
RC64: High Performance Rad-Hard Manycore

Ran Ginosar, Peleg Aviely, Fredy Lange and Tsvika Israeli

Ramon Chips, Ltd., 5 HaCarmel Street, Yoqneam Illit 2069201, Israel

 [ran, peleg, fredy, tsvika]@ramon-chips.com

Abstract

RC64 is a rad-hard manycore DSP combining 64

VLIW/SIMD DSP cores, lock-free shared memory, a

hardware scheduler and a task-based programming model.

The hardware scheduler enables fast scheduling and

allocation of fine grain tasks to all cores.

I. INTRODUCTION

Multiple core architectures are divided into multi-cores and

many-cores. Multi-cores, ranging from rad-hard Gaisler/

Ramon Chips’ LEON3FT dual-core GR712RC to

commercial ARM Cortex A9 and Intel Xeon, typically

provide some form of cache coherency and are designed to

execute many unrelated processes, governed by an operating

system such as Linux. In contrast, many-cores such as Tilera

TilePro, Adapteva’s Epiphany, NVidia GPU, Intel Xeon Phi

and Ramon Chips’ RC64, execute parallel programs

specifically designed for them and avoid operating systems,

in order to achieve higher performance and higher power-

efficiency.

Many-core architectures come in different flavors: a two-

dimensional array of cores arranged around a mesh NoC

(Tilera and Adapteva), GPUs and other manycores with

clusters of cores (Kalray), and rings. This paper discusses

the Plural architecture [12]—[16] of RC64 [17], in which

many cores are interconnected to a many-port shared

memory rather than to each other (Figure 1).

Many cores also differ on their programming models,

ranging from PRAM-like shared memory through CSP-like

message-passing to dataflow. Memory access and message

passing also relate to data dependencies and

synchronization—locks, bulk-synchronous patterns and

rendezvous. RC64 architecture employs a strict shared

memory programming model.

The last defining issue relates to task scheduling—allocating

tasks to cores and handling task dependencies. Scheduling

methods include static (compile time) scheduling, dynamic

software scheduling, architecture-specific scheduling (e.g.,

for NoC), and hardware schedulers, as in RC64, in which

data dependencies are replaced by task dependencies in

order to enhance performance and efficiency and to simplify

programming.

As a processor designed for operation in harsh space

environment, RC64 is based on rad-hard technology and

includes several mechanisms to enhance its fault tolerance,

such as EDAC, and to handle fault detection, isolation and

recovery (FDIR).

Figure 1. RC64 Many-Core Architecture. 64 DSP cores,

modem accelerators and multiple DMA controllers of I/O

interfaces access the multibank shared memory through a

logarithmic network. The hardware scheduler dispatches fine

grain tasks to cores, accelerators and I/O.

II. RELATED WORK

GR712RC, an early dual-core rad-hard space processor was

introduced by Ramon Chips and Cobham Gaisler [1][2].

Other multi-core architectures, not intended for space,

include ARM Cortex A9 [3] and Intel Xeon. Many core

architectures include the mesh-tiled Tilera [4][5] and

Adapteva [6], NVidia GPU [7], Intel ring-topology Xeon

Phi [8] and dataflow clusters by Kalray [9]. The research

XMT manycore [10] is PRAM-inspired and employs

hardware scheduling, similar to RC64. It employs

declarative parallelism to direct scheduling [11]. The Plural

architecture and its RC64 incarnation are discussed

in [12]—[17] and is the subject of the MacSpace European

FP7 research project [18]. An early hardware scheduler is

reported in [19]. The baseline multistage interconnection

network has been introduced in [20]. Example of SDR

modem implementation on RC64 and simulated

performance results are given in [26].

Other efforts to introduce rad-hard manycores for space

include the FPGA-based AppSTAR at Harris [22], Maestro

at Boeing [23] and RADSPEED at BAE Systems [24].

III. RC64 ARCHITECTURE

This section presents the Plural architecture of RC64

(Figure 1). RC64 architecture defines a shared-memory

single-chip many-core. The many-core consists of a

hardware synchronization and scheduling unit, 64 DSP

cores, and a shared on-chip memory accessible through a

high-performance logarithmic interconnection network. The

cores contain instruction and data caches, as well as a

private ‘scratchpad’ memory. The data cache is flushed and

invalidated by the end of each task execution, guaranteeing

consistency of the shared memory. The cores are designed

for low power operation using ‘slow clock’ (typically

slower than 500 MHz). Performance is achieved by high

level of parallelism rather than by sheer speed, and access to

the on-chip shared memory across the chip takes only a

small number of cycles.

The on-chip shared memory is organized in a large number

of banks, to enable many ports that can be accessed in

parallel by the many cores, via the network. To reduce

collisions, addresses are interleaved over the banks. The

cores are connected to the memory banks by a multi-stage

many-to-many interconnection network. The network

detects access conflicts contending on the same memory

bank, proceeds serving one of the requests and notifies the

other cores to retry their access. The cores immediately retry

a failed access. Two or more concurrent read requests from

the same address are served by a single read operation and a

multicast of the same value to all requesting cores. As

explained in the next section, there is no need for any cache

coherency mechanism.

The CEVA X1643 DSP core comprises the following parts.

The computation unit consists of four multiplier-

accumulators (MAC) of 16-bit fixed point data, supporting

other precisions as well, and a register file. Ramon Chips

has added a floating point MAC. The data addressing units

includes two load-store modules and address calculation.

The data memory unit consists of the data cache, AXI bus

interface, write buffers for queuing write-through

transactions and a scratchpad private memory. The program

memory unit is the instruction cache. Other units support

emulation and debug and mange power gating. Thus, the

DSP core contains three memories: an instruction cache, a

write-through data cache and a scratchpad private memory.

Implemented in 65nm CMOS and designed for operation at

300 MHz, RC64 is planned to achieve 38 GFLOPS (single

precision) and 76 GMAC (16-bit). With 12 high speed serial

links operating at up to 5 Gbps in each direction, a total

bandwidth of 120 Gbps is provided. Additional high

bandwidth is enabled for memories (25 Gbps DDR3

interface of 32 bit at 800 Mword/s with additional 16 bits

for ECC) and for high performance ADC and DAC (38

Gbps over 48 LVDS channels of 800 Mbps). The device is

planned to dissipate less than 10 Watt in either CCGA or

PBGA 624 column or ball grid array packages.

IV. RC64 PROGRAMMING MODEL

The Plural PRAM-like programming model of RC64 is

based on non-preemptive execution of multiple sequential

tasks. The programmer defines the tasks, as well as their

dependencies and priorities which are specified by a

(directed) task graph. Tasks are executed by cores and the

task graph is ‘executed’ by the scheduler.

In the Plural shared-memory programming model,

concurrent tasks cannot communicate. A group of tasks that

are allowed to execute in parallel may share read-only data

but they cannot share data that is written by any one of

them. If one task must write into a shared data variable and

another task must read that data, then they are dependent—

the writing task must complete before the reading task may

commence. That dependency is specified as a directed edge

in the task graph, and enforced by the hardware scheduler.

Tasks that do not write-share data are defined as

independent, and may execute concurrently. Concurrent

execution does not necessarily happens at the same time—

concurrent tasks may execute together or at any order, as

determined by the scheduler.

Some tasks, typically amenable to independent data

parallelism, may be duplicable, accompanied by a quota

that determines the number of instances that should be

executed (declared parallelism [11]). All instances of the

same duplicable task are mutually independent (they do not

write-share any data) and concurrent, and hence they may

be executed in parallel or in any arbitrary order. These

instances are distinguishable from each other merely by

their instance number. Ideally, their execution time is short

(fine granularity). Concurrent instances can be scheduled for

execution at any (arbitrary) order, and no priority is

associated with instances.

Each task progresses through at most four states (Figure 2).

Tasks without predecessors (enabled at the beginning of

program execution) start in the ready state. Tasks that

depend on predecessor tasks start in the pending state. Once

all predecessors to a task have completed, the task becomes

ready and the scheduler may schedule its instances for

execution and allocate (dispatch) the instances to cores.

Once all instances of a task have been allocated, the task is

All allocated. And once all its instances have terminated, the

task moves into the terminated state (possibly enabling

successor tasks to become ready).

Terminated
All

Allocated
ReadyPending

Figure 2. Task State Graph

Many-flow pipelining facilitates enhanced core utilization in

streamed signal processing. Consider the task graph

examples for executing JPEG2000 image compression and

the processor utilization charts of Figure 3. In (a), five tasks

A-E are scheduled in sequence. Tasks B and D are

duplicable with a large number of instances, enabling

efficient utilization of 64 cores. Tasks A,C,E, on the other

hand, are sequential. Execution time of compressing one

image is 160 time units, and overall utilization, reflected by

the ratio of colored area to the 64×160 rectangle, is 65%.

The core utilization chart (on the right) indicates the number

of busy cores over time, and different colors represent

different tasks. In the many-flow task graph (Figure 3b), a

pipeline of seven images is processed. During one iteration,

say iteration k, the output stage sends compressed image k,

task E processes image k+1, task D computes the data of

image k+2, and so on. Notice that the sequential tasks A,C,E

are allocated first in each iteration, and duplicable instances

occupy the remaining cores. A single iteration takes 95 time

units and the latency of a single image is extended to five

iterations, but the throughput is enhanced and the core

utilization chart now demonstrates 99% core utilization.

Data dependencies are expressed (by the programmer) as

task dependencies. For instance, if a variable is written by

task tw and must later be read, then reading must occur in a

group of tasks {tr} and tw{tr}. The synchronization action

of completion of tw prior to any execution of tasks {tr}

provides the needed barrier.

Figure 3. Many-flow pipelining: (a) task graph and single

execution of an image compression program, (b) many-flow task

graph and its pipelined execution

V. RC64 HARDWARE SCHEDULER

The hardware scheduler assigns tasks to cores for execution.

The scheduler maintains two data structures, one for

managing cores (Figure 4) and the other for managing tasks

(Figure 5). Core and task state graphs are shown in Figure 6

and Figure 2, respectively.

The hardware scheduler operates as follows. At start, all

cores are listed as Idle and the task graph is loaded into the

first three columns of the Task Management Table. The

scheduler loops forever over its computation cycle. On each

cycle, the scheduler performs two activities: allocating tasks

for execution, and handling task completions.

Core # State Task # Instance # … …

0

1

2

…

Figure 4. Core Management Table

Task #
Duplication

quota
Dependencies State

allocated

instances

terminated

instances

0

1

2

…

data from task graph

Figure 5. Task Management Table

BusyIdle

Figure 6. Core State Graph

To allocate tasks, the scheduler first selects ready tasks from

the Task Management Table. It allocates each such task to

idle cores by changing the task state to All Allocated (if the

task is regular, or if all duplicable instances have been

dispatched), by increasing the count of allocated instances in

the Task Management Table, and by noting the task number

(and instance number, for duplicable tasks) in the Core

Management Table. Finally, task/instance activation

messages are dispatched to the relevant cores. The

activation message for a specific core includes the code

entry address and (in case of a duplicable instance) the

instance ID number.

To handle task completions, the scheduler collects

termination messages from cores that have completed task

executions. It changes the state of those cores to Idle. For

regular tasks, the task state is changed to Terminated. For

duplicable tasks, the counter of terminated tasks in the Task

Management Table is incremented, and if it has reached the

quota value then the state of that task is changed to

Terminated. Next, the scheduler updates the Dependencies

entry of each task in the table which depends on the

terminated task: the arrival of that token is noted, the

dependency condition is recomputed, and if all precedencies

of any task have been fulfilled then the state of that task is

changed to Ready, enabling allocation and dispatch in

subsequent scheduler computation cycles.

The scheduler capacity, namely the number of simultaneous

tasks which the scheduler is able to allocate or terminate

during each computation cycle, is limited. Any additional

task allocations and task termination messages beyond

scheduler capacity wait for subsequent cycles in order to be

processed. A core remains idle from the time it issues a

termination message until the next task allocation arrives.

That idle time comprises not only the delay at the scheduler

(wait and processing times) but also any transmission

latency of the termination and allocation messages over the

scheduler-to-cores network.

The allocation and termination algorithms are shown in

Figure 7.

Scheduling efficiency depends on the ratio of scheduling

latency (reflected in idle time of cores) to task execution

time. Extremely fine grain tasks (e.g., those executing for

1~100 cycles) call for very short scheduling latencies (down

to zero cycles) to be efficient. Alternatively, speculative

advanced scheduling may fill queues attached to each core

so that the core can start executing a new instance once it

has completed a previous instance (see [16] for such an

analysis). However, typical tasks tend to incur compiled

overhead (prologue and epilogue code sequences generated

by even the most efficient optimizing compilers), and

typical programming practices of parallel tasks tend to avoid

the shortest tasks, resulting in average task duration

exceeding 100 cycles. With average scheduling latency of

only 10-20 cycles, enabled by hardware implementation, we

obtain execution efficiency close to 99%.

The hardware scheduler is implemented as custom logic in

RC64. Two other possibilities will be considered in future

generations, one based on two content-addressable memory

(CAM) arrays implementing the two management tables,

and another implementation as software executing on a

dedicated fast core with its dedicated high throughput

memory.

Figure 7. Allocation (top) and termination (bottom) algorithms

ALLOCATION

1. Choose a Ready task (according to priority, if

specified)

2. While there is still enough scheduler capacity and

there are still Idle cores

a. Identify an Idle core

b. Allocate an instance to that core

c. Increase counter of allocated task

instances

d. If # allocated instances == quota, change

task state to All Allocated and continue to

next task (step 1)

e. Else, continue to next instance of same

task (step 2)

TERMINATION

1. Choose a core which has sent a termination

message

2. While there is still enough scheduler capacity

a. Change core state to Idle

b. Increment # terminated instances

c. If # terminated instances == quota, change

task state to Terminated

d. Recompute dependencies for all other

tasks that depend on the terminated task,

and where relevant change their state to

Ready

A special section of the scheduler schedules High Priority

Tasks (HPTs), which are designed as ‘interrupt handling

routines’ to handle hardware interrupts. As explained in

Section VII, all I/O interfaces (including interfaces to

accelerators) are based on DMA controllers that issue

interrupts once completing their action. The most urgent

portion of handling the interrupt is packaged as a HPT, and

less urgent parts are formulated as a normal task. HPT is

dispatched immediately and pre-emptively by the scheduler.

Each core may execute one HPT, and one HPT does not

pre-empt another HPT. Thus, a maximum of 64 HPTs may

execute simultaneously. RC64 defines fewer than 64

different HPTs, and thus there is no shortage of processors

for prompt invocation of HPTs.

VI. RC64 NETWORKS ON CHIP

RC64 contains two specialized Networks on Chip (NOCs),

one connecting the scheduler to all cores and other

schedulable entities (DMA controllers and accelerators), and

a second NOC connecting all cores and other data sources

(DMA controllers) to the shared memory.

A. Scheduler NOC

The scheduler-to-cores NOC employs a tree topology. That

NOC off-loads two distributed functions from the scheduler,

task allocation and task termination.

The distributed task allocation function receives clustered

task allocation messages from the scheduler. In particular, a

task allocation message related to a duplicable task specifies

the task entry address and a range of instance numbers that

should be dispatched. The NOC partitions such a clustered

message into new messages specifying the same task entry

address and sub-range of instance numbers, so that the sub-

ranges of any two new messages are mutually exclusive and

the union of all new messages covers the same range of

instance numbers as the original message. The NOC nodes

maintain Core and Task Management Tables which are

subsets of those tables in the scheduler (Figure 4 and Figure

5, respectively), to enable making these distributed

decisions.

The distributed task termination process complements task

allocations. Upon receiving instance terminations from

cores or subordinate nodes, a NOC node combine the

messages and forwards a more succinct message specifying

ranges of completed tasks.

B. Shared Memory NOC

The larger NOC of RC64 connects 64 cores, tens of DMA

controllers and hardware accelerators to 256 banks of the

shared memory. To simplify layout, floor-planning and

routing, we employ a Baseline logarithmic-depth multistage

interconnection network [20], symbolically drawn in Figure

1. Some of the NOC switch stages are combinational, while

others employ registers and operate in a pipeline. Two

separate networks are used, one for reading and another one

for writing. The read networks accesses and transfers 16

bytes (128 bits) in parallel, matching cache line size and

serving cache fetch in a single operation. The write network

is limited to 32 bits, compatible with the write-through

mechanism employed in the DSP cores. Writing smaller

formats (16 and 8 bits) is also allowed.

VII. RC64 ACCELERATORS AND I/O

Certain operations cannot be performed efficiently on

programmable cores. Typical examples require bit level

manipulations that are not provided for by the instruction

set, such as used for error correction (LDPC, Turbo code,

BCH, etc.) and for encryption. RC64 offers two solutions.

First, several accelerators for pre-determined computations

(such as LDPC and Turbo Coding, useful in DVB-S2 and

DVB-RCS for space telecommunications) are included on

chip. They are accessible only through shared memory, as

follows. First, the data to be processed by the accelerator are

deposited in shared memory. Next, the accelerator is

invoked. Data is fetched to the accelerator by a dedicated

DMA controller, and the outcome is sent back to shared

memory by a complementing second DMA controller. This

mode of operation decouples the accelerator from the cores

and eliminates busy waiting of cores.

The second possibility is to employ an external acceleration

on either an FPGA or an ASIC. High speed serial links on

RC64 enable efficient utilization of such external

acceleration. This mode offers scalability and extendibility

to RC64.

All input / output interfaces operate asynchronously to the

cores. Each interface is managed by one DMA controller for

input and a second DMA controller for output. Many

different types of I/O interfaces are available in RC64,

including slow GPIO and SpaceWire links, high rate

DDR2/DDR3 and ONFI flash EDAC memory interfaces

(error detection and correction is carried out at the I/O

interfaces, offloading that compute load from the cores),

high speed serial links (implementing SpaceFibre [25],

serial Rapid IO and proprietary protocols) and 48-link

LVDS port useful for ADCs, DACs and other custom

interfaces.

All DMA controllers are scheduled by the scheduler, submit

interrupt signals to the scheduler (as explained in Section V

above), and read and write data directly to the shared

memory through the NOC (see Section VI above). The

system software required for managing I/O is described in

Section VIII below.

VIII. RC64 SYSTEM SOFTWARE

The system run-time software stack is shown schematically

in Figure 8. The boot sequence library is based on the boot

code of the DSP core. It is modified to enable execution by

many cores in parallel. Only one of the cores performs the

shared memory content initialization. The boot code

includes DSP core self-test, cache clearing, memory

protection configuration and execution status notification to

an external controlling host.

The Runtime Kernel (RTK) performs the scheduling

function for the DSP core. It interacts with the hardware

scheduler, receives task allocation details, launches the task

code and responds with task termination when the task is

finished. The RTK also initiates the power down sequence

when no task is received for execution.

The first task allocated by the scheduler is responsible for

loading the application task graph into the scheduler. This

code is automatically generated during a pre-compile stage

according to the task graph definition. Application tasks are

allocated after the initialization task is finished.

Certain library routines manage EDAC for memories,

encapsulate messaging and routing services to off-chip

networking (especially over high speed serial SpaceFibre

links), respond to commands received from an external host

(or one of the on-chip cores, playing the role of a host),

perform FDIR functions, and offer some level of

virtualization when multiple RC64 chips are employed in

concert to execute coordinated missions.

Figure 8. RC64 Run Time Software. The kernel enables boot,

initialization, task processing and I/O. Other services include

execution of host commands, networking and routing, error

correction and management of applications distributed over

multiple RC64 chips

Other components of the RTK manage I/O and accelerators.

Configuring the interfaces requires special sequences such

as link detection and activation, clock enabling, DMA

configuration, etc. Each interface has its own set of

parameters according to the required connectivity, storage

type, data rate and so on.

Figure 9 demonstrate the hardware-kernel-application

sequence of events in the case of an input of a predefined

data unit over a stream input link. The DMA controller,

previously scheduled, stores input data into a pre-allocated

buffer in memory (step 1). Upon completion, it issues an

interrupt (step 2). A HPT is invoked (step 3, see Section V)

and stores pointers and status in shared memory, effectively

enqueuing the new arrival (step 4). It ends up by issuing a

‘software event’ to the scheduler (step 5). Eventually, the

scheduler dispatches a task that has been waiting for that

event (step 6). That task can consume the data and then

dequeue it, releasing the storage where the data was stored

(step 7). Other I/O operations are conducted similarly.

Figure 9. Event sequence performing stream input

IX. RC64 SOFTWARE DEVELOPMENT TOOLS

RC64 SDK enables software development, debug and

tuning, as shown in Figure 10. The IDE tool chain includes

a C/C++ compiler for the DSP core, an assembler, a linker,

and a library of DSP functions customized for the core,

taking full advantage of its VLIW capability (computing

and moving data at the same time) and SIMD (performing

several multiply and accumulate operations in parallel).

RC64 Parallel programming is supported by the task

compiler, which translates the task graph for the scheduler, a

many-task emulator (MTE) that enables efficient

development of parallel codes on personal computers, and a

many-core debugger, which synchronizes debug operations

of all cores. The RC64 parallel simulator is cycle accurate,

fully simulating the cores as well as all other hardware

components on the chip.

The profiler provides complete record of parallel execution

on all 64 cores. The event recorder generates traces with

time stamps of desired events. The kernel and libraries are

described in Section VIII above.

X. RC64 RADIATION HARDNESS AND FDIR

RC64 will be implemented in 65nm CMOS using

RadSafe™ rad-hard-by-design (RHBD) technology and

library [21]. RadSafe™ is designed for a wide range of

space missions, enabling TID tolerance to 300 kRad(Si), no

latchup and very low SEU rate. All memories on chip are

protected by various means and varying levels of error

correction and detection. Special protection is designed for

registers that hold data for extended time, such as

configuration registers. The two external memory interfaces,

to DDR2/DDR3 and to ONFI flash memories, implement

several types of EDAC. For instance, ten flash memory

chips can be connected for eight byte wide datapath and two

flash devices for storing Reed Solomon ECC.

Figure 10. RC64 Software Development Kit.

RC64 implements extensive means for fault detection,

isolation and recovery (FDIR). An external host can reset,

boot and scrub the device through dual RMAP SpaceWire

ports. RC64 contains numerous error counters and monitors

that collect and report error statistics. Trace buffers,

allocated in shared memory as desired, enable rollback and

analysis (in addition to helping debug). Faulty sub-systems

may be shut down and the scheduler is designed to operate

with partial configurations.

XI. CONCLUSIONS

RC64 is a many core architecture suitable for use in space.

It is designed for simplified PRAM-like shared memory

programming and high performance at low power. RC64

goal is to enable future software-defined satellites in all

space endeavors. RC64 is presently under design and all

performance figures reported herein and in [26] are based on

simulations. RC64 is planned for availability before the end

of the decade. RC64 R&D project is funded by Israel Space

Agency and by the European Union.

XII. ACKNOWLEDGEMENTS

The financial support of the Israel Space Agency, the Israel

Ministry of Defense, the Israel Aerospace Industry and the

European Union (Seventh Framework Programme grant

agreement 607212) is greatly appreciated. Itai Avron has

contributed to early versions of this paper.

XIII. REFERENCES

[1] Sturesson, F., J. Gaisler, R. Ginosar, and T. Liran. "Radiation

characterization of a dual core LEON3-FT processor." In

Radiation and Its Effects on Components and Systems

(RADECS), 2011 12th European Conference on, pp. 938-944.

IEEE, 2011.

[2] Habinc, S., K. Glembo, and J. Gaisler. "GR712RC-The Dual-

Core LEON3FT System-on-Chip Avionics Solution." In

DASIA 2010 Data Systems In Aerospace, vol. 682, p. 8.

2010.

[3] Jacquet, David, Frederic Hasbani, Philippe Flatresse, Richard

Wilson, Franck Arnaud, Giorgio Cesana, Thierry Di Gilio et

al. "A 3 GHz dual core processor ARM cortex TM-A9 in 28

nm UTBB FD-SOI CMOS with ultra-wide voltage range and

energy efficiency optimization." Solid-State Circuits, IEEE

Journal of 49, no. 4 (2014): 812-826.

[4] Villalpando, Carlos Y., Andrew E. Johnson, Raphael Some,

Jacob Oberlin, and Steven Goldberg. "Investigation of the

tilera processor for real time hazard detection and avoidance

on the altair lunar lander." In Aerospace Conference, 2010

IEEE, pp. 1-9. IEEE, 2010.

[5] Wentzlaff, David, et al. "On-chip interconnection architecture

of the tile processor." IEEE micro 5 (2007): 15-31.

[6] Varghese, Anitha, Ben Edwards, Gaurav Mitra, and Alistair

P. Rendell. "Programming the Adapteva Epiphany 64-core

Network-on-chip Coprocessor." In Parallel & Distributed

Processing Symposium Workshops (IPDPSW), 2014 IEEE

International, pp. 984-992. IEEE, 2014.

[7] Nickolls, John, and William J. Dally. "The GPU computing

era." IEEE micro 2 (2010): 56-69.

[8] Heinecke, Alexander, Karthikeyan Vaidyanathan, Mikhail

Smelyanskiy, Alexander Kobotov, Roman Dubtsov, Greg

Henry, Aniruddha G. Shet, Grigorios Chrysos, and Pradeep

Dubey. "Design and implementation of the linpack

benchmark for single and multi-node systems based on intel®

xeon phi coprocessor." In Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on, pp.

126-137. IEEE, 2013.

[9] De Dinechin, Benoît Dupont, Duco Van Amstel, Marc

Poulhiès, and Guillaume Lager. "Time-critical computing on

a single-chip massively parallel processor." In Design,

Automation and Test in Europe Conference and Exhibition

(DATE), 2014, pp. 1-6. IEEE, 2014.

[10] Wen, Xingzhi, and Uzi Vishkin. "Fpga-based prototype of a

pram-on-chip processor." In Proceedings of the 5th

conference on Computing frontiers, pp. 55-66. ACM, 2008.

[11] Tzannes, Alexandros, George C. Caragea, Uzi Vishkin, and

Rajeev Barua. "Lazy scheduling: A runtime adaptive

scheduler for declarative parallelism." ACM Transactions on

Programming Languages and Systems (TOPLAS) 36, no. 3

(2014): 10.

[12] Bayer, Nimrod, and Ran Ginosar. "High flow-rate

synchronizer/scheduler apparatus and method for

multiprocessors." U.S. Patent 5,202,987, issued April 13,

1993.

[13] Bayer, Nimrod, and Ran Ginosar. "Tightly Coupled

Multiprocessing: The Super Processor Architecture." In

Enabling Society with Information Technology, pp. 329-339.

Springer Japan, 2002.

[14] Bayer, Nimrod, and Aviely Peleg. "Shared memory system

for a tightly-coupled multiprocessor." U.S. Patent 8,099,561,

issued January 17, 2012.

[15] Avron, Itai, and Ran Ginosar. "Performance of a hardware

scheduler for many-core architecture." In 2012 IEEE 14th

International Conference on High Performance Computing

and Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems (HPCC-

ICESS), pp. 151-160. IEEE, 2012.

[16] Avron, Itai, and Ran Ginosar. "Hardware Scheduler

Performance on the Plural Many-Core Architecture."

In Proceedings of the 3rd International Workshop on Many-

core Embedded Systems, pp. 48-51. ACM, 2015.

[17] Ran Ginosar and Peleg Aviely, RC64 – Many-Core

Communication Processor for Space IP Router. In

Proceedings of International Astronautical Conference, pp.

IAC-15-B2.6.1, Jerusalem, Israel, Oct. 2015.

[18] http://www.macspace.eu/

[19] Crummey, T. P., D. I. Jones, P. J. Fleming, and W. P.

Marnane. "A hardware scheduler for parallel processing in

control applications." In Control, International Conference on,

vol. 2, pp. 1098-1103. IET, 1994.

[20] Wu, Chuan-Lin, and Tse-Yun Feng. "On a class of multistage

interconnection networks." Computers, IEEE Transactions on,

vol. C-29, no. 8, pp. 694-702, 1980.

[21] Liran, Tuvia, Ran Ginosar, Fredy Lange, Peleg Aviely, Henri

Meirov, Michael Goldberg, Zeev Meister, and Mickey Oliel.

"65nm RadSafe™ technology for RC64 and advanced SOCs."

(2015).

[22] Beadle, Edward R., and Tim Dyson. "Software-Based

Reconfigurable Computing Platform (AppSTAR TM) for

Multi-Mission Payloads in Spaceborne and Near-Space

Vehicles." In International Conference on Reconfigurable

Systems and Algorithms, ERSA 2012.

[23] Malone, Michael. "OPERA RHBD multi-core." In

Military/Aerospace Programmable Logic Device Workshop

(MAPLD 2009). 2009.

[24] Marshall, Joseph, Richard Berger, Michael Bear, Lisa

Hollinden, Jeffrey Robertson, and Dale Rickard. "Applying a

high performance tiled rad-hard digital signal processor to

spaceborne applications." In Aerospace Conference, 2012

IEEE, pp. 1-10. IEEE, 2012.

[25] Parkes, Steve, Chris McClements, David McLaren, Albert

Ferrer Florit, and Alberto Gonzalez Villafranca. "SpaceFibre:

A multi-Gigabit/s interconnect for spacecraft onboard data

handling." In Aerospace Conference, pp. 1-13. IEEE, 2015.

[26] Aviely, Peleg, Olga Radovsky and Ran Ginosar. “DVB-S2

Software Defined Radio Modem on the RC64 Manycore

DSP.” In DSP Day, 2016.

