Space Debris Detection on the HPDP, a Coarse-Grained Reconfigurable Array Architecture for Space

Diego Suárez - Airbus DS GmbH, Germany
Tim Helfers, Airbus DS GmbH, Germany
Dr. Josef Weidendorfer, TU München, Germany.
Daniel Bretz, Airbus DS GmbH, Germany
Dr. Jens Utzmann, Airbus DS GmbH, Germany

Agenda

1. Objectives: algorithm effectiveness, portability and performance in HPDP.

2. HPDP Architecture: features and parallelism capabilities.

3. Feature Detection Algorithm: boundary tensor and thresholding.

4. Implementation in the HPDP: maximize throughput.

5. Results: Error, throughput and detection effectiveness. Estimations on planned hardware.

6. Conclusions.

7. HPDP Roadmap and Ongoing Work
Motivation for HPDP
Payload Processing Applications in Telecom and Non-Telecom Missions in Airbus DS

Receiver for Automatic Dependent Surveillance - Broadcast (ADS-B) for Air Traffic Control

Satellite-based Machine-to-Machine (M2M) communication

→ New Generation Reprogrammable Processor Technologies are required
1. Objective

Space debris detection with the HPDP
SSA System Architecture

NEO Sensors

Ground-based Optical

Data Processing and Service Dissemination

Ground-based Radars

Space-based Space Surveillance (SBSS)

Space Weather Sensors (e.g. L1/L5)
Demonstrator Project

- **End-to-end processing pipeline** currently covered in *ESA GSTP “Optical In-Situ Monitor” study*
 - Airbus DS, AIUB, Micos
 - Develop, integrate & test of laboratory breadboard system
 - E2E Test of Data Processing Pipeline

➤ One possible algorithm to detect objects in an image: **Boundary Tensor**

➤ Image shall be processed on-board in order to just downlink the relevant data rather than full images
Design Requirements

✓ Objective: determine…

- Performance: process one image in one second or less.
- Portability: suitability to implement data-flow.

…of a space debris detection algorithm in the HPDP architecture.

![Diagram of HPDP XPP-III 40.16.2](image1)

Input Image (SBSS) 2048x2048 pixels
Grayscale (16 bits depth).

Detection Image 2048x2048 pixels
Binary (1 bit depth).
2. HPDP architecture
HPDP Architecture Features

- The eXtreme Processing Platform (XPP) is the core of the HPDP architecture:
 - Coarse-grain reconfigurable of Processing Array Elements (PAE).
 - Automatically synchronizing, packet-oriented communication network.
 - Runtime and self-reconfigurable.

The XPP ALU Processing Array Element [1]
XPP Architecture

3. Feature Detection Algorithm: Boundary Tensor and Thresholding
Feature detection algorithm
General Dataflow graph

Int16 (truncated)

Image

Column row-wise Convolution

Odd Polar Filters

Even Polar Filters

Odd Response

Even Response

Odd Tensor Calculation

Even Tensor Calculation

Boundary Tensor

Tensor Trace

Boundary Tensor trace

Thresholding

Features Detected Image

U. Köthe, VIGRA Library [5]
Implementation in HPDP
Boundary Tensor and threshold calculation
4. Results
XPP Array Simulator View (XDBG)

XPP Array Simulation of the row convolution with odd symmetry kernel Configuration.
Feature detection algorithm

Throughput in HPDP Simulation

Simulated throughput of each of the XPP array configurations used in the feature detection algorithm:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Convolution Even Symmetry</td>
<td>1.63</td>
<td>3.27</td>
<td>653.6</td>
</tr>
<tr>
<td>Row Convolution Odd Symmetry</td>
<td>1.99</td>
<td>3.98</td>
<td>796.6</td>
</tr>
<tr>
<td>Column Convolution Even Symmetry</td>
<td>1.63</td>
<td>3.27</td>
<td>653.7</td>
</tr>
<tr>
<td>Column Convolution Odd Symmetry</td>
<td>1.99</td>
<td>3.98</td>
<td>796.6</td>
</tr>
<tr>
<td>Transpose 2D Array</td>
<td>1.60</td>
<td>3.20</td>
<td>639.4</td>
</tr>
<tr>
<td>Boundary Tensor and Thresholding</td>
<td>In Stream: 1.90</td>
<td>In Stream: 3.81</td>
<td>761.6</td>
</tr>
<tr>
<td></td>
<td>Out Stream: 0.27</td>
<td>Out Stream: 0.54</td>
<td>108.8</td>
</tr>
</tbody>
</table>

⇒ Memory Bandwidth requirement (XPP array @ 200 MHz) for single port transactions: 1594 MBytes/s.
Feature detection algorithm

Expected HPDP Hardware

- XPP array @ 200 MHz.
- FNC-PAE @ 100 MHz.
- Two Memory ports 64 bits wide
 - 100 MHz single port SRAM (4 MBytes).
 - 50 MHz single port DRAM (128 MBytes).

⇒ The theoretical maximum memory bandwidth is 800 MBytes/s for the SRAM and 400 MBytes/s for the DRAM.
⇒ Algorithm in XPP array achieves nearly twice the data rate of the memory.
⇒ Memory is the performance bottleneck in the expected HPDP hardware.
Feature detection algorithm

Sub-Image processing

• Algorithm makes heavy use of memory.
• 64 read/write access of a 2048x2048 int16 image buffers (8 MBytes):

⇒ SRAM should be used for processing.
⇒ Sub-image processing is done.
Feature detection algorithm

Performance

• Input Image is split in 16 sub-images that are processed each at a time using image buffers in SRAM.

• DRAM is used to store input and result image.

⇒ Real-time requirement is met.
Feature detection algorithm

Reconfiguration Time

<table>
<thead>
<tr>
<th>Array Reconfiguration Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Image Number</td>
</tr>
<tr>
<td>Array Clock</td>
</tr>
<tr>
<td>Required Cycles for single Reconfiguration</td>
</tr>
<tr>
<td>Number of Configurations (per image processing)</td>
</tr>
<tr>
<td>Total required Reconfigurations (for 16 Sub-Images processing)</td>
</tr>
<tr>
<td>Total Cycles in Reconfiguration</td>
</tr>
<tr>
<td>Reconfiguration Time [sec]</td>
</tr>
</tbody>
</table>

⇒ 1.4ms out of 73.4ms for Reconfiguration
Feature detection algorithm
Detection Results in HPDP Simulation

Input Image
Geosynchronous equatorial orbit survey. Ground base capture.
Source: Astronomische Institut der Universität Bern (AIUB)
Survey01210820130809.fts
Feature detection algorithm

Detection Results in HPDP Simulation

Floating-point using 16 bits input image.
Threshold = 6400

HPDP Simulation Results
Threshold = 1600

Results: Thresholded boundary tensor trace
Feature detection algorithm
Detection Results in HPDP Simulation

Zoom section in (350,441):
• Around 10% of high values (detection) are lost in the HPDP results.
Conclusions

1. Algorithm effectiveness:
 • The HPDP implementation result loses 10% of detected pixels in the periphery. Centroid is conserved, then streak location capabilities are conserved.

2. Algorithm Portability:
 • Convolution data-flow and boundary tensor trace calculation are suitable for implementation in XPP array.
 • Algorithm takes advantage of pipelining and task parallelism of the XPP array.
Conclusions

3. Algorithm Performance in the HPDP:

- Algorithm performance is limited by the memory bandwidth.

- One 2048x2048 pixels 16-bit image in 0.737 seconds. With 200MHz @XPP and 100MHz @FNC according to backend results from mapping to STM C65SPACE technology

- Average of 4.7 GOps/s for 16-bits fixed-point Multiplication-Addition operations in the XPP Array (measured with simulator for this algorithm)

- Multi-chip implementation boost performance: a HPDP chip is assigned to a set of sub-images.
4. HPDP Roadmap and Ongoing Work
Space Debris Detection on the HPDP (DSP Day 2016)

Development Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPDP Chip</td>
<td></td>
<td></td>
<td>TRL 4</td>
<td></td>
<td>TRL 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPDP Demo chip</td>
<td></td>
<td>HPDP Rad-hard chip</td>
<td>STM65 @ ESA</td>
</tr>
<tr>
<td>Module Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRL 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multi-chip HPDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RegOBP Study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-SITU (Space Debris Monitoring) Study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Regenerative Demonstrator</td>
</tr>
</tbody>
</table>

- Proto delivery TRL 4
- EM delivery TRL 5
- EQM delivery TRL 6
- QM delivery TRL 7
- PFM/FM delivery TRL 8
References

