High Performance
COTS based Computer for
Regenerative Telecom Payloads

Olivier Notebaert & Lyonel Barthe
Olivier Prieur
Jean-Luc Vanhove

DSP DAY 2016 Gothenburg, Sweden 16th June 2016

High Performance COTS based Computer for Regenerative Telecom Payloads

- High Performance Processing Needs
- The High Performance COTS Based Computer Study (HiP-CBC)
- Application to Regenerative Telecom Mission

High Performance Processing Needs

High Performance Payload Processing Needs

State of the Art

Dedicated ASIC

- High performance
- Specific applications with high non-recurring cost
- Outdated silicon technology (180 nm, 65 nm soon)

Examples: image compression (MCITHI), FFT core (FFTC)

Rad-Hard Programmable Components

- Outdated technology (most)
- High recurring cost

Examples: SCOC3 (GPP), AD-21020 (DSP), RTAX-2000 (FPGA)

COTS-based Processor Boards

- Medium performance
- High recurring cost and US dependant technology

Example: Maxwell SCS750 (GAIA VPU)

Need for higher on-board processing

 New opportunities and innovations such as advanced vision based navigation and regenerative telecom payloads

- Increase on-board autonomy
- Reduce the amount of information to be transferred to the ground segment

High Performance Payload Processing Needs

- Payload / Instruments data processing
 - Data-flow architecture
 - High data rate front-end interface for raw data filtering, pre-processing, and digitalization
 - Mission dependant on-board data processing
 - Data buffering in fast local memory
 - Control loops / latency requirements (in few cases)
 - Data storage in high capacity mass memory
 - Processing performance / power consumption
- Industrial efficiency requires
 Lower cost, Modularity, and Flexibility

Reprogrammable Devices

FPGAs and micro-processors
ranging from DSPs to end high multi-cores

High Performance Reprogrammable Devices

Multi and many cores μ-processors / reconfigurable FPGAs

High Performance Processing Classes

processing performance - Log10(GFlop)

Commercial µProcessors and FPGAs

- Dynamic roadmap with attractive products
 - μProcessors: DSP6727, PPCs, ARM, ATOM...
 - FPGAs: Virtex (SRAM), ProAsic (Flash)
 - MPSoC: Zynq
- Manageable radiations issues
 - Destructive effects
 - Hard error free (e.g. latch up)
 - Total dose acceptable for many LEO missions
 - Some products with "rad-hard" characteristics
 - Non permanent effects require mitigation

RAD-SOFT components

May be used for a wide range of missions

(not for all)

- Robust architecture for COTS based processing
 - Use existing COTS devices (DSP, FPGA)
 - Mitigate radiation effects from a robust and programmable external device called SmartIO
 - Applications to payload data processing
- Study priorities
 - Mission scalability
 - Independence of the mitigation mechanism w.r.t. processing device
 - High data bandwidth standard interfaces
 - Suitable for different types of missions
 - TRL 5-6 demonstrator
 - Mature technology
 - DSP as COTS processor

Concept

- SmartIO
 - Rad hard component
 - In charge of the isolation between the COTS world and the "rad-hard" world
 - Controls several COTS components
 - Provides scalable fault mitigation functions
 - Buffers instrument data in a fast local memory, and replays it in case of error
 - Acts as a master
- Several Processor Modules
 - Implemented with µProcessor or FPGA
 - Acts as slaves

Benefits

- SmartIO / PM link is a standard high speed link such as LVDS, SpW, SpFi, SRIO, PCIe, Gbit Ethernet
 - → Flexibility, technological independence
- PMs are slaves of the SmartIO
 - → Simplicity of the fault model
- SmartIO in HW+SW to manage fault mitigation
 - → Versatility
- Batch processing and result checking with signature
 - → Performance
- Scalable architecture
 - → Adaptable to mission requirements

Spacecraft **Generic Architecture for Mass Memory Platform** Space grade components **Payload Processing** P/L Control **GPP** Front-end Back-end Processor Processing **Processing Switch** Matrix Front-end Back-end Processed TM data Instruments Processing sampled Data Processing downloaded to ground **Memory** buffers Front-end Back-end **SEE** mitigation Processina Processing Processed COTS components Data Data Data **Processing Processing Processing** Unit Unit Unit AIRBUS

Demonstrator

- SmartIO with SCoC3 (Leon3) for control, monitoring and reconfiguration
- DSP board developed by OHB_{CGS} in Milano with a DSP 6727 from TI
- Demonstration Software on Smart I/O and Processing Module S/W
- Performance and availability model

Application to Regenerative Telecom Mission

Context: Machine-to-Machine Communications

M2M

- Large market and growth potential
- Increasing needs in the low-cost, low data rate segment
- Terrestrial system lack of coverage of remote and desert areas

Context: Machine-to-Machine Communications

M2M

- Large market and growth potential
- Increasing needs in the low-cost, low data rate segment
- Terrestrial system lack of coverage of remote and desert areas

Hybrid system

- Satellite/terrestrial system for providing global continuous coverage
- LEO satellite constellations embarking Software Defined Radio (SDR) payloads to reach this goal

SDR Payload Processing for Low Data Rate M2M

Design Challenges

- Uplink PHY layer are typically based on spread spectrum or Ultra Narrow Band (UNB) technologies using random access techniques
- System can handle hundreds to thousands terminals at the same time
- Doppler drift effect of LEO satellite systems must be compensated

Requires Flexibility

- Protocols Updates (firmware, software)
- To serve other missions
 - ADS-B for air traffic management
 - Spectrum survey (3G, GPS, ...)
 - Data collection in general

Very high performance for digital signal processing

SmartIO G2 for SDR Processing: Trade-off Analysis

Selection of the Processor Module

	SRAM FPGA	Flash FPGA	DSP	Many-cores
Flexibility	+++	- On-line reconfiguration is not recommended	+ Interfaces are not scalable and flexible	+ Interfaces are not scalable and flexible
DSP Performance	++	 Flash technology is outdated (65 nm CMOS)	+	+++
Capacity	++	Flash technology is outdated (65 nm CMOS)	++	+++
Power Consumption	+/-	+	++	
TID Tolerance	+	-	+	?
Soft Error Sensitivity		- Configuration memory is immune to soft errors		

SmartIO G2 for SDR Processing: Trade-off Analysis

Selection of the Processor Module

	SRAM FPGA	Flash FPGA	DSP	Many-cores	
Flexibility	+++	- On-line reconfiguration is not recommended	+ Interfaces are not scalable and flexible	+ Interfaces are not scalable and flexible	
DSP Performance	++	Best trade-off: very high level of outdated (65 nr lexibility with high DSP performance			
Capacity	++	The soft error sensitivity is compensated by the efficiency of the			
Power Consumption	+/-	+ SmartIO mitigation			
TID Tolerance	+	-	+	?	
Soft Error Sensitivity		- Configuration memory is immune to soft errors			

SmartIO G2 for SDR Processing: Trade-off Analysis

Selection of the SmartIO

- Instrument is a single or even a multiport RF front-end providing one or several ADC/DAC LVDS interfaces, with a resolution of samples greater than or to 8 bits
- Nature of the processing with independent input and output data stream of samples promotes the use of a pipelined streaming architecture

Rad-tolerant FPGA seems to offer the best alternative to offer a sufficient number of I/O pins and bandwidth capacity

SmartIO G2 for SDR Processing: Typical Architecture

SmartIO G2 for SDR Processing: Typical Architecture

SmartIO G2 for SDR Processing: Typical Architecture

Summary

- Reprogrammable FPGAs are essential for Payload / Instrument Processing
- High performance COTS Based computer study
 - Demonstration with SCOC3 + DSP C6727
 - FPGA implementation in development for Software Defined Radio with RT-FPGA + SRAM FPGAs

