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Abstract 

This paper describes high performance implementation of 

DVB-S2 modem on the rad-hard manycore RC64 DSP. 

Multi-level simulation and development methodologies are 

described. Modem algorithms are specified, together with 

implementation details. Efficient parallel processing is 

enabled by the shared memory architecture, by PRAM-like 

task oriented programming and by dynamic allocation of 

tasks to cores. The modem achieves in excess of 2 Gbps 

transmission and 1 Gbps reception. 

I. INTRODUCTION 

RC64 is designed as a high performance rad-hard manycore 

DSP processor for space applications [1][8]. The architecture 

is shown in Figure 1. 64 DSP cores (CEVA X1643) are 

integrated together with hardware accelerators, a hardware 

scheduler, multi-bank shared memory, a logarithmic network 

on chip connecting the cores to the memories, and multiple 

I/O interfaces.  

RC64 is designed for space applications. Software Defined 

Radio (SDR) and modems constitute very demanding 

applications. This paper investigates the implementation of 

DVB-S2/DVB-S2x modems on RC64. An LDPC hardware 

accelerator is included in RC64 to support efficient modems, 

and as a result RC64 achieves in excess of 2 Gbps transmit 

rate and 1 Gbps receive rate. Earlier works in this area 

include [6] and [7]. 

The RC64 DVB-S2 modem has been developed using a 

multi-level methodology and simulators. The development of 

a modem on a manycore processor combines communication 

theory, parallel algorithm design, parallel programming and 

profiling, and software engineering.  

The paper presents the simulator, the modem algorithms, 

implementation details, parallel programming of the model, 

and performance evaluation. 

 

 

 

 

 

 

Figure 1. RC64 Many-Core Architecture. 64 DSP cores, 

modem accelerators and multiple DMA controllers of I/O  

interfaces access the multibank shared memory through a 

logarithmic network. The hardware scheduler dispatches fine 

grain tasks to cores, accelerators and I/O.  

II. RC64 DVB-S2 SIMULATOR 

Figure 2 depicts the RC64 DVB-S2 simulator structure. The 

data generator creates baseband frames. The transmitter 

encodes and modulates the frames according to DVB-S2 and 

DVB-S2X standards. The channel simulator adds noise and 

impairments. The receiver demodulates and decodes the 

signal, and the analyzer compares the sent and received 

signals.  

The simulator enables testing and performance optimization 

regarding modem quality (bit error rate for a range of channel 

impairments, signal to noise ratio and bandwidth), modem 



bitrate (performance of RC64 executing the modem 

application), bottleneck analysis (identify required 

accelerator(s) for the modem) and hardware accelerators type 

and capacity (validation before hardware integration).  
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Figure 2. RC64 DVB-S2 Simulator 

Modem development is carried out through six levels of 

refinement, as shown in Table 1. Algorithm development 

starts by coding in Matlab a high level model of the modem, 

and proceeds through stages until finally parallel C code is 

employed to program the actual RC64. We start with an 

unrestricted algorithm, implemented in Matlab (level 1). The 

accelerators code is replaced by a Matlab executable (mex) 

file generated from RTL descriptions of the accelerators. 

Level 1 serves as golden model, to which subsequent level 

models may be compared.  

Level 2 takes into account architectural restrictions of RC64 

such as limited memory and real-time constraints. For 

instance, receiver input samples are processed in pre-defined 

sample groups rather than in frame size sample groups. In the 

third level, Matlab floating-point computations are replaced 

by Matlab fixed point at a word precision of 16 bits, 

compatible with high-speed arithmetic on the DSP cores of 

RC64. Accelerator models are replaced by more precise ones 

driven from RTL. Outputs are carefully compared with the 

results of the floating-point models, to assure minimal signal 

degradation.  

At level 4, Matlab code is replaced by code in the C language, 

compatible with the compiler for the DSP cores in RC64. The 

Matlab simulator models of the transmitter and receiver are 

replaced by models for the cycle accurate simulator of RC64, 

executing the compiled C code. The output must be exactly 

the same as produced in level 3. The accelerator code is a 

function in C representing the hardware accelerator, 

embedded in the cycle accurate simulator of RC64.  

At level 5, the code is parallelized to execute on RC64 and 

further optimizations are performed to take advantage of 

specific hardware features of the DSP cores. The accelerators 

function is executed as a separate task, in parallel with other 

tasks. In level 6 the entire modem is executed on RC64 

hardware 

 

Table 1. Levels of Simulation and Modem Development 

Level Level Name Language Precision Style Accelerators  

1 High Level Modem Matlab Float Virtual unlimited architecture FloatC-to-mex 

2 Matlab DSP Modem Matlab Float Restricted to real-time DSP of RC64 

Restricted memory sizes 

Translate input frames to samples on TX, input 

sample stream to frames on RX. 

FloatC-to-mex 

3 Fixed Point Matlab 

DSP Modem 

Matlab Fixed 16 Rounding and saturated computation 

Use CEVA lib functions 

RTL-to-mex 

4 C-Fixed Modem C Fixed 16 Bit-exact to Level 3 C function 

5 C-Parallel Modem C Fixed 16 Compliant to Plural shared-memory programming 

model [8] 

C function as a 

separate task 

6 RC64 Modem C Fixed 16  Task on accelerator 

hardware 

 

 

III. RC64 DVB-S2 MODEM ALGORITHMS 

In this section we describe the algorithms of the transmitter, 

the communication channel, the receiver and the data 

generator and analyzer. 

A. Transmitter 

The DVB-S2 and DVB-S2X transmitter includes the 

following functional blocks to modulate input streams, as 

specified and recommended in [2][3][4] (Figure 3): CRC-8 

encoder, baseband (BB) header insertion and stream 

adaptation, BB Scrambling, FEC encoding (comprising BCH 

and LDPC encoders and bit interleaver), bit mapping into 

constellations, physical layer framing (PL header insertion, 

followed by pilot adding and scrambling) and BB shaping 

(up-sampling and low-pass filtering). Output I/Q samples are 

provided to two DACs, generating I and Q baseband signals. 

This series of functional blocks can be clustered into Pre-

LDPC stage, the LDPC encoder, and Post-LDPC stage. 

 



 

Figure 3. Functional block diagram of the DVB-S2 transmitter (following [3]) 

 

 

 

 

Figure 4. Channel simulation model  



B. Communication Channel Simulation 

Physical layer impairments in the communication channel 

include those introduced by the channel, such as reflections 

and interference, as well as those induced by various 

components in the system, such as tuner I/Q imbalance and 

amplifier non-linearity. These impairments degrade the 

received SNR and may in some cases affect the convergence 

behavior of various computation loops in the receiver.  

In order to test the demodulator performance, different 

realistic conditions that can affect the quality of received 

signals are simulated. Physical layer impairments in DVB-S2 

receivers are discussed in [4]. A simpler channel model is 

implemented in Matlab (Figure 4 ). Every noise source is set 

independently, allowing flexible channel simulation. 

C. Receiver 

The functional block diagram of DVB-S2 receiver according 

to DVB-S2 guidelines [2] is depicted in Figure 6. The 

Receiver application includes the following functional 

blocks. 

Signal Processing Chain 

 Adjacent Channel Filtering using BB FIR. 

 I/Q imbalance compensation, an iterative algorithm to 

estimate I, Q and compensate for imbalance. 

 DC offset removal, using a simple IIR.  

 Frame Synchronization, using a 25 taps correlator and a 

peak detector. 

 Symbol Timing Recovery, using a Farrow cubic 

interpolator and a Gardner detector. 

 Decimator and Matched Filter.   

 Carrier Frequency Recovery (coarse and fine recovery) 

based on a pilot. Coarse recovery employs a second order 

feedback loop based on a delay-and-multiply frequency 

error detector. Fine recovery employs a feed-forward (FF) 

estimation algorithm, derived from the L&R (Luise and 

Reggiannini) technique.  

 Phase Recovery (coarse and fine recovery), using FF ML 

estimator.  

 Digital AGC, based on a pilot assisted vector tracker 

mechanism. 

 LMS Equalizer, employing DFE with a small number of 

taps. 

Decoder Chain 

 Descrambler, identical to the TX scrambler 

 LLR calculation, finding the logarithm of the distance 

between the soft symbol and the nearest hard symbol.  

 De-interleaver, identical to the TX interleaver. 

 LDPC Decoder, BCH Decoder, BB Descrambler and BB 

Header CRC Decoder.  

Similar to the transmitter, the receiver, too, may be clustered 

into Pre-LDPC, LDPC and Post-LDPC stages. The RF Front 

End, ADC and AGC blocks are not implemented in the 

simulator. Figure 5 describes the state machine of the 

receiver. Steady-state is entered when acquisition stages 

complete successfully. The main computation during this 

state consists of filtering, PHY descrambling, de-mapping 

and de-interleaving. The FEC LDPC decoder is implemented 

as a hardware accelerator. The rest of the computation 

includes BCH decoding (in some cases), descrambling and 

header decoding. In parallel, tracking is performed for the 

next incoming frame, enabling fast reaction to channel 

impairment changes, modulation changes and end-of-stream 

detection.  

 

Figure 5. Receiver state machine  

The performance of the DVB-S2/DVB-S2X link (consisting 

of transmitter, channel and receiver) is evaluated by the 

signal analyzer (Figure 2). The signal analyzer compares 

reconstructed bits with transmitted bits and calculates Frame 

Error Rate (FER), Packet Error Rate (PER) and Bit Error Rate 

(BER). In a communication chain without channel 

impairments, the reconstructed data should be exactly the 

same as transmitted. The DVB-S2 standard defines the 

expected error performance for different modes. PER is the 

ratio between the useful transport stream packets (188 bytes) 

correctly received and affected by errors, after forward error 

correction.  
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Figure 6. Functional block diagram of DVB-S2 Receiver 

 

 

IV. MODEM IMPLEMENTATION 

Details of modem implementation are described in this 

section. We first discuss hardware accelerators, followed by 

data streaming, scheduling and mitigation of overhead.  

A. Accelerators 

A major computation bottleneck was identified during 

profiling of the fourth level of simulation (C-Fixed modem). 

Forward error correction (LDPC encode/decode) was found 

to limit the throughput of the modem when executed by the 

cycle accurate simulator.  

The bottleneck can be eliminated using hardware 

acceleration, implemented either by a dedicated on-chip 

accelerator or by an external accelerator (ASIC or FPGA). 

RC64 was extended with on-chip LDPC encode/decode 

hardware accelerator that is capable of 1 Gbps receive rate 

and 2 Gbps transmit rate. A second accelerator was added for 

turbo coding, required for DVB-RCS modem. Other types of 

accelerators are supported by dedicated parallel interfaces to 

external FPGA or ASIC.  

B. Data Streaming  

Early analysis of the shared memory capacity required for the 

transmitter and receiver algorithms showed that special care 

should be taken regarding buffers for intermediate data. The 

transition between bit-stream representation and symbol and 

sample representations of the data requires minimizing 

buffering of symbol and sample representation of data frames 

in favor of bit-stream representation when possible. 
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Figure 7. Modem data flow 

 

 

Buffering structure, modeled within the fourth level of 

simulation (Table 1), define the partitioning of parallel 

activity of the transmit and receive applications as described 

in Figure 7, indicating buffering in shared memory. Bit-

stream representation of the data enables the most efficient 

storage in shared memory, accessed as byte stream by the 

DMA and DSP cores. A normal size frame is about 8 Kbyte 

long. LLR-stream employs 16 bits to represent each data bit, 

accessed as word stream by the DMA and the DSP cores. 

Thus, a normal size frame occupies 128 Kbyte. Sample-

stream representation requires 16 bits per sample. Sample 

representation depends on symbol count (due to different 

possible constellations) and interpolation factor. A normal 

size frame, in sample representation, occupies between 128 

Kbyte (QPSK) and 32 Kbyte (256APSK). Memory allocation 

is optimized by minimizing the buffer size for the sample-

stream. 

C. Scheduling  

The compute sequence for both transmitter and receiver is 

driven by the transmit/receive sample rate. A continuous 

sample stream must be transmitted to the DAC or received 

from the ADC using DMA. Figure 8 presents the iterative 

task graph used for scheduling the tasks (initial and final parts 

are eliminated for clarity).  When fully utilized, the modem 

iteratively performs the following steps. 

 Get-data through input interface (ADC for receive, digital 

interface for transmit). 

 Pre-LDPC compute stage, processing multiple frames 

each iteration. The number of frames is limited by frame 

size, data rate, available storage and available incoming 

data. 

 LDPC stage that encodes or decodes data from the Pre-

LDPC stage. 



 Post-LDPC compute stage processing multiple frames 

each iteration. 

 Put-data through output interface (DAC for transmit, 

digital interface for receive).  

Figure 9 presents the double buffer queues used for 

supporting parallel operation during each iteration of the 

transmitter. The input stream DMA stores data into one of the 

two queues dedicated for input frames. The Pre-LDPC tasks 

process concurrently the queue of input frames from the 

previous iteration and store the results into one of the two Pre-

LDPC queues. The LDPC encoder accelerator processes the 

data in its input queue and stores the result in one of its output 

queues. The Post-LDPC tasks process concurrently the post-

LDPC queue of the previous iteration and store the results 

into one of the two output sample queues. Finally, the output 

stream DMA reads samples data and outputs the samples. By 

the end of each iteration, input queues becomes output queues 

(double buffers are switched), and the next iteration may start 
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Figure 8. Task map for transmit/receive application 
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Figure 9. Iterative computation during transmit 
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Figure 10. Alternative schedules for load balancing 



Figure 10 presents load balance scheduling alternatives for 

the three types of tasks using available processing resources 

(LDPC accelerator and DSP cores). In (a), four cores execute 

Pre-LDPC tasks and four other cores execute Post-LDPC 

tasks, in parallel with the LDPC encoder. The Post-LDPC 

tasks constitute a bottleneck. In (b), the Post-LDPC tasks are 

broken up into 32 instances of fine grain tasks. Once Pre-

LDPC jobs are completed, Post-LDPC instances are allocated 

to all eight cores and computation is accelerated. In (c), 36 

cores are made available, all instances are allocated at the 

same time, and Pre-LDPC becomes the bottleneck. Last, in 

(d), the Pre-LDPC tasks are split into eight smaller tasks and 

additional cores are made available. Consequently, 

computation time is shortened.  

D. Overhead mitigation 

Ideal modem implementation, when execution is most 

efficient and iteration time is minimized, depends on the 

following architectural aspects. 

Scheduling overhead minimized—When a many-core 

solution is required to perform fine grain tasks to accelerate 

computation such as in Figure 10 (d), the time between task 

executions on cores must be negligible compared to tasks 

duration. RC64 scheduler offloads this activity from run-time 

software, and provides minimal overhead for task switching 

time. The overhead relates to both allocating multiple 

available tasks to many cores, as well as to recognition of task 

terminations. Task terminations enable new task allocations, 

which happens every iteration in such iterative task graphs.   

Shared memory access efficiency—Dynamic scheduling of 

tasks to cores, requiring cores to perform different code with 

different data along each iteration, makes shared memory 

access latency and throughput critical. Shared memory 

phenomena such as data read hot-spots call for special care, 

to prevent serialization in memory access. In some cases, 

when data handling is interface dependent, queue 

management requires critical section handling for inter-core 

synchronization. The RC64 multi-bank and network on chip 

optimize memory access by cores. The memory appears as a 

flat address space, flexible for any type of data-set allocation 

very similar to the PRAM model, significantly simplifying 

the programming model.  

Shared memory coherency—The programming model and 

non-preemptive run-to-completion tasks enable keeping 

shared memory with coherent data available for next task 

allocation. Each core is responsible for storing all its 

computational results into shared memory (using write-

through cache) before the task terminates. It then invalidates 

its data caches automatically before starting a new task that 

may accidently use the wrong data content in its cache. This 

storing activity is supported in RC64 by its write-through 

cache configuration of the DSP cores, together with the 

minimal invalidation overhead at task terminations. 

Local core computing efficiency—Processing cores 

computing efficiency may suffer due to low compute-to-data 

ratio or due to inefficient cache behavior. A major efficiency 

factor is using the VLIW and SIMD capability to achieve 

peak performance. RC64 cores are optimized for DSP 

computations, having four multiply-accumulate functional 

units along with two load/store units and two additional 

general purpose instruction units. A main compute-intensive 

part of the modem is the filters. Each DSP can perform a 

complex multiplication every cycle continuously, as long as 

the memory system can deliver the data. The local data 

memory (cache and scratchpad) supports 16Kbyte data and 

8Kbyte program memory, sufficient for many algorithms.    

Data streaming efficiency—Data in shared memory should 

be available for parallel memory read access to any of the 

cores during each iteration. Output data queues in shared 

memory should be accessible efficiently and concurrently by 

any of the cores for writing during each iteration. Streaming 

data to and from shared memory queues must not degrade the 

computing throughput. RC64 DMA controllers are optimized 

for this purpose, both for memory buffer management in 

shared memory and for very high throughput to and from 

shared memory, without degrading memory access rate by 

the cores. Many DMA controllers can operate concurrently 

to serve many different I/O activities.  

Programming model simplicity—Programming a many-core 

processor can become a very complex undertaking, requiring 

deep knowledge of the micro-architecture and the special 

mechanisms for solving the above challenges. RC64 task 

oriented programming model emphasize parallel code 

decomposition for application acceleration, in accordance 

with algorithm and memory capacity requirements. Other 

issues, such as shared memory access efficiency, coherency 

and streaming may incur only minor effect on performance, 

while the application developer enjoys a PRAM-like 

abstraction, similar to a single core program design.  

V. PERFORMANCE 

This section reports performance results as computed with 

the RC64 DVB-S2 simulator and cycle-accurate simulations 

of RC64 [8]. 

A. Transmitter Performance 

When simulating transmission of short frames using 32APSK 

modulation and LDPC code of 8/9, the Pre-LDPC stage 

requires 16,000 cycles, LDPC encoding takes 560 cycles, and 

Post-LDPC is 100,000 cycles. Since there are 3402 32APSK 

symbols in a short frame, Post-LDPC can be considered as 

incurring 30 cycles per symbol. As shown in Figure 11, a 

useful balance between pre-LDPC and post-LDPC can be 

achieved with nine frames per iteration for pre-LDPC, 

generating a total of 3402×9=30,618 symbols. Parallel 

processing of these symbols in Post-LDPC tasks is achieved 

by the remaining 55 cores. Each Post-LDPC task processes 

30,618/55=557 symbols, taking 557×30=16,710 cycles. This 

schedule translates to a data rate of 

14232 [𝑏𝑖𝑡]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 2.3 𝐺𝑏𝑝𝑠 . 



Each symbol contains two samples, and there are 6,804 

samples per frame. The sample output rate is 

6804 [𝑠𝑎𝑚𝑝𝑙𝑒𝑠]∙9 [𝑓𝑟𝑎𝑚𝑒𝑠]∙300 [𝑀𝐻𝑧]

16710 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1.1 𝐺𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 . 

Another way of estimating performance is based on 

considering that 116,000 cycles are required to process 

14,232 data bits at 300M cycles/sec, and 64 cores are 

available, or: 

64 ×
14,232 [𝑏𝑖𝑡]

116,000 [𝑐𝑦𝑐𝑙𝑒]
×

300𝑀 [𝑐𝑦𝑐𝑙𝑒]

[𝑠𝑒𝑐]
= 2.3 𝐺𝑏𝑝𝑠 

The accuracy of these performance estimates is expected to 

be within 30% of actual performance, based on simulator 

accuracy and code optimization. 

B. Receiver Performance 

When receiving short frames in a steady state, the receiver 

spends 220,000 cycles in the Pre-LDPC stage, 4,000 cycles 

on average in the LDPC decoder, and 32,000 cycles  in Post-

LDPC. The schedule of Figure 12 shows 8,000 cycles per 

iteration, receiving two frames per iteration, using 54 DSP 

cores to perform Pre-LDPC, eight DSP cores to perform Post-

LDPC. The resulting bitrate is 

14,232 [𝑏𝑖𝑡] ∙ 2 [𝑓𝑟𝑎𝑚𝑒𝑠] ∙ 300 [𝑀𝐻𝑧]

8,000 [𝑐𝑦𝑐𝑙𝑒𝑠]
= 1 𝐺𝑏𝑝𝑠. 
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Figure 11. Transmit performance (32APSK, LDPC 8/9) 

8K cycCore #0
Time

Core #7
Core #8

Core #63

Iteration time=8K cyc

8K cyc

LDPC Decoder
8K cyc

8K cyc

8K cyc

8K cyc

8K cyc

 

Figure 12. Receive performance (32APSK, LDPC 8/9) 

VI. CONCLUSIONS 

We have described a high-performance implementation of 

DVB-S2 transmitter and receiver on RC64, predicted to 

exceed 2Gbps transmission and 1Gbps reception. A six-

levels development and simulation process has been 

described. Dynamic scheduling of tasks to cores, using the 

hardware scheduler and based on task oriented programming, 

resulted in a flexible solution that can easily be adapted to 

other modem parameters and other standards. 
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