



**AMICSA 2016** 

## FIRST TELECOM APPLICATION OF DIGITAL AND MIXED COMPONENT DEVELOPMENTS: 65NM ASIC AND DATA CONVERTERS

F. MALOU, C. AMIOT-BAZILE (CNES), P. VOISIN (TAS)

15th June, 2016















#### **Outline**



FAST project overview: TAS Digital Transparent Processor (DTP)

DTP Key technologies:

ATMEL-ST-E2V 65nm ASIC

E2V High speed Data Converters

Conclusion





#### **FAST DTP: TAS SPACEFLEX**

#### The SpaceFlex Processor Perimeter

**On-Board** 

**Switches** 

**Conversion Chains** 

Frequency reference

Processing & routing (DTP)

Command & Control

High Speed Modem & processing

**On-Ground** 

Dynamic Management Software

**Operating Tool** 









SpaceFlex Processor is a complete product offer from ground interface to space segment and fully scalable from SpaceFlex 2 [2 GHz] up to SpaceFlex 74 [74 GHz]



#### **COMSAT NG**



- COMSAT NG Program
  - New generation of defense telecommunications satellites
    - Renewal of in-orbit Syracuse 3 capabilities
    - Two satellites, first satellite in orbit in 2020
- Dual pre-developments
  - Under CNES responsibility
  - Programs :
    - **FAST : KO in 2012**
    - TELEMAK : KO in 2015



A new generation Digital Transparent Processor is necessary for COMSAT NG program



**Dual Developments in progress at Thales Alenia Space** 





#### **DTP**: Key technologies



CNA EV12DS130A E2V

#### **E2V Data converters**

High speed Large input bandwidth Low power consumption Multi channel



Elementary

bandwidth

Very High Data Rate Interconnection between ASICs and cards

Routing Digital **Boards** 

**ASICs** 

**ATMEL-ST 65nm space ASIC ATMEL-E2V Hermetic Flip-chip** assembly

High integration Low power consumption/Mbps **HSSLIP** 



VT65 ASIC ATMEL-ST-TAS-CNES

**Other disruptive** technologies

> Connectors **PCB** DCDC,





#### **65NM ASIC**



65nm wafer from ST



#### 65nm ASIC offer: context



- In the frame of ESA and CNES supported activities, ST has developed the C65SPACE, a radiation hardened standard cell library for space, based on the 65 nm bulk process, produced in their fab in Crolles (F).
- 65nm supply chain proposed in 2010 by ST has been selected in 2012 by FAST project
- The C65SPACE platform is supplied by ATMEL with space qualification support, HSSL and Flip-Chip under the AT65RHA name.

For FAST DTP

ATMEL is the supplier of 65nm ASICs
which are based on ST process and e2V packaging



#### 65nm ASIC offer: features



65 nm technology from ST Crolles (F)

#### >100 usable Mgates equivalent nand2

Hardening-by-Design

Designed In Reliability: Ageing models extended from 10 to 20 years

Supply voltages: 1.2V for core, 1.8V, 2.5V & 3.3V for periphery

**Very low operating consumption** < 0.5 nW/gate.MHz at 20% activity (target)

Maximum toggle frequency: 30 GHz

Compiled ROM, SRAM & DPRAM memories

LVDS (655 Mps)

PLL 6 phases 100MHz input / 1.2GHz output

**HSSL** up to 6.25Gbps

Typical signal I/O's > 1000 - Hermetic Flip-Chip technology



Disruptive technology
Key performances for DTP



#### 65nm ASIC offer: list of IP













## 65nm ASIC offer : radiation performances



| Feature | 65nm Library Performances                        |
|---------|--------------------------------------------------|
| SEL     | No SEL below LETth of 60MeV/mg.cm² at Vccmax     |
| SEFI    | No SEFI detected on libraries                    |
| SEU     | SEU cross section are available                  |
| TID     | Technology suitable up to 300Krad5si) for Vccmax |

| Std cells libraries | Target                                                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| SKYROBLPSVT         | Radiation Hardened with standard Vt transistors                                                                                       |
| SKYROBLPLVT         | Radiation Hardened with low Vt transistors (faster)                                                                                   |
| CORE65LPSVT         | Library offering a wide range of combinational and sequential cells for area/power optimisation, without specific radiation hardening |
| CLOCK65LPSVT        | Clock-tree cells designed to mitigate duty cycle distortion on clock trees networks                                                   |



SEU rate improvement for SKYROB ranging from 80 to 500



#### **AT65RHA Supply Chain**









#### **AT65RHA** Design flow







#### ATMEL test capabilities for 65nm ASICs

- 300mm wafer Prober
- High performance tester for Digital and Analog: Xcerra Sapphire

400 MHz, up to 800 Mbits/sec, 768 digital pins, High accuracy



#### High Power Burn-in system

- Dynamic Burn-In
- Testing capabilities for high-power devices.
- Individual Temperature Control
- Up to 8 different pattern zones with one burn-in board per zone.









### 1<sup>st</sup> 65nm ASIC: TAS-ATMEL-ST VT65



#### VT65 ASIC characteristics:

- Working Frequency > 600 MHz
- Technology : AT65RHA
- Core Power supply: 1.2V
- IO: 3.3V & 2.5V
- Package > 1600 IO
- Usefull pins > 500

# A HISEL BOUTH O A HISEL BUMPS O A HISEL SOUTH O

VT65 ASIC die > 200mm<sup>2</sup>



VT65 ASIC in CCGA1752 package

#### Core Cells summary:

- > 40 Mgates eq.
- > 600 memories
- HSSL IP (6.25Gbps)
- PLL IP (100MHz input / 1.2GHz output)
- THSENS IP
- Cold Sparing buffers
- LVDS (655Mps)



For a same design,
Frequency is x 2
Layout area is ÷ 2 to 3
with 65nm vs 180nm

Total transistors > 200 Million



#### **VT65 ASIC: CCGA1752** Flip-chip package



#### Flip-chip package is mandatory:

- **Complexity and I/O number**
- **HSSL link performances**

#### Hermetic Package

- CCGA1752 (alumina 18 layers)
- Body size: 45x45mm 4.2mm thick
- Design by Atmel, Assembly done by E2V

#### 

- Die Size 15.4x15.4mm
- Bumps count: 3814











#### **DATA CONVERTERS**



E2V assembly line



#### E2V EV12AD550 ADC



#### Developement and ESCC evaluation in the frame of CNES and DGA programs

#### ADC Main Features :

- Dual channel ADC
- 12-bit resolution
- 1.5 Gsps conversion rate
- Large input bandwidth up to ~3,7GHz
- LVDS parallel outputs 1:2-1:1 DEMUX.
- 2.1 W typ in 1:1 DEMUX ratio per core



EV12AD550 block diagram

- Flip-chip Hermectic package CCGA323 (AlN 21x21mm, Pitch 1.0mm)
- 130nm BiCMOS from ST (F)



#### EV12AD550 is under Evaluation

- Electrical characterization and Radiation tests completed
- ESCC evaluation and in progress



## **EV12AD550 Bandwidth** and Broadband performances







Large input bandwidth up to ~3,7GHz

NPR ~ 48 dB in 1st Nyq. at -15dB loading factor



#### **EV12AD550 Output Spectrums**









#### E2V EV12DS130A DAC



#### Development and ESCC evaluation in the frame of CNES program

#### DAC Main Features :

- 12-bit resolution
- 3 Gsps Conversion rate
- 6 GHz analog output bandwidth
- 4:1 or 2:1 built in MUX (selectable)
- 1.3 W Power Dissipation
- NRZ, Narrow RTZ, 50% RTZ, RF modes
- IUCM mode (Patent e2v/CNES)
- SEL& SEFI free, 110 krads
- Ci-CGA255 Package (21x21mm, pitch 1,27mm)
- B7HF200 SiGeC techno. from Infineon (G)



- 1st Nyquist (NRTZ): NPR = 51.3dB at Fs = 3Gsps
- 1st Nyquist (NRTZ): NPR = 55.7dB at Fs = 1.5Gsps
- 2nd Nyquist (NRTZ or RTZ): NPR = 44.6 dB at Fs = 3 Gsps
- 3rd Nyquist (RF): NPR = 42.5 dB at Fs = 3 Gsps

#### **EV12DS130A** is used on Telecom projects

- ESCC evaluation completed since 2012 : very good performances, reliability and radiation results
- QMLV qualified in 2015





#### Conclusion

#### DTP Key performances :

- 640 MHz digitalized bandwidth
- Many tens of GHz of full capacity
- Cost decreases in Mass/consumption/volume per GHz

#### ASIC Key performances :

- High speed link: 6,25Gbps rad-hard HSSL IP
- High integration with 65nm
   ASIC die size up to 400 mm²
- > 600 MHz working frequency
- Flip-chip Packaging

#### Data converters Key performances:

- High speed >1,5Gsps
- L-band & S-band
- Integration with multi channel
- Low power consumption ~ 2W
- Flip-chip Packaging

DTP is a high tech product with high innovation For drastically enhanced performances



Constructive collaboration between all the FAST partners, Telecoms, Technologists, Components engineers and Manufacturers







ATMEL: AT65RHA team

ST: C65Space team

E2V: CALLISTO team

TAS: FAST team

**CNES: FAST team** 

ESA: L.Hili, L.Murphy

DGA: G.Jestin





#### Thank you!

#### **Contacts:**

Florence.Malou@cnes.fr

Caroline.Amiot-Bazile@cnes.fr

Philippe.Voisin@thalesaleniaspace.com

