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Abstract 

The Department of Astrophysics at the University of Vienna is 

a provider of payload instrument flight software. Among the 

projects under development is a custom, lightweight operating 

system for the upcoming Scalable Sensor Data Processor 

(SSDP) based on prior experience with its predecessor, the 

Massively Parallel Processor Breadboard (MPPB). The 

objective of this project is to create easy to use software that 

is capable of efficiently driving the SSDP’s Xentium DSP 

cores. Through its unique concept of driving the DSPs, it 

allows the user to make full use of the resources of this 

specific platform. 

I.  INTRODUCTION 

A common problem of space missions is the limited 

processing power of available space-qualified hardware, as 

Payload data processors of on-board spacecraft and satellites 

are subject to high levels of radiation. While there is the 

LEON to fill the role of a general purpose processor (GPP), 

the only radiation hardened digital signal processor (DSP) 

available in Europe is the already dated ADSP-21020, if 

ITAR/EAR regulations are taken into account. 

The need for a new processor or System-on-Chip (SoC) 

computer design for on-board payload data processing is high. 

This is mainly due to the ever increasing quantity of sensor 

data, as modern instruments produce ever larger volumes of 

measurements. Available down-link bandwidth however, is 

limited by available power, antenna sizes and in the end, 

physics. 

In recent years, ESA has been pursuing the development 

of a next generation payload processor. One of the outputs of 

this effort is a prototype SoC called the MPPB (Massively 

Parallel Processor Breadboard) developed by Recore Systems  

under ESA contract 21986 [1]. The MPPB is built around a 

Very Long Instruction Word DSP architecture named Xentium. 

In this platform, a LEON processor is acting as a supervisor, 

controlling a Network-on-Chip (NoC) with multiple DSPs, 

memory and I/O devices attached to it. 

II.  MOTIVATION 

In the course of the NGAPP (Next Generation Astronomy 

Processing Platform) activities, an evaluation of the MPPB 

was performed in a joint effort of RUAG Space Austria 

(RSA) and the Department of Astrophysics at the University 

of Vienna (UVIE). While the original intent of the work of 

UVIE was to quantify the performance of the Xentium DSPs 

and the MPPB as a whole with regard to on-board data 

treatment and reduction in an astronomical mission setting, it 

was found that, given the highly innovative nature of this new 

processing platform, a novel approach was needed concerning 

the management of system resources, DMA mechanics and 

DSP program design for best efficiency and turnover rates. 

Consequently, the University of Vienna developed an 

experimental operating system to stably drive the DSP cores 

and the MPPB close to its performance limit. This was 

achieved by splitting processing tasks into a pipeline of small 

units (kernels) that are dynamically scheduled to run on the 

Xentium DSPs, as required by the amount of data in the 

pipeline stages, thereby overcoming bottlenecks resulting 

from memory transfer overheads and cache sizes that would 

inevitably emerge when using large, monolithic programs 

with the particular characteristics of the MPPB. 

At present, activities are carried out by Thales Alenia 

Space España and Recore Systems in an effort to create the 

Scalable Sensor Data Processor (SSDP) hardware, where an 

ASIC is being developed based on the MPPB 2.0, which is an 

update of the original MPPB with adapted specification [2]. 

This new implementation was made available to UVIE in Q1 

2016 as a firmware update to the existing MPPB hardware 

box. 

In order to support this new hardware, a more refined 

version of the experimental operating system is under 

development at the University of Vienna under a nationally 

funded ASAP 11 project, which also aims to become space-

qualifiable, supporting applicable documentation and S/W 

standards. 

The software is tailored to the NoC concept present in the 

SSDP and is optimised for best performance in key areas of 

system and resource management. These include fast and 

efficient interrupt handling to ensure low response times and 

high memory throughput for DMA transfers that service the 

Xentium data caches and fast I/O interfaces like SpaceWire or 

ADC/DAC. 

Supporting functionality, for example device drivers, 

threads and schedulers, timing and a system 

configuration/information interface will be provided. Great 

effort is made to keep CPU and memory footprints at a 

minimum, so the LEON processor is available for duties other 

than DSP and data processing control, such as handling of 

tele-commands or instrument-related control tasks. 
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A major aim is to make the operating system as easy to use 

as possible, by providing appropriate, well designed interfaces 

in order to keep the need for configuration and extra 

programming effort at a minimum. 

To encourage use, modification and redistribution of the 

operating system, it will be made available under an open-

source license, including all drivers, modules and example 

DSP program kernels, as well as the documentation. 

 

III.  SSDP/MPPB 2.0 HARDWARE OVERVIEW 

The MPPB 2.0 (hereafter referred to as just MPPB) 

platform is a representative "preview" of the future SSDP 

hardware. It consists of two VLIW DSPs, called Xentiums, 

which are connected to a high-speed Network-on-Chip (NoC) 

along with distributed SDRAM memories and external high-

speed interfaces, such as SpaceWire, to satisfy requirements 

for space-based platforms. Attached to the NoC is a 

conventional AMBA bus, which serves as an inter-connect for 

a LEON GPP. The LEON is intended to control, manage and 

serve the nodes of the NoC and other payload oriented 

interfaces (e.g. the real time clock). It can also be used to run 

legacy software for satellite control operations beside its NoC 

servicing tasks. The system is clocked at 50 MHz. 

A. Network-on-Chip 

In high-performance multi-core computing, input/output 

bandwidth and data transport capability are most critical 

issues. In the MPPB, this is addressed by a Network-on-Chip 

(NoC), which is a packet-switched network based on an XY 

routing scheme. XY routing is a simple method of routing 

packets through a network, where first the horizontal (X) 

direction is taken, followed by a turn to the vertical (Y) path 

at the targets X location. For this reason, the forward and 

return paths are different most of the time and are guaranteed 

to be safe from deadlocking. 

The 3x3 NoC mesh connects the following devices: 

 2 Xentiums, 

 a bridge to the ADC/DAC 

 an 8-channel DMA controller 

 2 SpaceWire connections 

 DDR (SDRAM) controller 

 SRAM memory tile 

 AMBA Subsystem 

 

Every mesh routing node has 5 ports and serves 4 channels 

per port, each of them with different priorities. A channel 

offers a bandwidth of 1.6 Gbit/s at a system clock of 50 MHz. 

Two high-priority channels are dedicated to DMA transfers, 

while the low-priority channels serve single read/write 

operations and interrupts. The high-bandwidth design is 

important to the NoC concept, which intends to contain all 

high-volume data flows to the network, never crossing the 

slow AMBA bridge. 

B. Xentium DSP 

The Xentium is a little-endian Very Long Instruction Word 

(VLIW) type digital signal processor IP core developed by 

Recore Systems, The Netherlands. 

A Xentium DSP consists of three main parts: the Xentium 

local bus, the data path (processing core) and a tightly-

coupled memory (TCM) bank composed of 4 sub-banks of 

8 kiB each. The Xentium local bus is an AHB-like bus that 

allows the attachment to already existing compatible hardware 

if needed.  

Most instructions work on 32 bit or pairs of 16 bit 

complements of data-words. The different units offer different 

functionality: 

A0, A1 32 bit and 2x16 bit arithmetic with 40 bit wide add 

registers 

S0, S1 32 bit and 2x16 bit arithmetic with 40 bit wide add 

registers, shift operations 

M0, M1 multipliers for 32-bit operands or 2x16-bit operands  

E0, E1 load/store functionality 

C0 32 bit and 2x16 bit arithmetic, loop and branch control 

instructions 

P0 32 bit and 2x16 bit arithmetic, compare and packing 

instructions 

 

The TCM provides access to 4 different memory banks at 

the same time. As the data path can load and/or store 4x32 bit 

values simultaneously using these banks, enough bandwidth is 

available to all different parallel execution units in the 

Xentium. 

 

IV.  FUNDAMENTAL REQUIREMENTS OF THE OS 

A set of core prerequisites that are crucial to the usability  

of an operating system has been identified and are described 

in short below. These are not unusual for an operating system 

of this category, the features that are particular or less 

common are presented in more detail in the next sections. 

A. Interrupts and Traps 

CPU traps are a central element in the run-time 

environment of the SPARC architecture, they provide means 

to treat hardware exceptions and interrupt requests. Interfaces 

to manage and install higher level trap handlers are available 

and default handlers for different traps typed are provided. 

Effort is made to reduce interrupt entry and exit times as 

much as possible, as the SSDP tends to have higher rates than 

comparable systems under load. This is a consequence of 

necessary signalling with the Xentium DSPs and other 

platform-specific devices, so reducing even small amounts of 

systematic overhead can have great effects in the long run. 

 

 



Interrupt call-back support for both hardware and software 

interrupts are provided. These will not only allow fast and 

easy (de-)registration of an arbitrary number of call-backs per 

interrupt with associated user-data, but also deferred low-

priority interrupt handling in a dedicated thread or OS idle 

loop. 

B. Multi-Core Support 

In order to make it future-proof and interesting for use 

with other LEON-based platforms, the OS is written with 

multi-core support in mind, including dedicated per-CPU 

interrupt stacks, cross-CPU synchronisation and locking, as 

well as task migration with according support in the threading 

library. 

C. Timers 

In addition to the usual facilities, emphasis is put on tick-

less (i.e. non-periodic) timing functionality, so unnecessary 

wake-ups of the GPP and inherent waste of CPU cycles can 

be avoided. 

D. Threads and Schedulers 

Along fixed priority based scheduling, a modified earliest 

deadline first scheduler with priority execution in overload 

conditions is implemented. This, along with dynamic ticking, 

gives an option to optimise thread CPU utilisation with the 

added benefit of predictable execution for certain high-

priority threads in conditions, where the total load 

unexpectedly exceeds 100%. 

E. DMA Driver 

The 8 channels of the DMA 2D-transfer feature in the 

MPPB/SSDP are essential to its computational performance. 

Low overhead and ease of use are desirable for this driver. 

Special care must be taken to avoid access conflicts to 

channels since the Xentiums have gained the faculties to 

receive transfer-completion signalling with version 2 of the 

MPPB and can now be used to initiate transfers themselves, 

thereby reducing the interrupt load of the GPP significantly. 

As there are (by the nature of the NoC) no atomic loads/stores 

possible,  the usage state of a DMA channel might change 

unexpectedly during programming, if channels are 

dynamically used, rather than being statically assigned to 

either a DSP or the GPP. The former is clearly more desirable, 

as there is less downtime when more transfers need to be 

started than channels are assigned to a node. 

F. I/O Interface Drivers 

The major I/O devices, i.e. ADC/DAC and SpaceWire that 

are common to both the MPPB and the SSDP are supported, 

others (FLASH, GPIO, LEDs, LCD, ...) as they are present or 

needed for OS operations or development support. 

 

 

 

G. FDIR and Error Reporting 

Fault detection and recovery with regard to hardware 

devices is part of the drivers themselves. EDAC handling and 

memory scrubbing is present as part of the OS. A central error 

reporting facility is in place that is being used by drivers or 

other software components.  

H. Miscellaneous 

Additional functionality to support application software 

development is available. This includes an interface to the 

debug support unit (DSU) of the LEON, generation of stack 

traces and register dumps on hardware traps, along with any 

NoC/Xentium focused debugging facilities. 

 

V. XENTIUM KERNEL SCHEDULER 

Within the NoC of the MPPB, functional components may 

be viewed to behave similarly to hosts in a computer network. 

Any data transferred between nodes of the NoC, even 

dedicated memories, are sent via datagrams. This means, for 

example, that a data load from an SDRAM bank executed on 

a Xentium node is executed via its Xentium Network 

Interface (XNI), which effectively constructs a request packet 

that is sent to the SDRAM node. The receiving node then 

reads the requested memory locations and sends a number of 

packets holding the data back to the DSP. The communication 

overhead and subsequent packet creation time generated for 

every single request of a program instruction or data word 

read from a larger memory store inevitably inserts significant 

latency into every operation of the Xentium that requires 

external interaction, as the possible throughput is 4x32 bit 

words per clock cycle, if the DSP program is properly written. 

A way to avoid these delays is to restrict Xentium memory 

access to the local TCM banks and, in order to forgo stalls in 

the instruction pipeline, restrict program sizes to be at most 

the size of the local instruction cache (16 kiB). 

The contents of the TCM can be exchanged with bulk 

memory via the DMA feature of the MPPB, as of version 2.0, 

transfers can also be locally controlled by the Xentium. The 

DMA function is essentially the same feature that is used for 

data transfer in the opaque XNI, but may be used to initiate 

larger, more complex (2D) data block transfers, so network 

overhead is minimized and transfers can happen at much 

higher rates, limited only by the mass memory throughput 

and, to a lesser extent, NoC bandwidth. 

 



 

On-board processing pipelines, at least in the astronomical 

use cases that were explored in the NGAPP performance 

study, typically require many steps in data treatment, resulting 

in binary sizes that easily exceed the capacity of a Xentium's 

instruction cache. Instead, the monolithic program code can 

be broken down into arbitrarily small functional fragments 

(kernels) that are executed on the Xentium DSP as they are 

needed (see Figure 1). Such a science data processing chain is 

briefly described in [3]. Each step in there would be 

implemented in the SSPD as a processing kernel. These 

kernels require a generic data exchange interface for input and 

output, so data can be passed between arbitrarily chained 

processing nodes. This is done via dynamically defined 

metadata containers, which hold information about data type, 

references to location and size, previously applied processing 

steps and other configuration parameters, thus allowing the 

receiving kernel to act on the input data accordingly and to 

record its own data operations to the container when passing it 

on. In between operations, the metadata containers are held in 

circular buffers, which act as both a connecting intermediate 

and a measure of the state of the pipeline. 

A. Scheduling 

Since Xentium kernels act upon their input only as a link 

in a chain and do no further processing than what is their 

purpose, they must occasionally be exchanged, or the pipeline 

would stall eventually, because either the output of the kernel 

would run full, or the input would run empty. This is a task 

that is supervised by the MPPB's LEON GPP. A very simple, 

yet effective metric is used to determine whether the DSP 

should be assigned another kernel. 

During pipeline construction, each kernel is assigned an 

input and an output circular buffer, which is configured with 

two parameters: total size and critical fill state. The latter is 

used as a threshold trip point that results in a scheduling event 

signal when it is exceeded. The signal is emitted by the 

circular buffer itself, hence no periodic polling overhead is 

generated on the GPP and as long as the critical level is 

sensibly defined, it provides enough hysteresis for the pipeline 

not to stall. This applies to all but the last buffers in the 

processing chain, which is ignored, or rather, has no critical 

fill state, since its contents are typically sent to a bulk storage 

device or via a network interface. 

On a buffer criticality signal, the kernel scheduler selects 

the most critical buffer based on its location in the pipeline, 

with later buffers having less priority. It then selects a 

Xentium based on their kernel input buffers fill state and 

position in the pipeline and switches the running program. 

This is done so that data are buffered towards the end of the 

pipeline, rather than the beginning, allowing input to be 

accepted as long as possible, even if there are issues with 

output network interface or mass storage device. 

 

Figure 2 shows a test of the self-balancing nature of this 

approach. The processing pipeline of a fine guidance sensor 

and photometer instrument was implemented and fed 512x512 

pixel-sized input frames with simulated stars via two 

SpaceWire links running at 100 Mbits at maximum data rate 

(~34 frames per second). In the initial processing step, a 

region of interest of 100x100 pixels was masked, which was 

then examined by a center-of-gravity (COG) algorithm to 

determine the precise position of the guide star on the frame. 

The output of the COG step consisted of the object shift 

relative to the center of the input frame and photometric flux 

data for a 40x40 region of interest. This region was deglitched 

and calibrated in the next nodes of the processing chain, 

followed by de-correlation via integer wavelet transform and 

finally compressed by arithmetic coding (ARI). 

The resulting load curves, represented by the fill states of 

the circular buffers, demonstrate the quick emergence of a 

periodic pattern that clearly demonstrates the effectiveness of 

this approach (see Figure 2).  

VI.  RUN-TIME CONFIGURATION INTERFACE 

A core necessity of any type of on-board software is the 

ability to generate housekeeping data to be sent to ground, in 

 
Figure 1 Chaining concept of individual, pipelined program kernels. 

Data arriving via a SpaceWire link are processed by Xentium DSPs 

as needed by dynamically changing the running kernel. The data 

progresses through the pipeline and are sent to their destination via 

outgoing SpaceWire link. 

 

Figure 2: Successful test of a processing chain. Only buffers that 

show usage > 0 during any sampling period are included in the 

diagram. 



order to provide information about the prevailing run-time 

parameters of both hardware and software. 

While requirements of update rates and number of 

variables – especially regarding software – may vary greatly 

for different mission profiles, there are generally hundreds of 

these data that are available for selection to form a 

housekeeping telemetry message. Usually, these are not solely 

read-only variables, but may also be patched by an 

appropriate tele-command in order to induce a mode change 

or adjust parameters to modify the behaviour of the software. 

These variables are often stored in large, monolithic, 

globally accessible "data pools". Such simplistic structures 

may at first glance be the logical choice, suggesting ease of 

both use and implementation, but are however very 

susceptible to breakage, particularly in top-down designs, 

where the data type of the implemented variables is not 

uniform and interaction with the data structure is only 

intended to occur via opaque accessor functions. If 

adjustments are made during development, memory violations 

may occur during runtime, and those can result in erratic, 

unpredictable, opaque bugs that are very difficult to track 

down. Another objection to this type of design is its re-

usability, as there may exist multiple points of adaption, 

especially in circumstances where a great number of 

internally used variables, which are elemental to a software 

module or function, are stored in an externally administered 

data structure. 

Highly modular, encapsulated software modules with an 

as minimalistic as possible external interface are very 

preferable for re-use. Ideally, for example, a SpaceWire driver 

would only provide an interface to send or receive packets 

and handle all configuration of the underlying hardware 

internally. This however poses a problem to a user that would, 

for example, configure a particular link speed or continuously 

monitor data transfer rates. 

For such purposes, an interaction point is needed that 

exposes certain internal attributes via a generic interface and 

acts as a conduit between operating system elements and user-

space. There are essentially four fundamental requirements for 

such functionality. First, internal interfaces or variables must 

not be slower to use than when not exposed. Second, all 

exposed functionality is defined by the module and exported 

to the generic interface when initialised. Third, the exposed 

functionality must not result in unpredictable behaviour, i.e. 

the software module must be insensitive to sudden changes in 

states or variables, or care must be taken by the module 

designer, so that interactions are properly handled. In any 

case, this must never be a concern for the user. Finally, any 

access must be on the user's processing time, not on that of 

the module. 

Given that the interaction point has to be completely 

generic to accommodate any kind of mapping defined by a 

module without restrictions, it must consequently be very 

simple. This is most easily achieved by implementing a 

character-buffer based interface that interacts with a module 

via functions provided by the latter to the generic interface 

structure. The necessary parsing or value conversion of text 

buffers on the user side is obviously slow compared to raw 

variable access, but given the underlying assumption that this 

system control interface is to be accessed in the order of no 

more than a few hundred or at most several thousand times 

per second,  the overhead is effectively negligible. 

The concept is very similar to the sysfs and sysctl 

interfaces found in Linux and BSD operating systems, with 

the former being file-system driven, while the latter is 

implemented as a system call. Since a file-system in the 

classic sense is not foreseen to be implemented in the OS, the 

actual implementation can be seen as a hybrid of the two, 

which represents nodes in the configuration in the same 

fashion as a virtual file system tree, while all access is 

performed via a call interface. 

To create a system object for exporting items, a software 

module must define at least one attribute structure that 

configures the name and the appropriate show and store 

methods of that attribute. The object is then registered to an 

existing logical set of objects. For instance, a SpaceWire 

driver would register its attributes under a /sys/drivers tree, 

while an interrupt manager would register under /sys/irq, 

provided that these sets were already defined. Optionally, a 

new sub-set to hold the system objects of particular attributes 

may be created before attaching an object. If the SpaceWire 

driver was to manage multiple interfaces, it could create a 

logical sub-set /sys/drivers/spw and group interfaces SpW0, 

SpW1, ... under that set. 

Since there are no formal restrictions on what qualifies to 

this system configuration tree, application software running 

on top of the operating system can (and should) make use of it 

as well. The aforementioned housekeeping data generation 

makes a good example for an application that both uses the 

the data provided by the registered software modules to 

generate housekeeping packets and is itself configured via this 

interface, e.g. its polling rate and the definition of 

housekeeping data to collect. 

VII. SUMMARY 

Given the unique nature of the SSDP/MPPB hardware 

concept, a custom approach is needed to efficiently run 

computational operations in an (astronomical) on-board data 

processing and compression setup of instrument payloads. 

The operating system currently under development at the 

Department of Astrophysics of the University of Vienna 

addresses this challenge. To encourage its use, modification 

and redistribution, it will be published under an open source 

license in all of its parts. 
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