
A Lightweight Operating System for the SSDP

A. Luntzer
a

, F. Kerschbaum
a

, R. Ottensamer
a

, C. Reimers
a

a
Department of Astrophysics, University of Vienna, 1010 Vienna, Austria

 armin.luntzer@univie.ac.at

Abstract

The Department of Astrophysics at the University of Vienna is

a provider of payload instrument flight software. Among the

projects under development is a custom, lightweight operating

system for the upcoming Scalable Sensor Data Processor

(SSDP) based on prior experience with its predecessor, the

Massively Parallel Processor Breadboard (MPPB). The

objective of this project is to create easy to use software that

is capable of efficiently driving the SSDP’s Xentium DSP

cores. Through its unique concept of driving the DSPs, it

allows the user to make full use of the resources of this

specific platform.

I. INTRODUCTION

A common problem of space missions is the limited

processing power of available space-qualified hardware, as

Payload data processors of on-board spacecraft and satellites

are subject to high levels of radiation. While there is the

LEON to fill the role of a general purpose processor (GPP),

the only radiation hardened digital signal processor (DSP)

available in Europe is the already dated ADSP-21020, if

ITAR/EAR regulations are taken into account.

The need for a new processor or System-on-Chip (SoC)

computer design for on-board payload data processing is high.

This is mainly due to the ever increasing quantity of sensor

data, as modern instruments produce ever larger volumes of

measurements. Available down-link bandwidth however, is

limited by available power, antenna sizes and in the end,

physics.

In recent years, ESA has been pursuing the development

of a next generation payload processor. One of the outputs of

this effort is a prototype SoC called the MPPB (Massively

Parallel Processor Breadboard) developed by Recore Systems

under ESA contract 21986 [1]. The MPPB is built around a

Very Long Instruction Word DSP architecture named Xentium.

In this platform, a LEON processor is acting as a supervisor,

controlling a Network-on-Chip (NoC) with multiple DSPs,

memory and I/O devices attached to it.

II. MOTIVATION

In the course of the NGAPP (Next Generation Astronomy

Processing Platform) activities, an evaluation of the MPPB

was performed in a joint effort of RUAG Space Austria

(RSA) and the Department of Astrophysics at the University

of Vienna (UVIE). While the original intent of the work of

UVIE was to quantify the performance of the Xentium DSPs

and the MPPB as a whole with regard to on-board data

treatment and reduction in an astronomical mission setting, it

was found that, given the highly innovative nature of this new

processing platform, a novel approach was needed concerning

the management of system resources, DMA mechanics and

DSP program design for best efficiency and turnover rates.

Consequently, the University of Vienna developed an

experimental operating system to stably drive the DSP cores

and the MPPB close to its performance limit. This was

achieved by splitting processing tasks into a pipeline of small

units (kernels) that are dynamically scheduled to run on the

Xentium DSPs, as required by the amount of data in the

pipeline stages, thereby overcoming bottlenecks resulting

from memory transfer overheads and cache sizes that would

inevitably emerge when using large, monolithic programs

with the particular characteristics of the MPPB.

At present, activities are carried out by Thales Alenia

Space España and Recore Systems in an effort to create the

Scalable Sensor Data Processor (SSDP) hardware, where an

ASIC is being developed based on the MPPB 2.0, which is an

update of the original MPPB with adapted specification [2].

This new implementation was made available to UVIE in Q1

2016 as a firmware update to the existing MPPB hardware

box.

In order to support this new hardware, a more refined

version of the experimental operating system is under

development at the University of Vienna under a nationally

funded ASAP 11 project, which also aims to become space-

qualifiable, supporting applicable documentation and S/W

standards.

The software is tailored to the NoC concept present in the

SSDP and is optimised for best performance in key areas of

system and resource management. These include fast and

efficient interrupt handling to ensure low response times and

high memory throughput for DMA transfers that service the

Xentium data caches and fast I/O interfaces like SpaceWire or

ADC/DAC.

Supporting functionality, for example device drivers,

threads and schedulers, timing and a system

configuration/information interface will be provided. Great

effort is made to keep CPU and memory footprints at a

minimum, so the LEON processor is available for duties other

than DSP and data processing control, such as handling of

tele-commands or instrument-related control tasks.

mailto:armin.luntzer@univie.ac.at

A major aim is to make the operating system as easy to use

as possible, by providing appropriate, well designed interfaces

in order to keep the need for configuration and extra

programming effort at a minimum.

To encourage use, modification and redistribution of the

operating system, it will be made available under an open-

source license, including all drivers, modules and example

DSP program kernels, as well as the documentation.

III. SSDP/MPPB 2.0 HARDWARE OVERVIEW

The MPPB 2.0 (hereafter referred to as just MPPB)

platform is a representative "preview" of the future SSDP

hardware. It consists of two VLIW DSPs, called Xentiums,

which are connected to a high-speed Network-on-Chip (NoC)

along with distributed SDRAM memories and external high-

speed interfaces, such as SpaceWire, to satisfy requirements

for space-based platforms. Attached to the NoC is a

conventional AMBA bus, which serves as an inter-connect for

a LEON GPP. The LEON is intended to control, manage and

serve the nodes of the NoC and other payload oriented

interfaces (e.g. the real time clock). It can also be used to run

legacy software for satellite control operations beside its NoC

servicing tasks. The system is clocked at 50 MHz.

A. Network-on-Chip

In high-performance multi-core computing, input/output

bandwidth and data transport capability are most critical

issues. In the MPPB, this is addressed by a Network-on-Chip

(NoC), which is a packet-switched network based on an XY

routing scheme. XY routing is a simple method of routing

packets through a network, where first the horizontal (X)

direction is taken, followed by a turn to the vertical (Y) path

at the targets X location. For this reason, the forward and

return paths are different most of the time and are guaranteed

to be safe from deadlocking.

The 3x3 NoC mesh connects the following devices:

 2 Xentiums,

 a bridge to the ADC/DAC

 an 8-channel DMA controller

 2 SpaceWire connections

 DDR (SDRAM) controller

 SRAM memory tile

 AMBA Subsystem

Every mesh routing node has 5 ports and serves 4 channels

per port, each of them with different priorities. A channel

offers a bandwidth of 1.6 Gbit/s at a system clock of 50 MHz.

Two high-priority channels are dedicated to DMA transfers,

while the low-priority channels serve single read/write

operations and interrupts. The high-bandwidth design is

important to the NoC concept, which intends to contain all

high-volume data flows to the network, never crossing the

slow AMBA bridge.

B. Xentium DSP

The Xentium is a little-endian Very Long Instruction Word

(VLIW) type digital signal processor IP core developed by

Recore Systems, The Netherlands.

A Xentium DSP consists of three main parts: the Xentium

local bus, the data path (processing core) and a tightly-

coupled memory (TCM) bank composed of 4 sub-banks of

8 kiB each. The Xentium local bus is an AHB-like bus that

allows the attachment to already existing compatible hardware

if needed.

Most instructions work on 32 bit or pairs of 16 bit

complements of data-words. The different units offer different

functionality:

A0, A1 32 bit and 2x16 bit arithmetic with 40 bit wide add

registers

S0, S1 32 bit and 2x16 bit arithmetic with 40 bit wide add

registers, shift operations

M0, M1 multipliers for 32-bit operands or 2x16-bit operands

E0, E1 load/store functionality

C0 32 bit and 2x16 bit arithmetic, loop and branch control

instructions

P0 32 bit and 2x16 bit arithmetic, compare and packing

instructions

The TCM provides access to 4 different memory banks at

the same time. As the data path can load and/or store 4x32 bit

values simultaneously using these banks, enough bandwidth is

available to all different parallel execution units in the

Xentium.

IV. FUNDAMENTAL REQUIREMENTS OF THE OS

A set of core prerequisites that are crucial to the usability

of an operating system has been identified and are described

in short below. These are not unusual for an operating system

of this category, the features that are particular or less

common are presented in more detail in the next sections.

A. Interrupts and Traps

CPU traps are a central element in the run-time

environment of the SPARC architecture, they provide means

to treat hardware exceptions and interrupt requests. Interfaces

to manage and install higher level trap handlers are available

and default handlers for different traps typed are provided.

Effort is made to reduce interrupt entry and exit times as

much as possible, as the SSDP tends to have higher rates than

comparable systems under load. This is a consequence of

necessary signalling with the Xentium DSPs and other

platform-specific devices, so reducing even small amounts of

systematic overhead can have great effects in the long run.

Interrupt call-back support for both hardware and software

interrupts are provided. These will not only allow fast and

easy (de-)registration of an arbitrary number of call-backs per

interrupt with associated user-data, but also deferred low-

priority interrupt handling in a dedicated thread or OS idle

loop.

B. Multi-Core Support

In order to make it future-proof and interesting for use

with other LEON-based platforms, the OS is written with

multi-core support in mind, including dedicated per-CPU

interrupt stacks, cross-CPU synchronisation and locking, as

well as task migration with according support in the threading

library.

C. Timers

In addition to the usual facilities, emphasis is put on tick-

less (i.e. non-periodic) timing functionality, so unnecessary

wake-ups of the GPP and inherent waste of CPU cycles can

be avoided.

D. Threads and Schedulers

Along fixed priority based scheduling, a modified earliest

deadline first scheduler with priority execution in overload

conditions is implemented. This, along with dynamic ticking,

gives an option to optimise thread CPU utilisation with the

added benefit of predictable execution for certain high-

priority threads in conditions, where the total load

unexpectedly exceeds 100%.

E. DMA Driver

The 8 channels of the DMA 2D-transfer feature in the

MPPB/SSDP are essential to its computational performance.

Low overhead and ease of use are desirable for this driver.

Special care must be taken to avoid access conflicts to

channels since the Xentiums have gained the faculties to

receive transfer-completion signalling with version 2 of the

MPPB and can now be used to initiate transfers themselves,

thereby reducing the interrupt load of the GPP significantly.

As there are (by the nature of the NoC) no atomic loads/stores

possible, the usage state of a DMA channel might change

unexpectedly during programming, if channels are

dynamically used, rather than being statically assigned to

either a DSP or the GPP. The former is clearly more desirable,

as there is less downtime when more transfers need to be

started than channels are assigned to a node.

F. I/O Interface Drivers

The major I/O devices, i.e. ADC/DAC and SpaceWire that

are common to both the MPPB and the SSDP are supported,

others (FLASH, GPIO, LEDs, LCD, ...) as they are present or

needed for OS operations or development support.

G. FDIR and Error Reporting

Fault detection and recovery with regard to hardware

devices is part of the drivers themselves. EDAC handling and

memory scrubbing is present as part of the OS. A central error

reporting facility is in place that is being used by drivers or

other software components.

H. Miscellaneous

Additional functionality to support application software

development is available. This includes an interface to the

debug support unit (DSU) of the LEON, generation of stack

traces and register dumps on hardware traps, along with any

NoC/Xentium focused debugging facilities.

V. XENTIUM KERNEL SCHEDULER

Within the NoC of the MPPB, functional components may

be viewed to behave similarly to hosts in a computer network.

Any data transferred between nodes of the NoC, even

dedicated memories, are sent via datagrams. This means, for

example, that a data load from an SDRAM bank executed on

a Xentium node is executed via its Xentium Network

Interface (XNI), which effectively constructs a request packet

that is sent to the SDRAM node. The receiving node then

reads the requested memory locations and sends a number of

packets holding the data back to the DSP. The communication

overhead and subsequent packet creation time generated for

every single request of a program instruction or data word

read from a larger memory store inevitably inserts significant

latency into every operation of the Xentium that requires

external interaction, as the possible throughput is 4x32 bit

words per clock cycle, if the DSP program is properly written.

A way to avoid these delays is to restrict Xentium memory

access to the local TCM banks and, in order to forgo stalls in

the instruction pipeline, restrict program sizes to be at most

the size of the local instruction cache (16 kiB).

The contents of the TCM can be exchanged with bulk

memory via the DMA feature of the MPPB, as of version 2.0,

transfers can also be locally controlled by the Xentium. The

DMA function is essentially the same feature that is used for

data transfer in the opaque XNI, but may be used to initiate

larger, more complex (2D) data block transfers, so network

overhead is minimized and transfers can happen at much

higher rates, limited only by the mass memory throughput

and, to a lesser extent, NoC bandwidth.

On-board processing pipelines, at least in the astronomical

use cases that were explored in the NGAPP performance

study, typically require many steps in data treatment, resulting

in binary sizes that easily exceed the capacity of a Xentium's

instruction cache. Instead, the monolithic program code can

be broken down into arbitrarily small functional fragments

(kernels) that are executed on the Xentium DSP as they are

needed (see Figure 1). Such a science data processing chain is

briefly described in [3]. Each step in there would be

implemented in the SSPD as a processing kernel. These

kernels require a generic data exchange interface for input and

output, so data can be passed between arbitrarily chained

processing nodes. This is done via dynamically defined

metadata containers, which hold information about data type,

references to location and size, previously applied processing

steps and other configuration parameters, thus allowing the

receiving kernel to act on the input data accordingly and to

record its own data operations to the container when passing it

on. In between operations, the metadata containers are held in

circular buffers, which act as both a connecting intermediate

and a measure of the state of the pipeline.

A. Scheduling

Since Xentium kernels act upon their input only as a link

in a chain and do no further processing than what is their

purpose, they must occasionally be exchanged, or the pipeline

would stall eventually, because either the output of the kernel

would run full, or the input would run empty. This is a task

that is supervised by the MPPB's LEON GPP. A very simple,

yet effective metric is used to determine whether the DSP

should be assigned another kernel.

During pipeline construction, each kernel is assigned an

input and an output circular buffer, which is configured with

two parameters: total size and critical fill state. The latter is

used as a threshold trip point that results in a scheduling event

signal when it is exceeded. The signal is emitted by the

circular buffer itself, hence no periodic polling overhead is

generated on the GPP and as long as the critical level is

sensibly defined, it provides enough hysteresis for the pipeline

not to stall. This applies to all but the last buffers in the

processing chain, which is ignored, or rather, has no critical

fill state, since its contents are typically sent to a bulk storage

device or via a network interface.

On a buffer criticality signal, the kernel scheduler selects

the most critical buffer based on its location in the pipeline,

with later buffers having less priority. It then selects a

Xentium based on their kernel input buffers fill state and

position in the pipeline and switches the running program.

This is done so that data are buffered towards the end of the

pipeline, rather than the beginning, allowing input to be

accepted as long as possible, even if there are issues with

output network interface or mass storage device.

Figure 2 shows a test of the self-balancing nature of this

approach. The processing pipeline of a fine guidance sensor

and photometer instrument was implemented and fed 512x512

pixel-sized input frames with simulated stars via two

SpaceWire links running at 100 Mbits at maximum data rate

(~34 frames per second). In the initial processing step, a

region of interest of 100x100 pixels was masked, which was

then examined by a center-of-gravity (COG) algorithm to

determine the precise position of the guide star on the frame.

The output of the COG step consisted of the object shift

relative to the center of the input frame and photometric flux

data for a 40x40 region of interest. This region was deglitched

and calibrated in the next nodes of the processing chain,

followed by de-correlation via integer wavelet transform and

finally compressed by arithmetic coding (ARI).

The resulting load curves, represented by the fill states of

the circular buffers, demonstrate the quick emergence of a

periodic pattern that clearly demonstrates the effectiveness of

this approach (see Figure 2).

VI. RUN-TIME CONFIGURATION INTERFACE

A core necessity of any type of on-board software is the

ability to generate housekeeping data to be sent to ground, in

Figure 1 Chaining concept of individual, pipelined program kernels.

Data arriving via a SpaceWire link are processed by Xentium DSPs

as needed by dynamically changing the running kernel. The data

progresses through the pipeline and are sent to their destination via

outgoing SpaceWire link.

Figure 2: Successful test of a processing chain. Only buffers that

show usage > 0 during any sampling period are included in the

diagram.

order to provide information about the prevailing run-time

parameters of both hardware and software.

While requirements of update rates and number of

variables – especially regarding software – may vary greatly

for different mission profiles, there are generally hundreds of

these data that are available for selection to form a

housekeeping telemetry message. Usually, these are not solely

read-only variables, but may also be patched by an

appropriate tele-command in order to induce a mode change

or adjust parameters to modify the behaviour of the software.

These variables are often stored in large, monolithic,

globally accessible "data pools". Such simplistic structures

may at first glance be the logical choice, suggesting ease of

both use and implementation, but are however very

susceptible to breakage, particularly in top-down designs,

where the data type of the implemented variables is not

uniform and interaction with the data structure is only

intended to occur via opaque accessor functions. If

adjustments are made during development, memory violations

may occur during runtime, and those can result in erratic,

unpredictable, opaque bugs that are very difficult to track

down. Another objection to this type of design is its re-

usability, as there may exist multiple points of adaption,

especially in circumstances where a great number of

internally used variables, which are elemental to a software

module or function, are stored in an externally administered

data structure.

Highly modular, encapsulated software modules with an

as minimalistic as possible external interface are very

preferable for re-use. Ideally, for example, a SpaceWire driver

would only provide an interface to send or receive packets

and handle all configuration of the underlying hardware

internally. This however poses a problem to a user that would,

for example, configure a particular link speed or continuously

monitor data transfer rates.

For such purposes, an interaction point is needed that

exposes certain internal attributes via a generic interface and

acts as a conduit between operating system elements and user-

space. There are essentially four fundamental requirements for

such functionality. First, internal interfaces or variables must

not be slower to use than when not exposed. Second, all

exposed functionality is defined by the module and exported

to the generic interface when initialised. Third, the exposed

functionality must not result in unpredictable behaviour, i.e.

the software module must be insensitive to sudden changes in

states or variables, or care must be taken by the module

designer, so that interactions are properly handled. In any

case, this must never be a concern for the user. Finally, any

access must be on the user's processing time, not on that of

the module.

Given that the interaction point has to be completely

generic to accommodate any kind of mapping defined by a

module without restrictions, it must consequently be very

simple. This is most easily achieved by implementing a

character-buffer based interface that interacts with a module

via functions provided by the latter to the generic interface

structure. The necessary parsing or value conversion of text

buffers on the user side is obviously slow compared to raw

variable access, but given the underlying assumption that this

system control interface is to be accessed in the order of no

more than a few hundred or at most several thousand times

per second, the overhead is effectively negligible.

The concept is very similar to the sysfs and sysctl

interfaces found in Linux and BSD operating systems, with

the former being file-system driven, while the latter is

implemented as a system call. Since a file-system in the

classic sense is not foreseen to be implemented in the OS, the

actual implementation can be seen as a hybrid of the two,

which represents nodes in the configuration in the same

fashion as a virtual file system tree, while all access is

performed via a call interface.

To create a system object for exporting items, a software

module must define at least one attribute structure that

configures the name and the appropriate show and store

methods of that attribute. The object is then registered to an

existing logical set of objects. For instance, a SpaceWire

driver would register its attributes under a /sys/drivers tree,

while an interrupt manager would register under /sys/irq,

provided that these sets were already defined. Optionally, a

new sub-set to hold the system objects of particular attributes

may be created before attaching an object. If the SpaceWire

driver was to manage multiple interfaces, it could create a

logical sub-set /sys/drivers/spw and group interfaces SpW0,

SpW1, ... under that set.

Since there are no formal restrictions on what qualifies to

this system configuration tree, application software running

on top of the operating system can (and should) make use of it

as well. The aforementioned housekeeping data generation

makes a good example for an application that both uses the

the data provided by the registered software modules to

generate housekeeping packets and is itself configured via this

interface, e.g. its polling rate and the definition of

housekeeping data to collect.

VII. SUMMARY

Given the unique nature of the SSDP/MPPB hardware

concept, a custom approach is needed to efficiently run

computational operations in an (astronomical) on-board data

processing and compression setup of instrument payloads.

The operating system currently under development at the

Department of Astrophysics of the University of Vienna

addresses this challenge. To encourage its use, modification

and redistribution, it will be published under an open source

license in all of its parts.

VIII. REFERENCES

[1] Massively Parallel Processor Breadboarding Study, ESA

Contract 21986, Final presentation, ESA DSP Day, (2012)

Available: http://www.spacewire.esa.int/edp-page/events/DSP

Day - RECORE MPPB presentation - part 1.pdf

[Online; accessed 13-May-2016].

[2] Berrojo, L. et al. (2015, 09). Scalable Sensor Data Processor: A

Multi-Core Payload Data Processor ASIC. DASIA 2015

[3] Ottensamer, R. et al. Open-Source Instrument Flight Software

for CHEOPS. AMICSA & DSP Day (2016)

http://www.spacewire.esa.int/edp-page/events/DSP%20Day%20-%20RECORE%20MPPB%20presentation%20-%20part%201.pdf
http://www.spacewire.esa.int/edp-page/events/DSP%20Day%20-%20RECORE%20MPPB%20presentation%20-%20part%201.pdf

