Radiation Prediction Tool Dedicated to Analyze and Harden by Design Readout Circuits of Photonic ICs

L. Artola¹, S. Ducret², G. Hubert¹, F. Perrier², and N. Ricard²

¹ ONERA DESP, Toulouse France
² Sofradir, Veurey Voroize, France
CMOS technology is relevant for integrate electronic functions in image sensors (raw decoders, registers, Flip-Flops)

The SEEs (SEU and SET) sensitivity of CMOS technology increases with technological roadmaps for analog and digital circuits

High temperatures rise the soft error duration and the SEU occurrence

For performance reasons, infrared image sensors developed by Sofradir works at very low temperatures down to 77°K

What are the SEU sensitivity trends of Flip-Flops used in the read-out circuit at ambient temperature and down to 77°K under heavy ions?

Prediction tool relevant to propose a hardened design for Flip-Flop cell used in the read-out circuit of Photonic IC?
Prediction tool: MUSCA SEP3

- MUSCA SEP3 is a Monte-Carlo prediction tool based on a multi-physics and multi-scales approach developed at ONERA dedicated for researches, space agencies, and industrials.

- Outputs: SEE (SET, SEU, SEL) estimations of cross section, operational rate, hardened design.
Outline of the presentation

- Modeling of the circuit at layout and schematics level
 - Design extraction from GDS and circuit modeling
- Estimation of SEU sensitivity of Flip-Flops in 0.25µm technology
 - Validation of SEU cross section estimations
 - Estimation of temperature impact on the SEU cross section
 - Failure analyses of Flip-Flops by sensitivity maps modeling
- Hardening by design of DFF cell based on prediction tool
 - Presentation of the new hardened design of the DFF cell
 - Evaluation of the hardening technique
- Conclusions and outlooks for analog and mixed-signal applications
Outline of the presentation

- Modeling of the circuit at layout and schematics level
 - Design extraction from GDS and circuit modeling
- Estimation of SEU sensitivity of Flip-Flops in 0.25µm technology
 - Validation of SEU cross section estimations
 - Estimation of temperature impact on the SEU cross section
 - Failure analyses of Flip-Flops by sensitivity maps modeling
- Hardening by design of DFF cell based on prediction tool
 - Presentation of the new hardened design of the DFF cell
 - Evaluation of the hardening technique
- Conclusions and outlooks for analog and mixed-signal applications
Flip-Flop cells modeling

- Test chip developed by Sofradir called SEU2_01A
 - 6 references of Flip-Flop cells designs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cell area (normalized)</th>
<th>Width (normalized)</th>
<th>High (normalized)</th>
<th>Techno. Node (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEU_01A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design 1</td>
<td>1,03</td>
<td>1,03</td>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>Design 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>Design 3</td>
<td>1,1</td>
<td>1,1</td>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>Design 4</td>
<td>1,07</td>
<td>1,07</td>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>Design 5</td>
<td>1,2</td>
<td>1,2</td>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>Design 6</td>
<td>1,17</td>
<td>1,17</td>
<td>1</td>
<td>0,25</td>
</tr>
</tbody>
</table>

2 Designs are investigated for their criticality in the read-out circuit used by Sofradir in their infrared image sensors
Circuit/design cell modeling

- Modeling of the Flip-Flop circuit at layout level
 - Design extraction from GDS and circuitry development
 - Extraction of collection areas from Sofradir’s GDS file
 - Circuit development with Cadence software suite based on the netlist

GDS file from Sofradir
Circuit/design cell modeling

- Modeling of the Flip-Flop circuit at layout level
 - Design extraction from GDS and circuitry development
 - Extraction of collection areas from Sofradir's GDS file
 - Selection of relevant BEOL layers (polysilicon and active implants)

GDS file reworked
Circuit/design cell modeling

- Modeling of the Flip-Flop circuit at layout level
 - Design extraction from GDS and circuitry development
 - Extraction of collection areas from Sofradir’s GDS file
 - Determination of collection area: drains of p-MOS and n-MOS transistors of floating nodes

Extracted Design file
Outline of the presentation

- Modeling of the circuit at layout and schematics level
 - Design extraction from GDS and circuit modeling
- Estimation of SEU sensitivity of Flip-Flops in 0.25µm technology
 - Validation of SEU cross section estimations
 - Estimation of temperature impact on the SEU cross section
 - Failure analyses of Flip-Flops by sensitivity maps modeling
- Hardening by design of DFF cell based on prediction tool
 - Presentation of the new hardened design of the DFF cell
 - Evaluation of the hardening technique
- Conclusions and outlooks for analog and mixed-signal applications
Setup of SEU exp. measurements

- Experimental heavy ion irradiations for SEU measurements performed at UCL (Belgium) with CNES cryostat (in June 2014 and May 2015)

Temperature monitoring and regulation from 300°C to 80°C

Heavy ion irradiation from 6.6MeV.cm².mg⁻¹ to 67.7MeV.cm².mg⁻¹

Dynamic SEU testing with TRAD test board using CNES cryostat under heavy ions beam at UCL, Belgium

Logic state, temperature are considered depending on LET of heavy ions
Estimation of SEU sensitivity

- Detection of SETs in the Flip-Flops (design 1 and 2)
 - Nominal working of the Flip-Flop
 - SET/SEU occurrence on the Flip-Flop output

No SEU detected

SEU detected
Validation of SEU sensitivity (1/2)

- Estimation of the SEU cross section of the Flip-Flop FDM2QHV (design 2)

Good correlation of SEU sensitivity between exp. And simulation for the reference design of DFF
- Estimation of the SEU cross section of the Flip-Flop FDM2QHV (design 1)

Good correlation of SEU sensitivity between exp. And simulation for the reference design of DFF
Effects of low temperatures on the SEU cross section of the Flip-Flop FDM2QHV (design 2)

- Lower temperatures → Lower SEU sensitivity
- Saturation of the temperature effects on the SEU sensitivity
Failure analysis of Flip-Flop cell (1/2)

- SEU sensitivity maps of DFF design 2 for a LET 58,8 MeV.cm².mg⁻¹ at 77°K

The logic state changes the SEU critical areas of Flip-Flop cell
Failure analysis of Flip-Flop cell (2/2)

- SEU sensitivity maps of DFF design 2 for a LET 58.8 MeV.cm².mg⁻¹ at 300°C

At 300°C → New sensitive transistor (p-MOS 8) → State 1 more sensitive than State 0
Outline of the presentation

- Modeling of the circuit at layout and schematics level
 - Design extraction from GDS and circuit modeling
- Estimation of SEU sensitivity of Flip-Flops in 0.25µm technology
 - Validation of SEU cross section estimations
 - Estimation of temperature impact on the SEU cross section
 - Failure analyses of Flip-Flops by sensitivity maps modeling
- Hardening by design of DFF cell based on prediction tool
 - Presentation of the new hardened design of the DFF cell
 - Evaluation of the hardening technique
- Conclusions and outlooks for analog mixed-signal applications
Hardening by design DFF

- Decrease the width of the wider sensitive n-MOS and p-MOS transistors

Limitation of the sensitive areas the DFF: 4 p-MOS and 2 n-MOS

Decrease the drive current → Decrease in the power needed

No area penalty
Hardening by design DFF

- Decrease the width of the wider sensitive n-MOS and p-MOS transistors

Limitation of the sensitive areas the DFF: 4 p-MOS and 2 n-MOS

Decrease the drive current → Decrease in the power needed

No area penalty
- SEU sensitivity of standard DFF and hardened DFF under heavy ions

Improvement of the LET threshold of the DFF: increase of 50%

Better mitigation of SEU for “0” stored in the DFF
Evaluation of hardened DFF (2/2)

- SEU sensitivity of standard DFF and hardened DFF under heavy ions

Better improvement for “0” stored in the DFF excepted at the highest LET

Differences of the SEU mitigation are due to the complete immunity of p-MOS-16 at state “0” stored in the DFF
Outline of the presentation

- Modeling of the circuit at layout and schematics level
 - Design extraction from GDS and circuit modeling
- Estimation of SEU sensitivity of Flip-Flops in 0.25μm technology
 - Validation of SEU cross section estimations
 - Estimation of temperature impact on the SEU cross section
 - Failure analyses of Flip-Flops by sensitivity maps modeling
- Hardening by design of DFF cell based on prediction tool
 - Presentation of the new hardened design of the DFF cell
 - Evaluation of the hardening technique

- Conclusions and outlooks for analog and mixed-signal applications
Conclusions and outlooks

- Multi-scales modeling (with MUSCA SEP3 tool) leads to estimate the SEU sensitivity of Flip-Flops at 300K and cryogenic temperatures.

- Good correlations of SEU calculations and SEU measurements from 2014 and 2015 heavy ion irradiation campaigns at UCL facility (Belgium)

- The prediction tool allows to propose failure analysis at circuit and layout level useful for harden by design DFF

- The new hardened design of DFF presents a good mitigation ratio with no area penalty and lower power consuming.

→ Proposition of general hardening guidelines for DFF designs for space applications

→ Application of the SEE prediction tool (MUSCA SEP3) and analog mixed signal circuits