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Abstract 
Stream processing, widely used in communications and 

digital signal processing applications, requires high-
throughput data processing that is achieved in most cases 
using ASIC designs. Lack of programmability is an issue 
especially in space applications, which use on-board 
components with long life-cycles requiring applications 
updates. To this end, the HPDP architecture integrates an 
array of coarse-grained reconfigurable elements to provide 
both flexible and efficient computational power suitable for 
stream-based data processing applications in space.  

In this work the capabilities of the HPDP architecture are 
demonstrated with the implementation of a real-time image 
processing algorithm for space debris detection in a space-
based space surveillance system. The implementation 
challenges and alternatives are described making trade-offs to 
improve performance at the expense of negligible degradation 
of detection accuracy. The proposed implementation uses 
over 99% of the available computational resources. 
Performance estimations based on simulations show that the 
HPDP can amply match the application requirements. 

I. INTRODUCTION 
A hardware architecture supporting parallelism, such as 

pipelining and data-flow parallelism is of high importance in 
stream-processing applications, in which conventional 
processors do not deliver the required performance efficiently. 
An Application-Specific Integrated Circuit (ASIC) achieves 
low power consumption with the best performance, but lacks 
of any reconfiguration capabilities needed especially in space 
applications where the on-board hardware has long life-cycles 
and might require application upgrades. On the other hand, a 
Field-Programmable Gate Array (FPGA) allows 
reconfigurable hardware design at gate level, offering more 
flexibility than an ASIC at expenses of higher power 
consumption, more silicon and at a relatively reduced 
maximum clock frequency, but capable of achieving better 
computational performance than processors in stream-based 
applications [2]. However, fine granularity reduce 
performance in an FPGA because of the complexity of the 
programmable connections used to build logic blocks [3]. 

As a result, architectures are evolving towards hardware 
with reconfigurable capabilities that integrates modules that 
can be configured to efficiently perform frequently used 

operations. The eXtreme Processing Platform (XPP) is the 
core of the High Performance Data Processors (HPDP) 
architecture [4]. The XPP allows runtime reconfiguration of a 
network of coarse-grained computation and storage elements. 
The algorithm's data-flow graph is implemented in 
configurations, in which each node is mapped to fundamental 
machine operations executed by a configurable Arithmetic 
Logic Unit (ALU) [5]. 

The present work aims to determine the effectiveness, 
portability and performance of an image processing algorithm 
in the HPDP architecture. Space debris is a major issue for 
operational satellites and spacecraft.  A Space Based Space 
Surveillance (SBSS) mission using an optical telescope has 
been proposed [1] in order to detect and track such debris. 
The required frame rate for the instrument calls for an 
efficient on-board image processing implementation in order 
to keep payload data volume within limits. Such on-board 
data reduction can be implemented by detecting features of 
interest (debris, stars) while omitting the remaining image 
content (noise, space background). 

The main objective of porting the algorithm to the HPDP 
architecture is to fulfil the requirement of real-time detection 
of space debris. Portability analysis covers use of hardware 
resources among different implementation alternatives, its 
parallelisation capabilities, throughput, memory usage (size 
and required bandwidth) and errors derived from rounding 
and data truncation.  

The paper is structured as follows. The first section 
introduces the HPDP architecture with its constitutive 
elements. Next, the theory behind the boundary tensor 
algorithm as a feature detection method is explained. Then, 
the implementation of the algorithm in the HPDP is described. 
In the following section, the cycle-accurate simulation results 
are presented to measure the throughput of the algorithm 
running on the HPDP, estimate the performance in the 
expected hardware, and quantify the detection error. Finally, 
the objectives are evaluated and conclusions are given. 

II. THE XPP AS THE CORE OF THE HPDP 
 
 The XPP is a runtime-reconfigurable data processing 

architecture, that combines a coarse-grained reconfigurable 
data-flow array with sequential processors. This allows 
mapping regular control-flow algorithms that operates over a 



stream of data and achieve high throughput. Control-flow 
dominated tasks can be executed in the programmable 
processors [5]. 

The XPP Core consists of three types of Processing Array 
Elements (PAE): arithmetic logic unit PAE (ALU-PAE), 
random access memory with I/O PAE (RAM-PAE) and the 
Function PAE (FNC-PAE). ALU-PAE and RAM-PAE 
objects are arranged in a rectangular array, called the XPP 
Data-flow Array [6].  

 

Figure 1: Overview of the HPDP architecture [4] 

For the implementation of the feature detection algorithm 
the XPP-III 40.16.2 core is used, consisting of 40 ALU- PAE 
objects arranged in a 5x8 array, 16 RAM-PAE and two FNC-
PAE. For the HPDP project the XPP core has been selected 
by Airbus DS due to the availability as HDL source code 
among others. This enables the implementation on the 
STM65nm semiconductor technology, using a radiation 
hardened library. The elements in the library are designed 
such that radiation effects such as bit flips in storage elements 
and transients on control signals lines are very much limited. 
This makes the resulting HPDP chip suitable to operate in all 
earth orbits and be- yond. The development of this chip is 
currently on-going, first prototypes are expected in the second 
half 2016. 

III. ALGORITHM FOR SPACE DEBRIS DETECTION 
The objective of the used algorithm is to detect linear 

streaks formed by space debris trails. A linear feature is 
defined as a neighbourhood of image pixels with an intensity 
distribution forming a patter fitting in a line with some width 
and length, and with a high enough signal-to-noise ratio 
(SNR) to be detected.  

The boundary tensor [7][8] combined with thresholding is 
used as the detection algorithm to obtain a binary image 
containing the detected objects. 

The boundary tensor is constructed combining the results 
of applying a set of polar separable filters to the input image. 
It has been demonstrated that an adequate linear combination 
of the results of applying a set of polar filters to an image, 
produces a single peak of energy when an edge is found, 
regardless of the type of symmetry in the feature: step edges 
that exhibit even symmetry or roof edges that has odd 
symmetry [7]. Filtering is performed in the spatial domain, 
saving computational efforts compared with filters working in 

the frequency domain where Fourier transformations are 
required. For this purpose, a set of even and odd filters are 
used and the filtering operation is implemented as a set of 1-D 
Convolutions along the columns and rows of the image, 
generating a set of odd and even responses. Their energies are 
combined to obtain the boundary tensor. Seven filter kernels 
are used, which are calculated from the Gaussian function and 
successive derivatives. 

 

Figure 2: Boundary tensor and thresholding data-flow graph for 
space debris detection 

IV. PORTING THE DATA-FLOW GRAPH TO THE XPP 
ARRAY 

Convolution is the basic operation of most signal 
processing algorithms. For the boundary tensor algorithm 
seven row-wise convolutions and seven subsequent column-
wise convolutions are used to calculate the even and odd 
responses. The convolution process accounts for 80% of the 
data processing required for the whole boundary tensor 
algorithm. Thus, its implementation has a high impact in the 
final performance. Four types of operations are required to 
complete the convolution stage as illustrated in Figure 3. 

 
 

Figure 3: Data-flow graph of the convolution stage in the boundary 
tensor algorithm for feature detection 



A. 1-D Convolution Implementation 
The reference design of boundary tensor [8] requires, in 

first instance, floating-point arithmetic. However, hardware 
for signal processing often uses fix-point arithmetic because 
floating-point support needs more hardware resources. This in 
turn increases power consumption. Furthermore, issues may 
arise in time-constrained applications since operations could 
take an unpredictable amount of time [9]. Therefore, 
convolution is implemented using fix-point arithmetic in this 
work. Kernels with radius r = 3 are used. 

1) Bit-Width for Data Representation in XPP computations 
The XPP array does not have enough computational 

elements to calculate several convolution sets in one 
configuration. And it has neither enough internal memory 
elements to perform convolution rounds with different 
kernels, without having to stream-out intermediate results to 
the system's memory. Therefore, the bit-width value 
representation used in the XPP computations has great 
influence in the volume of data exchanged between the XPP 
array and the system memory and, in consequence, impact in 
the performance. The input pixels are unsigned 16 bit values 
(uint16), signed arithmetic is required due to the negative 
elements of some kernels, and that the 4-Dimensional Direct 
Memory Access (4D-DMA) can transfer data at a maximum 
of 64 bits/cycle. A trade-off between accuracy and 
performance is possible. If the full-resolution input pixels are 
used for computation, two 16 bits data buses from the XPP 
array are required to hold computation values. This means 
that a pixel is represented by an int32 value and the 4D-
DMA is only capable to transfer 2 pixels/cycle. However, if 
the least significant bit (LSB) of the input pixels is truncated, 
all computations fit into 16 bits, therefore 4 pixels/cycle can 
be streamed to the XPP array. Additionally, the int16 
implementation requires the transfer of half the data volume 
than the int32, at expenses of inducing an error in the 
detection result. This LSB truncation approach is used and 
detection error is analysed. 

2) Overflow consideration 
Kernels that are derived from the Gaussian function are 

normalised, which means that the sum of the absolute value of 
the kernel elements is equal to one. In addition, for kernels 
obtained from the successive derivatives of the Gaussian 
function, it can be demonstrated that the sum of the absolute 
values is a positive number less than one. 

3) Resource Optimisation based on Kernel symmetry 
To convolve a full row (or column), a convolution is 

executed over all its pixels. At the end of this process, each 
kernel element is assumed to be multiplied with all pixels in 
the row (column). This rule applies to all pixels except the 
ones near the borders, i.e. the first and last r pixels in the row 
or column. These are not multiplied by all kernel elements, 
but only by r of them. In first instance, it is possible to assume 
that for each pixel convolution 2r+1 multiplications must be 
done and 2r additions must be calculated. 

Symmetry in a kernel is advantageous for the 
implementation, because it reduces the number of necessary 

multiplications between kernel elements and pixels. In the 
case that the kernels show even symmetry, the values at each 
side of the vertical axis are a reflection of the other side. As a 
result, only r+1 multiplications are necessary. For kernels 
with odd symmetry, the central element is always zero and the 
elements at one side of the vertical axis have the same 
magnitude with opposite sign than the values at the other side. 
This means that using this kind of kernel, only r 
multiplications are needed per pixel convolution. 

B. Boundary tensor trace calculation. 
Boundary tensor calculation is performed only once at the 

end of the algorithm and its complete implementation fits in a 
single XPP array configuration. For this reason, there are no 
intermediate values that must be temporarily stored in the 
system memory to be streamed-back to the XPP array for 
further processing. As illustrated in Figure 4 calculations are 
carried out using the given bit-width. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a) Even tensor calculation 

 
 
 
 
 
 
 
 
 
 
 
 
 

b) Odd tensor calculation 



Figure 4: data-flow graph of the even tensor calculation, with data 
type and value ranges 

III. RESULTS 
In this section the performance of the feature detection 

algorithm executed in the HPDP is evaluated. The HPDP chip 
is not yet available. The following runtime estimates are 
derived from a cycle-accurate simulation of the XPP array and 
the expected clock frequencies as given in the following 
section.  

C. XPP Array Throughput 
For determining the throughput of the complete 

implementation, each pipeline in every of the six 
configurations (i.e. row and column-wise convolution with 
even and odd symmetry, transpose and boundary tensor 
calculation) is executed in the HPDP simulator. The 
maximum average throughput is 3.98 Bytes/cycle, which is 
achieved by the configurations computing convolution with 
odd symmetry kernels.  

For an XPP array working with a 200 MHz clock, after the 
data flow in the pipelines has been balanced, a maximum of 
796 MBytes/s will be flowing into the XPP array for 
processing and, at the same bit rate, results will be generated. 
Thus, for a single memory port, the minimum bandwidth to 
provide and store-back a continuous data stream to the XPP 
array is 1592 MBytes/s.  However, this requirement is not met 
by the assumed HPDP hardware specification which 
integrates two 64-bit wide memory ports: one with an internal 
4 MBytes SRAM operating at 100 MHz (i.e. 800 MBytes/s) 
and another with an external DRAM attached running at 50 
MHz (i.e. 400 MBytes/s). So the maximum theoretical bit 
transfer of the SRAM is nearly half the bit rate at which the 
XPP array is consuming data and generating results for the 
implemented algorithm. 

1) Sub-image Processing 
To achieve the best performance for the given 

specifications, the SRAM should be used for all memory 
transactions required for the convolution and boundary tensor 
calculation. This implementation requires eight image buffers 
for complete execution. One stores the input image, and the 
other seven hold the row-convolution results. Because the 
transposition operation reads the input image column-wise 
and writes the result row by row, it is not possible to use the 
same origin and destination buffer for this operation, 
otherwise loss of data will occur. Splitting the 2048x2048 
pixels input image in 16 parts, produces sub-images that can 
be processed one at a time using eight 512 KBytes sub-image 
buffers stored in SRAM. DRAM is used to store the input and 
result image. 

2) Estimated Computation Time 
The performance of the algorithm on the specified HPDP 

hardware is determined by the memory speed.  Based on the 
number of write and read operations needed for the complete 
algorithm, an estimation of the execution time of the feature 
detection algorithm is computed. The algorithm completion 

time for the expected HPDP hardware is 734 ms using sub-
image processing with SRAM, compliant with the maximum 
one second requirement for processing a 2048x2048 pixels 
image. 

3) Detection Accuracy 
For each detected streak in the binary image obtained from 

the HPDP simulation, there are approximately 10% less 
detected pixels compared with the reference implementation, 
as shown in Figure 5 for an input image containing a streak 
with an SNR of 7.19 dB. The error is negligible since the 
detection information per object can then be used to store full 
streak pixel values in order to not lose accuracy with respect 
to the position and brightness in a further processing step on-
ground. 

 
 
 
 
 
 
 
 
 

Figure 5: Comparison between reference and HPDP implementation. 
Detection values present in the reference implementation but not in 
the HPDP results are highlighted in red, and represent 10% of miss-

detected pixels. 

V. CONCLUSIONS 
In this paper, we showed that the boundary tensor 

algorithm can be mapped to a data-flow graph and a simple 
control flow is only required for filter kernel update, border 
replication and pipeline cleaning tasks. Thus, the XPP array is 
appropriate for its implementation, reaching in average 4.7 
GOp/s, for 16-bit fixed-point multiplication-addition 
operations. The model used for the convolution 
implementation makes possible to implement pipeline 
parallelism, because the image input stream is multiplied first 
by all kernel elements and the adder module receives the 
required multiplication results as they are produced. 
Moreover, convolution is appropriate for task parallelism in 
XPP array, since four consecutive pixel streams are received, 
and four pipelines can compute the convolution of four pixels 
simultaneously, without data dependencies.  The utilisation of 
99% of XPP array computation elements (e.g. ALU-PAE), 
and the use of the maximum transfer mode of the 4D-DMA, 
shows that this implementation is taking advantage of all the 
capabilities of the architecture.  

Additionally, it has been determined that for a noise-less 
detection, the SNR of the feature must be greater than 7.19 
dB. This specifies the capabilities of the implemented 
algorithm and shall be used as a detection-effectivity 
benchmark for comparison with other detection algorithms. 

In terms of scalability, the XPP array configuration (use of 
array objects and connections) implementing this algorithm is 



independent from the dimensions of the input image. The size 
of the kernel has direct impact in the required operations and 
as consequence more XPP array resources are needed if the 
kernel radius is increased. This is determined by the deviation 
of the Gaussian function that generates the filters. The 
deviation value has an impact on the geometry of the features 
that can be detected. 

Finally, the LSB truncation is an effective alternative to 
meet the real-time requirement because the gain in 
performance is greater (twice as fast) than the error caused in 
the detection, evidenced by a loss of only 10\% of high-
detection pixels. Integer arithmetic keeps the hardware 
implementation at the lowest level of complexity, using less 
resources, reducing power consumption and assuring 
computation time determinism, with negligible error.   

To summarize, our experience from implementing the 
given algorithm shows that the coarse-grained reconfigurable 
array approach successfully can achieve typical requirements 
in space. A key feature is the fast re-configurability, which 
not only makes programmability possible in the first place, 
but also allows even complex data flows to be implemented in 
multiple configurations with modest hardware resources and 
still high data streaming throughput.  
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