FIRST TELECOM APPLICATION OF DIGITAL AND MIXED COMPONENT DEVELOPMENTS: 65NM ASIC AND DATA CONVERTERS

F. MALOU, C. AMIOT-BAZILE (CNES), P. VOISIN (TAS)

15th June, 2016
Outline

FAST project overview: TAS Digital Transparent Processor (DTP)

DTP Key technologies:
- ATMEL-ST-E2V 65nm ASIC
- E2V High speed Data Converters

Conclusion
SpaceFlex Processor is a complete product offer from ground interface to space segment and fully scalable from SpaceFlex 2 [2 GHz] up to SpaceFlex 74 [74 GHz]
COMSAT NG

COMSAT NG Program
- New generation of defense telecommunications satellites
 - Renewal of in-orbit Syracuse 3 capabilities
 - Two satellites, first satellite in orbit in 2020

Dual pre-developments
- Under CNES responsibility
- Programs:
 - FAST: KO in 2012
 - TELEMAK: KO in 2015

Dual Developments in progress at Thales Alenia Space
DTP : Key technologies

FAST DTP : SpaceFlex TAS

E2V Data converters
- High speed
- Large input bandwidth
- Low power consumption
- Multi channel

ALMEL-ST 65nm space ASIC
- ATML-E2V Hermetic Flip-chip assembly
- High integration
- Low power consumption/Mbps
- HSSL IP

VT65 ASIC ATML-ST-TAS-CNES

Other disruptive technologies
- Connectors
- PCB
- DCDC,

ATMEL-65nm space ASIC
- ATML-E2V Hermetic Flip-chip assembly
- High integration
- Low power consumption/Mbps
- HSSL IP

VT65 ASIC ATML-ST-TAS-CNES

Other disruptive technologies
- Connectors
- PCB
- DCDC,
65NM ASIC

65nm wafer from ST
65nm ASIC offer: context

- In the frame of ESA and CNES supported activities, ST has developed the C65SPACE, a radiation hardened standard cell library for space, based on the 65 nm bulk process, produced in their fab in Crolles (F).

- 65nm supply chain proposed in 2010 by ST has been selected in 2012 by FAST project

- The C65SPACE platform is supplied by ATMEL with space qualification support, HSSL and Flip-Chip under the AT65RHA name.

For FAST DTP
ATMEL is the supplier of 65nm ASICs which are based on ST process and e2V packaging
65nm ASIC offer: features

65 nm technology from ST Crolles (F)

>100 usable Mgates equivalent nand2
Hardening-by-Design
Designed In Reliability: Ageing models extended from 10 to 20 years

Supply voltages: 1.2V for core, 1.8V, 2.5V & 3.3V for periphery

Very low operating consumption < 0.5 nW/gate.MHz at 20% activity (target)

Maximum toggle frequency: 30 GHz

Compiled ROM, SRAM & DPRAM memories

LVDS (655 Mps)

PLL 6 phases 100MHz input / 1.2GHz output

HSSL up to 6.25Gbps

Typical signal I/O's > 1000 – Hermetic Flip-Chip technology

Disruptive technology

Key performances for DTP
65nm ASIC offer: list of IP

Cell
- Low leakage
- Low power
- Delay
- High speed
- Balanced
- Gated clock
- Place & Route
- Rad-hard
- Rad-hard 1GHz

Memory
- Single Port High Speed
- Single Port Register File
- DualPort REG
- ROM
- ECC
- BIST
- DualPort HD/HS

IO
- Cold Spare 1V8/2V5/3V3
- LVDS 2V5
- I2C
- Basic
- ESD enhanced
- Flip-chip
- HSSL 6.25Gbit/s
- Double rows
- Fast LVDS

Analog
- 200-1200MHz 6 phases 40ps/200MHz
- 200-1200MHz 6 phases new divider factor
- Rad-hard Thermal Sensor
65nm ASIC offer: radiation performances

<table>
<thead>
<tr>
<th>Feature</th>
<th>65nm Library Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL</td>
<td>No SEL below LETth of 60MeV/mg.cm² at Vccmax</td>
</tr>
<tr>
<td>SEFI</td>
<td>No SEFI detected on libraries</td>
</tr>
<tr>
<td>SEU</td>
<td>SEU cross section are available</td>
</tr>
<tr>
<td>TID</td>
<td>Technology suitable up to 300Krad5si) for Vccmax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std cells libraries</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKYROBLPSVT</td>
<td>Radiation Hardened with standard Vt transistors</td>
</tr>
<tr>
<td>SKYROBPLVT</td>
<td>Radiation Hardened with low Vt transistors (faster)</td>
</tr>
<tr>
<td>CORE65LPSVT</td>
<td>Library offering a wide range of combinational and sequential cells for area/power optimisation, without specific radiation hardening</td>
</tr>
<tr>
<td>CLOCK65LPSVT</td>
<td>Clock-tree cells designed to mitigate duty cycle distortion on clock trees networks</td>
</tr>
</tbody>
</table>

SEU rate improvement for SKYROB ranging from 80 to 500
AT65RHA Supply Chain

- Package Design
 - Simulations/Extracts
 - Design Approval
 - Package NRE
 - Package Fab
 - PO Package Fab
 - Visual Inspection
 - Assembly
 - Test and Screening
 - Columns attach

- Assembly Instruction
- Assembly Build Instruction
- Wafer fab
 - Wafer Probe
 - Wafer Bumping
 - Wafer Sawing
 - Waffle pack (tbc.)

Participants:
- ATMEL (France)
- HCM (France)
- e2v (France)
- NTK (Japan)
- ASE (Taiwan)
- ST (France)
AT65RHA Design flow
ATMEL test capabilities for 65nm ASICs

- 300mm wafer Prober

- High performance tester for Digital and Analog: Xcerra Sapphire
 400 MHz, up to 800 Mbits/sec, 768 digital pins, High accuracy

- High Power Burn-in system
 - Dynamic Burn-In
 - Testing capabilities for high-power devices.
 - Individual Temperature Control
 - Up to 8 different pattern zones with one burn-in board per zone.
1st 65nm ASIC : TAS-ATMEL-ST VT65

VT65 ASIC characteristics:
- Working Frequency > 600 MHz
- Technology: AT65RHA
- Core Power supply: 1.2V
- IO: 3.3V & 2.5V
- Package > 1600 IO
- Usefull pins > 500

Core Cells summary:
- > 40 Mgates eq.
- > 600 memories
- HSSIL IP (6.25Gbps)
- PLL IP (100MHz input / 1.2GHz output)
- THSENS IP
- Cold Sparing buffers
- LVDS (655Mps)

Total transistors > 200 Million

For a same design,
Frequency is x 2
Layout area is ÷ 2 to 3
with 65nm vs 180nm
VT65 ASIC : CCGA1752
Flip-chip package

Flip-chip package is mandatory:
• Complexity and I/O number
• HSSL link performances

Hermetic Package
• CCGA1752 (alumina – 18 layers)
• Body size: 45x45mm - 4.2mm thick
• Design by Atmel, Assembly done by E2V

Die
• Die Size 15.4x15.4mm
• Bumps count: 3814
DATA CONVERTERS

E2V assembly line
E2V EV12AD550 ADC

Development and ESCC evaluation in the frame of CNES and DGA programs

ADC Main Features:
- Dual channel ADC
- 12-bit resolution
- 1.5 Gsps conversion rate
- Large input bandwidth up to ~3.7GHz
- LVDS parallel outputs 1:2-1:1 DEMUX.
- 2.1 W typ in 1:1 DEMUX ratio per core
- Flip-chip Hermectic package CCGA323 (AIN 21x21mm, Pitch 1.0mm)
- 130nm BiCMOS from ST (F)

EV12AD550 is under Evaluation
- Electrical characterization and Radiation tests completed
- ESCC evaluation and in progress
EV12AD550 Bandwidth and Broadband performances

Large input bandwidth up to ~3.7GHz

NPR ~ 48 dB in 1st Nyq. at -15dB loading factor

Ripples due to the DAC pattern size versus probability of clipping
EV12AD550 Output Spectrums

Fs = 1500MSps, Fin = 2980MHz / -12dBFS

- **ENOB** = 9.44 bit
- **SNR** = 58.9 dBFS
- **THD** = -70.4 dBFS
- **SFDR** = -75.4 dBFS (H3)
- **SINAD** = 58.6 dBFS

Fs = 1500MSps, Fin = 1480MHz / -12dBFS

- **ENOB** = 9.21 bit
- **SNR** = 58.0 dBFS
- **THD** = -65.0 dBFS
- **SFDR** = -67.0 dBFS (H2)
- **SINAD** = 57.24 dBFS
E2V EV12DS130A DAC

Development and ESCC evaluation in the frame of CNES program

DAC Main Features:
- 12-bit resolution
- 3 Gsps Conversion rate
- 6 GHz analog output bandwidth
- 4:1 or 2:1 built in MUX (selectable)
- 1.3 W Power Dissipation
- NRZ, Narrow RTZ, 50% RTZ, RF modes
- IUCM mode (Patent e2v/CNES)
- SEL& SEFI free, 110 krads
- Ci-CGA255 Package (21x21mm, pitch 1,27mm)
- B7HF200 SiGeC techno. from Infineon (G)
- 1st Nyquist (NRTZ): NPR = 51.3dB at Fs = 3Gsps
- 1st Nyquist (NRTZ): NPR = 55.7dB at Fs = 1.5Gsps
- 2nd Nyquist (NRTZ or RTZ): NPR = 44.6 dB at Fs = 3 Gsps
- 3rd Nyquist (RF): NPR = 42.5 dB at Fs = 3 Gsps

EV12DS130A is used on Telecom projects
- ESCC evaluation completed since 2012: very good performances, reliability and radiation results
- QMLV qualified in 2015
Conclusion

DTP Key performances:
- 640 MHz digitalized bandwidth
- Many tens of GHz of full capacity
- Cost decreases in Mass/consumption/volume per GHz

ASIC Key performances:
- High speed link: 6,25Gbps rad-hard HSSL IP
- High integration with 65nm ASIC die size up to 400 mm²
- > 600 MHz working frequency
- Flip-chip Packaging

Data converters Key performances:
- High speed >1,5Gsps
- L-band & S-band
- Integration with multi channel
- Low power consumption ~ 2W
- Flip-chip Packaging

DTP is a high tech product with high innovation
For drastically enhanced performances

Constructive collaboration between all the FAST partners,
Telecoms, Technologists, Components engineers and Manufacturers
Acknowledgements

ATMEL : AT65RHA team

ST : C65Space team

E2V : CALLISTO team

TAS : FAST team

CNES : FAST team

ESA : L.Hili, L.Murphy

DGA : G.Jestin
Thank you!

Contacts:

Florence.Malou@cnes.fr Caroline.Amiot-Bazile@cnes.fr

Philippe.Voisin@thalesaleniaspace.com