

SpaceWire and SpaceFibre Interconnect for High Performance DSPs

Steve Parkes, Martin Dunstan University of Dundee Bruce Yu, Andy Whyte, Chris McCLements, Albert Ferrer Florit, Alberto Gonzalez Villafranca STAR-Dundee

STAR-Dundee Contents

- Next Generation SpaceWire: SpaceFibre
- SpaceFibre Reference Architecture
- High Processing Power DSP
- RC64
- FFT Processor
- Demonstration

Next Generation SpaceWire: SpaceFibre

STAR-Dundee Driving Applications for SpaceFibre

- High data-rates for SAR and high-resolution multispectral imagers require:
 - 10s Gbits/s data rates
- High performance mass memory units require:
 - Multi-Gbit/s network interconnecting memory modules
- Integrated control and payload data handling requires:
 - Deterministic data delivery for AOCS/GNC
 - Concurrent with asynchronous payload data delivery
 - Simple configuration
 - Galvanic isolation
- Space transportation and human space flight requires:
 - Long distance (100m)
 - Deterministic data delivery safety critical
 - Carry video traffic without interfering with deterministic traffic

STAR-Dundee Other Requirements for SpaceFibre

- Backwards compatible with SpaceWire
- Address issues inherent in SpaceWire
 - Packet blocking in networks
 - Limited common mode voltage tolerance
 - High cable mass
 - Limited maximum length
 - No quality of service (QoS)
 - No deterministic data delivery
- All these issues are resolved in SpaceFibre

STAR-Dundee SpaceFibre

- SpaceFibre is
 - A spacecraft on-board data link and network
- SpaceFibre runs over
 - Electrical and fibre optic cables
- SpaceFibre designed specifically for spaceflight
 - Integrated Quality of Service (QoS)
 - Integrated Fault Detection, Isolation and Recovery (FDIR) capabilities
 - Simple configuration
- A substantial improvement on SpaceWire
 - Performance x10 to x100 (multi-lane)
 - Power per bit x0.2
 - Lower mass x0.75 electrical, x0.5 fibre per cable
 - Robustness: galvanic isolation, FDIR
 - Capabilities: virtual links, virtual networks, time distribution, event signalling, deterministic data delivery

X

STAR-Dundee SpaceFibre Key Features

- High performance
 - 2.5 Gbits/s current flight qualified technology
 - 3.125 Gbits/s soon (6.25 Gbits/s coming)
 - Multi-laning of up to 16 lanes (40 Gbits/s)
- Integrated QoS
 - Priority

XX

7

- Bandwidth reservation
- Scheduling
- Integrated FDIR support
 - Transparent recovery from transient errors
 - Error containment in virtual channels and frames
 - "Babbling Node" protection
- Low latency
 - Broadcast messages
- Compatible with SpaceWire at packet level

STAR-Dundee Integrated Network

- Single integrated network
 - Carrying
 - Instrument data
 - Configuration and control information
 - Deterministic traffic
 - High resolution time information
 - Event signals
 - Improves reliability, mass, cost, reuse
 - Backwards compatible with existing SpaceWire equipment
- Ideal for interconnecting DSP units

STAR-Dundee Radiation Tolerant SpaceFibre ASIC

STAR-Dundee SpaceFibre on Microsemi RTG4

- RTG4: New powerful FPGA from Microsemi
- Integrated SerDes running at 3.125 Gbits/s
- Perfect for SpaceFibre
- SpaceFibre interface 3% to 6% of RTG4 (2 to 8 VCs)
- SpaceWire interface 1%, RMAP Target 2% of RTG4

STAR-Dundee SpaceFibre Development Status

- Open technology
- Result of work from many companies
 - In different member states
 - With funding from
 - National agencies, ESA, and EC (FP7)
- ECSS standardisation ongoing
 - Out for public review 3Q2016
 - Working group with representatives from industry across Europe
- TRL 4/5 approaching 6 on radiation hard FPGAs
- IP cores available
- Ready for implementation in European chip technologies

××

HPPDSP High Processing Power Digital Signal Processor

STAR-Dundee Background

- High data rate payload, requiring DSP with
 - High processing power
 - High throughput
- DSP processor
 - TI SMV320C6727B-SP, 250-MHz, Floating-Point
 - Total Ionizing Dose tolerance (TID 100Krad)
 - Single Event Latch-up immune (SEL 117 MeV cm²/mg)
 - 2000 MIPS/1500 MFLOPS at 250MHz

High throughput using SpW and SpFi interfaces

STAR-Dundee System Architecture Design

STAR-Dundee High Processing Power DSP

STAR-Dundee

Block Diagram of the FPGA Design

STAR-Dundee IO DMA

- DMA data between DSP memory and:
 - SpaceFibre
 - SpaceWire
 - ADC/DAC
- Different operations for Normal, Master, and Slave mode
- When a IO DMA is completed, an interrupt is generated
- IO DMA and RA DMA compete for access to UHPI
- Boot management also goes through IO DMA
- On master board all data transfers are copied to SpFi M/S

STAR-Dundee SpaceWire and SpaceFibre IO

- SpaceWire
 - Internal SpaceWire Router
 - 2 ports to external LVDS drivers/receivers
 - 2 ports to IO DMA bus
 - I port to RMAP Target
- SpaceFibre
 - Two interfaces each at 2.5 Gbits/s
 - Two different SerDes (Xilinx MGT and TI TLK2711)
 - Master/Slave
 - For connecting to second HPPDSP
 - 4 virtual channels
 - SpaceFibre 2
 - For high speed IO
 - 2 virtual channels

STAR-Dundee PCB Layout – Bottom Side

STAR-Dundee HPPDSP – Bottom Side

STAR-Dundee PCB Layout – Top Side

XX

STAR-Dundee HPPDSP – Top Side

STAR-Dundee HPPDSP Front Panel

STAR-Dundee HPPDSP Rear Panel

Ramon Chips RC64

STAR-Dundee RC64 Many Core DSP Processor

Ramon Chips

- 64 fast CEVA X1643 DSP with FP extension and HW scheduler
 - 300 MHz
 - 40 GFLOPS, 384 GOPS
- Modem and Encrypt accelerators
- 4 Mbyte on-chip shared memory
- Fast I/O
 - 12x SpaceFibre,
 - SpaceWire
 - DDR3, AD/DA LVDS I/F, NVM
- Rad-Hard, for space
- Advanced technology
 - TSMC 65nm LP
 - CCGA / PBGA / COB
 - 10 Watt
- Modular
 - Payloads can employ many RC64
- Versatile
 - Designed for all space missions
 - Planned for 2020—2050
- Re-programmable in space

FFT Processor

STAR-Dundee FFT Processor

- FFT board
 - I & Q ADCs each running at 2.4 Gsamples/s
 - 2 GHz bandwidth
 - 1.5 MHz spectral bins
 - 2048 point complex FFT
 - Processing power of 300 GOPS
- Rack
 - Up to 6 FFT processors in a rack
 - 12 GHz bandwidth
 - 1.8 TOPS

STAR-Dundee EM FFT Board

- Connections to nominal/redundant control processor via back plane
- ADC interface on front panel
- Currently under development

STAR-Dundee Prototype FFT Board

STAR-Dundee SpaceVPX FFT Payload Processor

XX

Demonstration

Remote Instruments

XX [×]STAR-Dundee Reference Architecture (Demonstrator) * STAR-Dundee SpaceWire Brick Mk3 R 1 T Triggers R 2 T SpaceFibre R 2 T R 2 T R 1 T SpaceFibre SpaceFibre SpaceWir SpaceFibr R 1 T Router Router STAR-Dunder T STAR-Dundee **SpaceWire** Brick Mk3 Triggers R 2 T 39

STAR-Dundee Reference Architecture (Demonstrator)

STAR-Dundee

NGMM

40

41

10

R 1 T

.

T STAR-Dundee

19

STAR-Dundee

NGMM

108

SpaceWire R 2 T

R 2 T

R 1 T

...

STAR-Dundee Conclusions

- SpaceWire
 - An enabler for many space missions
- SpaceFibre
 - Ready for the next generation of space missions
 - Complementing and extending SpaceWire
 - Ideal for interconnection of DSP processors
- HPPDSP
 - Programmable DSP processor
 - With SpaceWire and SpaceFibre links
 - IO around 500 Mbits/s
- Ramon Chips RC64 many core DSP
 - 64 cores with very high performance
 - 12 SpaceFibre links on chip
- FFT processor
 - 2.4 Gsamples/s 2k-point FFT implemented in RTG4 FPGA

[×]STAR-Dundee Acknowledgements

- The research leading to these results has received funding from
 - The UK Space Agency, CEOI-ST under University of Leicester contract number:
 - RP10G0327C11/B11
 - RP10G0327D13
 - RP10G0348A02
 - RP10G0348B206
 - RP10G0348A207
 - The European Space Agency under ESA contract numbers:
 - 17938/03/NL/LvH SpaceFibre
 - 4000100103 HPPDSP
 - 4000102641 SpaceFibre Demonstrator
 - The European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement numbers
 - 263148 SpaceWire-RT (SpaceFibre QoS)
 - 284389 SpaceFibre-HSSI (VHiSSI chip)