bonn, CERN, CPPM, FNAL, LBNL, LPNHE, New Mexico, Milano, Padova, Pavia-Bergamo, Pisa, Perugia, Prague IP-FNSPE-CTU, PSI, RAL, Torino, UC Santa Cruz, Sevilla

Complex Design Manufacturing Rules

DRC deck file line count:

250nm: 5,300 lines 130nm: 13,500 lines 90nm: 38,400 lines 65nm: 89,300 lines

Conclusion

- A large effort is going on at CERN and with the associated institutes to qualify a 65nm technology for the experiments upgrades
- Targets are highly segmented detectors and high bandwidth
- Dependencies found at "high" total dose, with complex annealing and dose rate relationships
- IP blocks under developments, through structured collaborations

