
DVB-S2 Software Defined Radio Modem

on the RC64 Manycore DSP

Peleg Aviely, Olga Radovsky and Ran Ginosar

Ramon Chips, Ltd., 5 HaCarmel Street, Yoqneam Illit 2069201, Israel

[peleg, olga, ran]@ramon-chips.com

Abstract

This paper describes high performance implementation of

DVB-S2 modem on the rad-hard manycore RC64 DSP.

Multi-level simulation and development methodologies are

described. Modem algorithms are specified, together with

implementation details. Efficient parallel processing is

enabled by the shared memory architecture, by PRAM-like

task oriented programming and by dynamic allocation of

tasks to cores. The modem achieves in excess of 2 Gbps

transmission and 1 Gbps reception.

I. INTRODUCTION

RC64 is designed as a high performance rad-hard manycore

DSP processor for space applications [1][8]. The architecture

is shown in Figure 1. 64 DSP cores (CEVA X1643) are

integrated together with hardware accelerators, a hardware

scheduler, multi-bank shared memory, a logarithmic network

on chip connecting the cores to the memories, and multiple

I/O interfaces.

RC64 is designed for space applications. Software Defined

Radio (SDR) and modems constitute very demanding

applications. This paper investigates the implementation of

DVB-S2/DVB-S2x modems on RC64. An LDPC hardware

accelerator is included in RC64 to support efficient modems,

and as a result RC64 achieves in excess of 2 Gbps transmit

rate and 1 Gbps receive rate. Earlier works in this area

include [6] and [7].

The RC64 DVB-S2 modem has been developed using a

multi-level methodology and simulators. The development of

a modem on a manycore processor combines communication

theory, parallel algorithm design, parallel programming and

profiling, and software engineering.

The paper presents the simulator, the modem algorithms,

implementation details, parallel programming of the model,

and performance evaluation.

Figure 1. RC64 Many-Core Architecture. 64 DSP cores,

modem accelerators and multiple DMA controllers of I/O

interfaces access the multibank shared memory through a

logarithmic network. The hardware scheduler dispatches fine

grain tasks to cores, accelerators and I/O.

II. RC64 DVB-S2 SIMULATOR

Figure 2 depicts the RC64 DVB-S2 simulator structure. The

data generator creates baseband frames. The transmitter

encodes and modulates the frames according to DVB-S2 and

DVB-S2X standards. The channel simulator adds noise and

impairments. The receiver demodulates and decodes the

signal, and the analyzer compares the sent and received

signals.

The simulator enables testing and performance optimization

regarding modem quality (bit error rate for a range of channel

impairments, signal to noise ratio and bandwidth), modem

bitrate (performance of RC64 executing the modem

application), bottleneck analysis (identify required

accelerator(s) for the modem) and hardware accelerators type

and capacity (validation before hardware integration).

RC64 TX
simulator

Channel
simulator

RC64 RX
simulator

Data generator
and

Analyzer

Transmit data Receive data

Figure 2. RC64 DVB-S2 Simulator

Modem development is carried out through six levels of

refinement, as shown in Table 1. Algorithm development

starts by coding in Matlab a high level model of the modem,

and proceeds through stages until finally parallel C code is

employed to program the actual RC64. We start with an

unrestricted algorithm, implemented in Matlab (level 1). The

accelerators code is replaced by a Matlab executable (mex)

file generated from RTL descriptions of the accelerators.

Level 1 serves as golden model, to which subsequent level

models may be compared.

Level 2 takes into account architectural restrictions of RC64

such as limited memory and real-time constraints. For

instance, receiver input samples are processed in pre-defined

sample groups rather than in frame size sample groups. In the

third level, Matlab floating-point computations are replaced

by Matlab fixed point at a word precision of 16 bits,

compatible with high-speed arithmetic on the DSP cores of

RC64. Accelerator models are replaced by more precise ones

driven from RTL. Outputs are carefully compared with the

results of the floating-point models, to assure minimal signal

degradation.

At level 4, Matlab code is replaced by code in the C language,

compatible with the compiler for the DSP cores in RC64. The

Matlab simulator models of the transmitter and receiver are

replaced by models for the cycle accurate simulator of RC64,

executing the compiled C code. The output must be exactly

the same as produced in level 3. The accelerator code is a

function in C representing the hardware accelerator,

embedded in the cycle accurate simulator of RC64.

At level 5, the code is parallelized to execute on RC64 and

further optimizations are performed to take advantage of

specific hardware features of the DSP cores. The accelerators

function is executed as a separate task, in parallel with other

tasks. In level 6 the entire modem is executed on RC64

hardware

Table 1. Levels of Simulation and Modem Development

Level Level Name Language Precision Style Accelerators

1 High Level Modem Matlab Float Virtual unlimited architecture FloatC-to-mex

2 Matlab DSP Modem Matlab Float Restricted to real-time DSP of RC64

Restricted memory sizes

Translate input frames to samples on TX, input

sample stream to frames on RX.

FloatC-to-mex

3 Fixed Point Matlab

DSP Modem

Matlab Fixed 16 Rounding and saturated computation

Use CEVA lib functions

RTL-to-mex

4 C-Fixed Modem C Fixed 16 Bit-exact to Level 3 C function

5 C-Parallel Modem C Fixed 16 Compliant to Plural shared-memory programming

model [8]

C function as a

separate task

6 RC64 Modem C Fixed 16 Task on accelerator

hardware

III. RC64 DVB-S2 MODEM ALGORITHMS

In this section we describe the algorithms of the transmitter,

the communication channel, the receiver and the data

generator and analyzer.

A. Transmitter

The DVB-S2 and DVB-S2X transmitter includes the

following functional blocks to modulate input streams, as

specified and recommended in [2][3][4] (Figure 3): CRC-8

encoder, baseband (BB) header insertion and stream

adaptation, BB Scrambling, FEC encoding (comprising BCH

and LDPC encoders and bit interleaver), bit mapping into

constellations, physical layer framing (PL header insertion,

followed by pilot adding and scrambling) and BB shaping

(up-sampling and low-pass filtering). Output I/Q samples are

provided to two DACs, generating I and Q baseband signals.

This series of functional blocks can be clustered into Pre-

LDPC stage, the LDPC encoder, and Post-LDPC stage.

Figure 3. Functional block diagram of the DVB-S2 transmitter (following [3])

Figure 4. Channel simulation model

B. Communication Channel Simulation

Physical layer impairments in the communication channel

include those introduced by the channel, such as reflections

and interference, as well as those induced by various

components in the system, such as tuner I/Q imbalance and

amplifier non-linearity. These impairments degrade the

received SNR and may in some cases affect the convergence

behavior of various computation loops in the receiver.

In order to test the demodulator performance, different

realistic conditions that can affect the quality of received

signals are simulated. Physical layer impairments in DVB-S2

receivers are discussed in [4]. A simpler channel model is

implemented in Matlab (Figure 4). Every noise source is set

independently, allowing flexible channel simulation.

C. Receiver

The functional block diagram of DVB-S2 receiver according

to DVB-S2 guidelines [2] is depicted in Figure 6. The

Receiver application includes the following functional

blocks.

Signal Processing Chain

 Adjacent Channel Filtering using BB FIR.

 I/Q imbalance compensation, an iterative algorithm to

estimate I, Q and compensate for imbalance.

 DC offset removal, using a simple IIR.

 Frame Synchronization, using a 25 taps correlator and a

peak detector.

 Symbol Timing Recovery, using a Farrow cubic

interpolator and a Gardner detector.

 Decimator and Matched Filter.

 Carrier Frequency Recovery (coarse and fine recovery)

based on a pilot. Coarse recovery employs a second order

feedback loop based on a delay-and-multiply frequency

error detector. Fine recovery employs a feed-forward (FF)

estimation algorithm, derived from the L&R (Luise and

Reggiannini) technique.

 Phase Recovery (coarse and fine recovery), using FF ML

estimator.

 Digital AGC, based on a pilot assisted vector tracker

mechanism.

 LMS Equalizer, employing DFE with a small number of

taps.

Decoder Chain

 Descrambler, identical to the TX scrambler

 LLR calculation, finding the logarithm of the distance

between the soft symbol and the nearest hard symbol.

 De-interleaver, identical to the TX interleaver.

 LDPC Decoder, BCH Decoder, BB Descrambler and BB

Header CRC Decoder.

Similar to the transmitter, the receiver, too, may be clustered

into Pre-LDPC, LDPC and Post-LDPC stages. The RF Front

End, ADC and AGC blocks are not implemented in the

simulator. Figure 5 describes the state machine of the

receiver. Steady-state is entered when acquisition stages

complete successfully. The main computation during this

state consists of filtering, PHY descrambling, de-mapping

and de-interleaving. The FEC LDPC decoder is implemented

as a hardware accelerator. The rest of the computation

includes BCH decoding (in some cases), descrambling and

header decoding. In parallel, tracking is performed for the

next incoming frame, enabling fast reaction to channel

impairment changes, modulation changes and end-of-stream

detection.

Figure 5. Receiver state machine

The performance of the DVB-S2/DVB-S2X link (consisting

of transmitter, channel and receiver) is evaluated by the

signal analyzer (Figure 2). The signal analyzer compares

reconstructed bits with transmitted bits and calculates Frame

Error Rate (FER), Packet Error Rate (PER) and Bit Error Rate

(BER). In a communication chain without channel

impairments, the reconstructed data should be exactly the

same as transmitted. The DVB-S2 standard defines the

expected error performance for different modes. PER is the

ratio between the useful transport stream packets (188 bytes)

correctly received and affected by errors, after forward error

correction.

FEC Decoder

Signal Processing Chain

AFE Interface

I/QDown
Sample

RF
Front
End

2XADC
I

Q
IF

I

Q
DC Cancel

AGC

I/Q
Imbalance

I

Q

Adjacent
Channel
Filtering

I

Q

Timing
Recovery
(Gardner)

Correlator
+ State

Machine

Coarse
Freq.

Correction
NCO dF

I/Q I/QX
Fine Freq.
Correction

L&R

Coarse
Phase

Correction
I/Q DAGCI/Q

Fine Phase
Correction

(PLL)
I/Q

Equlaizer
(DFE)

Slicer+
LMS Loop

I/Q I/Q

PHY
Descrambler

Soft
Demapper

(Metric Calc)

De
Interleaver

LDPC
Decoder

BCH
Decoder

BB Descrambler
Header

Recovery
I/Q

Soft
Bits

I/Q

Frame sync

Figure 6. Functional block diagram of DVB-S2 Receiver

IV. MODEM IMPLEMENTATION

Details of modem implementation are described in this

section. We first discuss hardware accelerators, followed by

data streaming, scheduling and mitigation of overhead.

A. Accelerators

A major computation bottleneck was identified during

profiling of the fourth level of simulation (C-Fixed modem).

Forward error correction (LDPC encode/decode) was found

to limit the throughput of the modem when executed by the

cycle accurate simulator.

The bottleneck can be eliminated using hardware

acceleration, implemented either by a dedicated on-chip

accelerator or by an external accelerator (ASIC or FPGA).

RC64 was extended with on-chip LDPC encode/decode

hardware accelerator that is capable of 1 Gbps receive rate

and 2 Gbps transmit rate. A second accelerator was added for

turbo coding, required for DVB-RCS modem. Other types of

accelerators are supported by dedicated parallel interfaces to

external FPGA or ASIC.

B. Data Streaming

Early analysis of the shared memory capacity required for the

transmitter and receiver algorithms showed that special care

should be taken regarding buffers for intermediate data. The

transition between bit-stream representation and symbol and

sample representations of the data requires minimizing

buffering of symbol and sample representation of data frames

in favor of bit-stream representation when possible.

Shared Memory (4MByte)

Frames
buffer
queue

(Bit-stream)

Pre-LDPC
compute

LDPC
Encoder

Accelerator

Pre-LDPC
frames buffer

queue
(Bit-stream)

Post-LDPC
frames buffer

queue
(Bit-stream)

Post-LDPC
compute

Output samples double
buffer

(Sample-stream)

DMA
Out

DMA
In

Shared Memory (4MByte)

Frames
buffer
queue

(Bit-stream)

Post-LDPC
compute

LDPC
Decoder

Accelerator

Post-LDPC
frames buffer

queue
(Bit-stream)

Pre-LDPC
double buffer
(LLR stream)

Pre-LDPC
compute

Input samples double
buffer

(Sample-stream)

DMA
In

DMA
Out

Transmit data flow

Receive data flow

Figure 7. Modem data flow

Buffering structure, modeled within the fourth level of

simulation (Table 1), define the partitioning of parallel

activity of the transmit and receive applications as described

in Figure 7, indicating buffering in shared memory. Bit-

stream representation of the data enables the most efficient

storage in shared memory, accessed as byte stream by the

DMA and DSP cores. A normal size frame is about 8 Kbyte

long. LLR-stream employs 16 bits to represent each data bit,

accessed as word stream by the DMA and the DSP cores.

Thus, a normal size frame occupies 128 Kbyte. Sample-

stream representation requires 16 bits per sample. Sample

representation depends on symbol count (due to different

possible constellations) and interpolation factor. A normal

size frame, in sample representation, occupies between 128

Kbyte (QPSK) and 32 Kbyte (256APSK). Memory allocation

is optimized by minimizing the buffer size for the sample-

stream.

C. Scheduling

The compute sequence for both transmitter and receiver is

driven by the transmit/receive sample rate. A continuous

sample stream must be transmitted to the DAC or received

from the ADC using DMA. Figure 8 presents the iterative

task graph used for scheduling the tasks (initial and final parts

are eliminated for clarity). When fully utilized, the modem

iteratively performs the following steps.

 Get-data through input interface (ADC for receive, digital

interface for transmit).

 Pre-LDPC compute stage, processing multiple frames

each iteration. The number of frames is limited by frame

size, data rate, available storage and available incoming

data.

 LDPC stage that encodes or decodes data from the Pre-

LDPC stage.

 Post-LDPC compute stage processing multiple frames

each iteration.

 Put-data through output interface (DAC for transmit,

digital interface for receive).

Figure 9 presents the double buffer queues used for

supporting parallel operation during each iteration of the

transmitter. The input stream DMA stores data into one of the

two queues dedicated for input frames. The Pre-LDPC tasks

process concurrently the queue of input frames from the

previous iteration and store the results into one of the two Pre-

LDPC queues. The LDPC encoder accelerator processes the

data in its input queue and stores the result in one of its output

queues. The Post-LDPC tasks process concurrently the post-

LDPC queue of the previous iteration and store the results

into one of the two output sample queues. Finally, the output

stream DMA reads samples data and outputs the samples. By

the end of each iteration, input queues becomes output queues

(double buffers are switched), and the next iteration may start

Get Data
Pre-
LDPC

LDPC
Post-
LDPC

Put Data

Iteration
control

Figure 8. Task map for transmit/receive application

Input frames
double-buffer

queue

Pre-LDPC
double-buffer

queue

Input
frames

LDPC
Encode

Accelerator

Input
stream
DMA

Output
stream
DMA

Start of iteration k
Post-LDPC

double-buffer
queue

Output
samples

double-buffer
queue

Frames of
iteration k

Frames of
iteration k-1

Frames of
iteration k-2

Frames of
iteration k-3

Samples of
iteration k-4

Input frames
double-buffer

queue

Pre-LDPC
double-buffer

queue

LDPC
Encode

Accelerator

Input
stream
DMA

Output
stream
DMA

End of iteration k
Post-LDPC

double-buffer
queue

Output
samples

double-buffer
queue

Frames of
iteration k

Frames of
iteration k-1

Frames of
iteration k-2

Frames of
iteration k-3

Samples of
iteration k-4

Output
Samples

DMA

Pre-LDPC task in cores

LDPC Accelerator

Post-LDPC task in cores

Figure 9. Iterative computation during transmit

Core #0

Core #3
Core #4

Core #7
LDPC Encoder

(a) Unbalanced load
on 8 cores

Core #0

Core #3
Core #4

Core #7

(b) Fine grain and
work distribution
help to balance

the load on 8 cores

LDPC Encoder

Core #0

Core #3
Core #4

Core #35

(c) Shorter iteration
time on 36 cores

LDPC Encoder

Core #0

Core #7
Core #8

Core #50

(d) Even shorter
execution time

on 51 cores;
higher parallelism

of both tasks

LDPC Encoder

Pre-LDPC task in cores

LDPC Accelerator

Post-LDPC task in cores

iteration time iteration time iteration time iteration time

Figure 10. Alternative schedules for load balancing

Figure 10 presents load balance scheduling alternatives for

the three types of tasks using available processing resources

(LDPC accelerator and DSP cores). In (a), four cores execute

Pre-LDPC tasks and four other cores execute Post-LDPC

tasks, in parallel with the LDPC encoder. The Post-LDPC

tasks constitute a bottleneck. In (b), the Post-LDPC tasks are

broken up into 32 instances of fine grain tasks. Once Pre-

LDPC jobs are completed, Post-LDPC instances are allocated

to all eight cores and computation is accelerated. In (c), 36

cores are made available, all instances are allocated at the

same time, and Pre-LDPC becomes the bottleneck. Last, in

(d), the Pre-LDPC tasks are split into eight smaller tasks and

additional cores are made available. Consequently,

computation time is shortened.

D. Overhead mitigation

Ideal modem implementation, when execution is most

efficient and iteration time is minimized, depends on the

following architectural aspects.

Scheduling overhead minimized—When a many-core

solution is required to perform fine grain tasks to accelerate

computation such as in Figure 10 (d), the time between task

executions on cores must be negligible compared to tasks

duration. RC64 scheduler offloads this activity from run-time

software, and provides minimal overhead for task switching

time. The overhead relates to both allocating multiple

available tasks to many cores, as well as to recognition of task

terminations. Task terminations enable new task allocations,

which happens every iteration in such iterative task graphs.

Shared memory access efficiency—Dynamic scheduling of

tasks to cores, requiring cores to perform different code with

different data along each iteration, makes shared memory

access latency and throughput critical. Shared memory

phenomena such as data read hot-spots call for special care,

to prevent serialization in memory access. In some cases,

when data handling is interface dependent, queue

management requires critical section handling for inter-core

synchronization. The RC64 multi-bank and network on chip

optimize memory access by cores. The memory appears as a

flat address space, flexible for any type of data-set allocation

very similar to the PRAM model, significantly simplifying

the programming model.

Shared memory coherency—The programming model and

non-preemptive run-to-completion tasks enable keeping

shared memory with coherent data available for next task

allocation. Each core is responsible for storing all its

computational results into shared memory (using write-

through cache) before the task terminates. It then invalidates

its data caches automatically before starting a new task that

may accidently use the wrong data content in its cache. This

storing activity is supported in RC64 by its write-through

cache configuration of the DSP cores, together with the

minimal invalidation overhead at task terminations.

Local core computing efficiency—Processing cores

computing efficiency may suffer due to low compute-to-data

ratio or due to inefficient cache behavior. A major efficiency

factor is using the VLIW and SIMD capability to achieve

peak performance. RC64 cores are optimized for DSP

computations, having four multiply-accumulate functional

units along with two load/store units and two additional

general purpose instruction units. A main compute-intensive

part of the modem is the filters. Each DSP can perform a

complex multiplication every cycle continuously, as long as

the memory system can deliver the data. The local data

memory (cache and scratchpad) supports 16Kbyte data and

8Kbyte program memory, sufficient for many algorithms.

Data streaming efficiency—Data in shared memory should

be available for parallel memory read access to any of the

cores during each iteration. Output data queues in shared

memory should be accessible efficiently and concurrently by

any of the cores for writing during each iteration. Streaming

data to and from shared memory queues must not degrade the

computing throughput. RC64 DMA controllers are optimized

for this purpose, both for memory buffer management in

shared memory and for very high throughput to and from

shared memory, without degrading memory access rate by

the cores. Many DMA controllers can operate concurrently

to serve many different I/O activities.

Programming model simplicity—Programming a many-core

processor can become a very complex undertaking, requiring

deep knowledge of the micro-architecture and the special

mechanisms for solving the above challenges. RC64 task

oriented programming model emphasize parallel code

decomposition for application acceleration, in accordance

with algorithm and memory capacity requirements. Other

issues, such as shared memory access efficiency, coherency

and streaming may incur only minor effect on performance,

while the application developer enjoys a PRAM-like

abstraction, similar to a single core program design.

V. PERFORMANCE

This section reports performance results as computed with

the RC64 DVB-S2 simulator and cycle-accurate simulations

of RC64 [8].

A. Transmitter Performance

When simulating transmission of short frames using 32APSK

modulation and LDPC code of 8/9, the Pre-LDPC stage

requires 16,000 cycles, LDPC encoding takes 560 cycles, and

Post-LDPC is 100,000 cycles. Since there are 3402 32APSK

symbols in a short frame, Post-LDPC can be considered as

incurring 30 cycles per symbol. As shown in Figure 11, a

useful balance between pre-LDPC and post-LDPC can be

achieved with nine frames per iteration for pre-LDPC,

generating a total of 3402×9=30,618 symbols. Parallel

processing of these symbols in Post-LDPC tasks is achieved

by the remaining 55 cores. Each Post-LDPC task processes

30,618/55=557 symbols, taking 557×30=16,710 cycles. This

schedule translates to a data rate of

14232 [𝑏𝑖𝑡]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 2.3 𝐺𝑏𝑝𝑠 .

Each symbol contains two samples, and there are 6,804

samples per frame. The sample output rate is

6804 [𝑠𝑎𝑚𝑝𝑙𝑒𝑠]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1.1 𝐺𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 .

Another way of estimating performance is based on

considering that 116,000 cycles are required to process

14,232 data bits at 300M cycles/sec, and 64 cores are

available, or:

64 ×
14,232 [𝑏𝑖𝑡]

116,000 [𝑐𝑦𝑐𝑙𝑒]
×

300𝑀 [𝑐𝑦𝑐𝑙𝑒]

[𝑠𝑒𝑐]
= 2.3 𝐺𝑏𝑝𝑠

The accuracy of these performance estimates is expected to

be within 30% of actual performance, based on simulator

accuracy and code optimization.

B. Receiver Performance

When receiving short frames in a steady state, the receiver

spends 220,000 cycles in the Pre-LDPC stage, 4,000 cycles

on average in the LDPC decoder, and 32,000 cycles in Post-

LDPC. The schedule of Figure 12 shows 8,000 cycles per

iteration, receiving two frames per iteration, using 54 DSP

cores to perform Pre-LDPC, eight DSP cores to perform Post-

LDPC. The resulting bitrate is

14,232 [𝑏𝑖𝑡] ∙ 2 [𝑓𝑟𝑎𝑚𝑒𝑠] ∙ 300 [𝑀𝐻𝑧]

8,000 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1 𝐺𝑏𝑝𝑠.

16K cycCore #0
Time

Core #8
Core #9

Core #63

Iteration time=16.7K cyc

16K cyc

LDPC Encoder
16.7K cyc

6K cyc

16.7K cyc

16.7K cyc

16K cyc

Figure 11. Transmit performance (32APSK, LDPC 8/9)

8K cycCore #0
Time

Core #7
Core #8

Core #63

Iteration time=8K cyc

8K cyc

LDPC Decoder
8K cyc

8K cyc

8K cyc

8K cyc

8K cyc

Figure 12. Receive performance (32APSK, LDPC 8/9)

VI. CONCLUSIONS

We have described a high-performance implementation of

DVB-S2 transmitter and receiver on RC64, predicted to

exceed 2Gbps transmission and 1Gbps reception. A six-

levels development and simulation process has been

described. Dynamic scheduling of tasks to cores, using the

hardware scheduler and based on task oriented programming,

resulted in a flexible solution that can easily be adapted to

other modem parameters and other standards.

ACKNOWLEDGEMENT

Funding has been provided in part by Israel Space Agency

and by the European Union's Seventh Framework Program

for research and demonstration under grant agreement no.

607212 (MacSpace)

REFERENCES

[1] Ran Ginosar and Peleg Aviely, RC64 – Many-Core

Communication Processor for Space IP Router. In Proceedings

of International Astronautical Conference, pp. IAC-15-B2.6.1.

Jerusalem, Israel, Oct. 2015.

[2] DVB (2005). User guidelines for the second generation system

for Broadcasting, Interactive Services, News Gathering and

other broadband satellite applications (DVB-S2). User

guidelines ETSI TR 102 376 V1.1.1 (http://www.etsi.org).

[3] Morello, Alberto, and Vittoria Mignone. "DVB-S2: The second

generation standard for satellite broad-band services."

Proceedings of the IEEE, vol. 94, no. 1, pp. 210-227. IEEE,

2006.

[4] Nemer, Elias. "Physical layer impairments in DVB-S2

receivers." In Second IEEE Consumer Communications and

Networking Conference, CCNC, pp. 487-492. IEEE, 2005.

[5] Savvopoulos, Panayiotis, Nikolaos Papandreou, and Th

Antonakopoulos. "Architecture and DSP Implementation of a

DVB-S2 Baseband Demodulator." In Digital System Design,

http://www.etsi.org/deliver/etsi_tr/102300_102399/102376/01.01.01_60/tr_102376v010101p.pdf

Architectures, Methods and Tools, 2009. DSD'09. 12th

Euromicro Conference on, pp. 441-448. IEEE, 2009

[6] Beadle, Edward R., and Tim Dyson. "Software-Based

Reconfigurable Computing Platform (AppSTAR TM) for

Multi-Mission Payloads in Spaceborne and Near-Space

Vehicles." In International Conference on Reconfigurable

Systems and Algorithms. ERSA 2012.

[7] Dalio, B. A., and K. A. Shelby. "The implementation of OFDM

waveforms on an SDR development platform supporting a

massively parallel processor." In SDR'09: Proceedings of the

Software Defined Radio Technical and Product Exposition.

2009.

[8] Ginosar, Ran, Peleg Aviely, Tsvika Israeli and Henri Meirov.

“RC64: High Performance Rad-Hard Manycore.” DSP Day,

2016.

