
Space Debris Detection on the HPDP, A Coarse-Grained Reconfigurable Array
Architecture for Space

D. Suáreza, b , J. Weidendorfera, T. Helfersb, D. Bretzb, J. Utzmannc

aTechnische Universität München, Boltzmannstraße 3, 85748 Garching, Germany

bAirbus Defence and Space GmbH, Robert-Koch-Straße 1, 85521 Ottobrunn, Germany
cAirbus Defence and Space GmbH, Claude-Dornier-Straße, 88090 Immenstaad, Germany

diego.suarez@airbus.com

Abstract
Stream processing, widely used in communications and

digital signal processing applications, requires high-
throughput data processing that is achieved in most cases
using ASIC designs. Lack of programmability is an issue
especially in space applications, which use on-board
components with long life-cycles requiring applications
updates. To this end, the HPDP architecture integrates an
array of coarse-grained reconfigurable elements to provide
both flexible and efficient computational power suitable for
stream-based data processing applications in space.

In this work the capabilities of the HPDP architecture are
demonstrated with the implementation of a real-time image
processing algorithm for space debris detection in a space-
based space surveillance system. The implementation
challenges and alternatives are described making trade-offs to
improve performance at the expense of negligible degradation
of detection accuracy. The proposed implementation uses
over 99% of the available computational resources.
Performance estimations based on simulations show that the
HPDP can amply match the application requirements.

I. INTRODUCTION
A hardware architecture supporting parallelism, such as

pipelining and data-flow parallelism is of high importance in
stream-processing applications, in which conventional
processors do not deliver the required performance efficiently.
An Application-Specific Integrated Circuit (ASIC) achieves
low power consumption with the best performance, but lacks
of any reconfiguration capabilities needed especially in space
applications where the on-board hardware has long life-cycles
and might require application upgrades. On the other hand, a
Field-Programmable Gate Array (FPGA) allows
reconfigurable hardware design at gate level, offering more
flexibility than an ASIC at expenses of higher power
consumption, more silicon and at a relatively reduced
maximum clock frequency, but capable of achieving better
computational performance than processors in stream-based
applications [2]. However, fine granularity reduce
performance in an FPGA because of the complexity of the
programmable connections used to build logic blocks [3].

As a result, architectures are evolving towards hardware
with reconfigurable capabilities that integrates modules that
can be configured to efficiently perform frequently used

operations. The eXtreme Processing Platform (XPP) is the
core of the High Performance Data Processors (HPDP)
architecture [4]. The XPP allows runtime reconfiguration of a
network of coarse-grained computation and storage elements.
The algorithm's data-flow graph is implemented in
configurations, in which each node is mapped to fundamental
machine operations executed by a configurable Arithmetic
Logic Unit (ALU) [5].

The present work aims to determine the effectiveness,
portability and performance of an image processing algorithm
in the HPDP architecture. Space debris is a major issue for
operational satellites and spacecraft. A Space Based Space
Surveillance (SBSS) mission using an optical telescope has
been proposed [1] in order to detect and track such debris.
The required frame rate for the instrument calls for an
efficient on-board image processing implementation in order
to keep payload data volume within limits. Such on-board
data reduction can be implemented by detecting features of
interest (debris, stars) while omitting the remaining image
content (noise, space background).

The main objective of porting the algorithm to the HPDP
architecture is to fulfil the requirement of real-time detection
of space debris. Portability analysis covers use of hardware
resources among different implementation alternatives, its
parallelisation capabilities, throughput, memory usage (size
and required bandwidth) and errors derived from rounding
and data truncation.

The paper is structured as follows. The first section
introduces the HPDP architecture with its constitutive
elements. Next, the theory behind the boundary tensor
algorithm as a feature detection method is explained. Then,
the implementation of the algorithm in the HPDP is described.
In the following section, the cycle-accurate simulation results
are presented to measure the throughput of the algorithm
running on the HPDP, estimate the performance in the
expected hardware, and quantify the detection error. Finally,
the objectives are evaluated and conclusions are given.

II. THE XPP AS THE CORE OF THE HPDP

 The XPP is a runtime-reconfigurable data processing

architecture, that combines a coarse-grained reconfigurable
data-flow array with sequential processors. This allows
mapping regular control-flow algorithms that operates over a

stream of data and achieve high throughput. Control-flow
dominated tasks can be executed in the programmable
processors [5].

The XPP Core consists of three types of Processing Array
Elements (PAE): arithmetic logic unit PAE (ALU-PAE),
random access memory with I/O PAE (RAM-PAE) and the
Function PAE (FNC-PAE). ALU-PAE and RAM-PAE
objects are arranged in a rectangular array, called the XPP
Data-flow Array [6].

Figure 1: Overview of the HPDP architecture [4]

For the implementation of the feature detection algorithm
the XPP-III 40.16.2 core is used, consisting of 40 ALU- PAE
objects arranged in a 5x8 array, 16 RAM-PAE and two FNC-
PAE. For the HPDP project the XPP core has been selected
by Airbus DS due to the availability as HDL source code
among others. This enables the implementation on the
STM65nm semiconductor technology, using a radiation
hardened library. The elements in the library are designed
such that radiation effects such as bit flips in storage elements
and transients on control signals lines are very much limited.
This makes the resulting HPDP chip suitable to operate in all
earth orbits and be- yond. The development of this chip is
currently on-going, first prototypes are expected in the second
half 2016.

III. ALGORITHM FOR SPACE DEBRIS DETECTION
The objective of the used algorithm is to detect linear

streaks formed by space debris trails. A linear feature is
defined as a neighbourhood of image pixels with an intensity
distribution forming a patter fitting in a line with some width
and length, and with a high enough signal-to-noise ratio
(SNR) to be detected.

The boundary tensor [7][8] combined with thresholding is
used as the detection algorithm to obtain a binary image
containing the detected objects.

The boundary tensor is constructed combining the results
of applying a set of polar separable filters to the input image.
It has been demonstrated that an adequate linear combination
of the results of applying a set of polar filters to an image,
produces a single peak of energy when an edge is found,
regardless of the type of symmetry in the feature: step edges
that exhibit even symmetry or roof edges that has odd
symmetry [7]. Filtering is performed in the spatial domain,
saving computational efforts compared with filters working in

the frequency domain where Fourier transformations are
required. For this purpose, a set of even and odd filters are
used and the filtering operation is implemented as a set of 1-D
Convolutions along the columns and rows of the image,
generating a set of odd and even responses. Their energies are
combined to obtain the boundary tensor. Seven filter kernels
are used, which are calculated from the Gaussian function and
successive derivatives.

Figure 2: Boundary tensor and thresholding data-flow graph for
space debris detection

IV. PORTING THE DATA-FLOW GRAPH TO THE XPP
ARRAY

Convolution is the basic operation of most signal
processing algorithms. For the boundary tensor algorithm
seven row-wise convolutions and seven subsequent column-
wise convolutions are used to calculate the even and odd
responses. The convolution process accounts for 80% of the
data processing required for the whole boundary tensor
algorithm. Thus, its implementation has a high impact in the
final performance. Four types of operations are required to
complete the convolution stage as illustrated in Figure 3.

Figure 3: Data-flow graph of the convolution stage in the boundary
tensor algorithm for feature detection

A. 1-D Convolution Implementation
The reference design of boundary tensor [8] requires, in

first instance, floating-point arithmetic. However, hardware
for signal processing often uses fix-point arithmetic because
floating-point support needs more hardware resources. This in
turn increases power consumption. Furthermore, issues may
arise in time-constrained applications since operations could
take an unpredictable amount of time [9]. Therefore,
convolution is implemented using fix-point arithmetic in this
work. Kernels with radius r = 3 are used.

1) Bit-Width for Data Representation in XPP computations
The XPP array does not have enough computational

elements to calculate several convolution sets in one
configuration. And it has neither enough internal memory
elements to perform convolution rounds with different
kernels, without having to stream-out intermediate results to
the system's memory. Therefore, the bit-width value
representation used in the XPP computations has great
influence in the volume of data exchanged between the XPP
array and the system memory and, in consequence, impact in
the performance. The input pixels are unsigned 16 bit values
(uint16), signed arithmetic is required due to the negative
elements of some kernels, and that the 4-Dimensional Direct
Memory Access (4D-DMA) can transfer data at a maximum
of 64 bits/cycle. A trade-off between accuracy and
performance is possible. If the full-resolution input pixels are
used for computation, two 16 bits data buses from the XPP
array are required to hold computation values. This means
that a pixel is represented by an int32 value and the 4D-
DMA is only capable to transfer 2 pixels/cycle. However, if
the least significant bit (LSB) of the input pixels is truncated,
all computations fit into 16 bits, therefore 4 pixels/cycle can
be streamed to the XPP array. Additionally, the int16
implementation requires the transfer of half the data volume
than the int32, at expenses of inducing an error in the
detection result. This LSB truncation approach is used and
detection error is analysed.

2) Overflow consideration
Kernels that are derived from the Gaussian function are

normalised, which means that the sum of the absolute value of
the kernel elements is equal to one. In addition, for kernels
obtained from the successive derivatives of the Gaussian
function, it can be demonstrated that the sum of the absolute
values is a positive number less than one.

3) Resource Optimisation based on Kernel symmetry
To convolve a full row (or column), a convolution is

executed over all its pixels. At the end of this process, each
kernel element is assumed to be multiplied with all pixels in
the row (column). This rule applies to all pixels except the
ones near the borders, i.e. the first and last r pixels in the row
or column. These are not multiplied by all kernel elements,
but only by r of them. In first instance, it is possible to assume
that for each pixel convolution 2r+1 multiplications must be
done and 2r additions must be calculated.

Symmetry in a kernel is advantageous for the
implementation, because it reduces the number of necessary

multiplications between kernel elements and pixels. In the
case that the kernels show even symmetry, the values at each
side of the vertical axis are a reflection of the other side. As a
result, only r+1 multiplications are necessary. For kernels
with odd symmetry, the central element is always zero and the
elements at one side of the vertical axis have the same
magnitude with opposite sign than the values at the other side.
This means that using this kind of kernel, only r
multiplications are needed per pixel convolution.

B. Boundary tensor trace calculation.
Boundary tensor calculation is performed only once at the

end of the algorithm and its complete implementation fits in a
single XPP array configuration. For this reason, there are no
intermediate values that must be temporarily stored in the
system memory to be streamed-back to the XPP array for
further processing. As illustrated in Figure 4 calculations are
carried out using the given bit-width.

a) Even tensor calculation

b) Odd tensor calculation

Figure 4: data-flow graph of the even tensor calculation, with data
type and value ranges

III. RESULTS
In this section the performance of the feature detection

algorithm executed in the HPDP is evaluated. The HPDP chip
is not yet available. The following runtime estimates are
derived from a cycle-accurate simulation of the XPP array and
the expected clock frequencies as given in the following
section.

C. XPP Array Throughput
For determining the throughput of the complete

implementation, each pipeline in every of the six
configurations (i.e. row and column-wise convolution with
even and odd symmetry, transpose and boundary tensor
calculation) is executed in the HPDP simulator. The
maximum average throughput is 3.98 Bytes/cycle, which is
achieved by the configurations computing convolution with
odd symmetry kernels.

For an XPP array working with a 200 MHz clock, after the
data flow in the pipelines has been balanced, a maximum of
796 MBytes/s will be flowing into the XPP array for
processing and, at the same bit rate, results will be generated.
Thus, for a single memory port, the minimum bandwidth to
provide and store-back a continuous data stream to the XPP
array is 1592 MBytes/s. However, this requirement is not met
by the assumed HPDP hardware specification which
integrates two 64-bit wide memory ports: one with an internal
4 MBytes SRAM operating at 100 MHz (i.e. 800 MBytes/s)
and another with an external DRAM attached running at 50
MHz (i.e. 400 MBytes/s). So the maximum theoretical bit
transfer of the SRAM is nearly half the bit rate at which the
XPP array is consuming data and generating results for the
implemented algorithm.

1) Sub-image Processing
To achieve the best performance for the given

specifications, the SRAM should be used for all memory
transactions required for the convolution and boundary tensor
calculation. This implementation requires eight image buffers
for complete execution. One stores the input image, and the
other seven hold the row-convolution results. Because the
transposition operation reads the input image column-wise
and writes the result row by row, it is not possible to use the
same origin and destination buffer for this operation,
otherwise loss of data will occur. Splitting the 2048x2048
pixels input image in 16 parts, produces sub-images that can
be processed one at a time using eight 512 KBytes sub-image
buffers stored in SRAM. DRAM is used to store the input and
result image.

2) Estimated Computation Time
The performance of the algorithm on the specified HPDP

hardware is determined by the memory speed. Based on the
number of write and read operations needed for the complete
algorithm, an estimation of the execution time of the feature
detection algorithm is computed. The algorithm completion

time for the expected HPDP hardware is 734 ms using sub-
image processing with SRAM, compliant with the maximum
one second requirement for processing a 2048x2048 pixels
image.

3) Detection Accuracy
For each detected streak in the binary image obtained from

the HPDP simulation, there are approximately 10% less
detected pixels compared with the reference implementation,
as shown in Figure 5 for an input image containing a streak
with an SNR of 7.19 dB. The error is negligible since the
detection information per object can then be used to store full
streak pixel values in order to not lose accuracy with respect
to the position and brightness in a further processing step on-
ground.

Figure 5: Comparison between reference and HPDP implementation.
Detection values present in the reference implementation but not in
the HPDP results are highlighted in red, and represent 10% of miss-

detected pixels.

V. CONCLUSIONS
In this paper, we showed that the boundary tensor

algorithm can be mapped to a data-flow graph and a simple
control flow is only required for filter kernel update, border
replication and pipeline cleaning tasks. Thus, the XPP array is
appropriate for its implementation, reaching in average 4.7
GOp/s, for 16-bit fixed-point multiplication-addition
operations. The model used for the convolution
implementation makes possible to implement pipeline
parallelism, because the image input stream is multiplied first
by all kernel elements and the adder module receives the
required multiplication results as they are produced.
Moreover, convolution is appropriate for task parallelism in
XPP array, since four consecutive pixel streams are received,
and four pipelines can compute the convolution of four pixels
simultaneously, without data dependencies. The utilisation of
99% of XPP array computation elements (e.g. ALU-PAE),
and the use of the maximum transfer mode of the 4D-DMA,
shows that this implementation is taking advantage of all the
capabilities of the architecture.

Additionally, it has been determined that for a noise-less
detection, the SNR of the feature must be greater than 7.19
dB. This specifies the capabilities of the implemented
algorithm and shall be used as a detection-effectivity
benchmark for comparison with other detection algorithms.

In terms of scalability, the XPP array configuration (use of
array objects and connections) implementing this algorithm is

independent from the dimensions of the input image. The size
of the kernel has direct impact in the required operations and
as consequence more XPP array resources are needed if the
kernel radius is increased. This is determined by the deviation
of the Gaussian function that generates the filters. The
deviation value has an impact on the geometry of the features
that can be detected.

Finally, the LSB truncation is an effective alternative to
meet the real-time requirement because the gain in
performance is greater (twice as fast) than the error caused in
the detection, evidenced by a loss of only 10\% of high-
detection pixels. Integer arithmetic keeps the hardware
implementation at the lowest level of complexity, using less
resources, reducing power consumption and assuring
computation time determinism, with negligible error.

To summarize, our experience from implementing the
given algorithm shows that the coarse-grained reconfigurable
array approach successfully can achieve typical requirements
in space. A key feature is the fast re-configurability, which
not only makes programmability possible in the first place,
but also allows even complex data flows to be implemented in
multiple configurations with modest hardware resources and
still high data streaming throughput.

REFERENCES
[1] Utzmann, J., Wagner, A., Silha, J., Schildknecht, T., Willemsen,

P., Teston, F., Flohrer, T. (2014, October). Space- Based Space
Surveillance and Tracking Demonstrator: Mission and System
Design. 65th International Astronautical Congress, Toronto,
Canada.

[2] Bailey, D. (2011, June). Design for Embedded Image
Processing on FPGAs John Wiley & Sons.

[3] Bobda, C. (2007). Introduction to Reconfigurable Computing:
Architectures, Algorithms, and Applications. Springer
Netherlands.

[4] Syed, M., Acher, G., Helfers, T. (2013, May). A High
Performance Reliable Dataflow Based Processor for Space

Applications. Proceedings of the ACM International Conference
on Computing Frontiers.

[5] Schüler, E., Weinhardt, M. (2009). XPP-III: Reconfigurable
Processor Core. In: A. R. Nikolaos Voros and M. Hübner, Eds.
Dynamic System Reconfiguration in Heterogeneous Platforms:
The MORPHEUS Approach, Chap. 6, Springer Netherlands.

[6] PACT XPP Technologies AG. (2006). XPP-III Processor
Overview White Paper. Germany.

[7] Köthe, U. (2003, October). Integrated edge and junction
detection with the boundary tensor. Ninth IEEE International
Conference on Computer Vision.

[8] VIGRA Homepage, Heidelberg Collaboratory for Image
Processing. http://ukoethe. github.io/vigra/

[9] Owen, M. (2007). Practical Signal Processing. Cambridge
University Press.

