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Abstract 

RC64 is a rad-hard manycore DSP combining 64 

VLIW/SIMD DSP cores, lock-free shared memory, a 

hardware scheduler and a task-based programming model. 

The hardware scheduler enables fast scheduling and 

allocation of fine grain tasks to all cores.  

I. INTRODUCTION 

Multiple core architectures are divided into multi-cores and 

many-cores. Multi-cores, ranging from rad-hard Gaisler/ 

Ramon Chips’ LEON3FT dual-core GR712RC to 

commercial ARM Cortex A9 and Intel Xeon, typically 

provide some form of cache coherency and are designed to 

execute many unrelated processes, governed by an operating 

system such as Linux. In contrast, many-cores such as Tilera 

TilePro, Adapteva’s Epiphany, NVidia GPU, Intel Xeon Phi 

and Ramon Chips’ RC64, execute parallel programs 

specifically designed for them and avoid operating systems, 

in order to achieve higher performance and higher power-

efficiency. 

Many-core architectures come in different flavors: a two-

dimensional array of cores arranged around a mesh NoC 

(Tilera and Adapteva), GPUs and other manycores with 

clusters of cores (Kalray), and rings. This paper discusses 

the Plural architecture [12]—[16] of RC64 [17], in which 

many cores are interconnected to a many-port shared 

memory rather than to each other (Figure 1).  

Many cores also differ on their programming models, 

ranging from PRAM-like shared memory through CSP-like 

message-passing to dataflow. Memory access and message 

passing also relate to data dependencies and 

synchronization—locks, bulk-synchronous patterns and 

rendezvous. RC64 architecture employs a strict shared 

memory programming model. 

The last defining issue relates to task scheduling—allocating 

tasks to cores and handling task dependencies. Scheduling 

methods include static (compile time) scheduling, dynamic 

software scheduling, architecture-specific scheduling (e.g., 

for NoC), and hardware schedulers, as in RC64, in which 

data dependencies are replaced by task dependencies in  

 

 

 

order to enhance performance and efficiency and to simplify 

programming. 

As a processor designed for operation in harsh space 

environment, RC64 is based on rad-hard technology and 

includes several mechanisms to enhance its fault tolerance, 

such as EDAC, and to handle fault detection, isolation and 

recovery (FDIR). 

 

 

 

Figure 1. RC64 Many-Core Architecture. 64 DSP cores, 

modem accelerators and multiple DMA controllers of I/O  

interfaces access the multibank shared memory through a 

logarithmic network. The hardware scheduler dispatches fine 

grain tasks to cores, accelerators and I/O.  



 

II. RELATED WORK 

GR712RC, an early dual-core rad-hard space processor was 

introduced by Ramon Chips and Cobham Gaisler [1][2]. 

Other multi-core architectures, not intended for space, 

include ARM Cortex A9 [3] and Intel Xeon. Many core 

architectures include the mesh-tiled Tilera [4][5] and 

Adapteva [6], NVidia GPU [7], Intel ring-topology Xeon 

Phi [8] and dataflow clusters by Kalray [9]. The research 

XMT manycore [10] is PRAM-inspired and employs 

hardware scheduling, similar to RC64. It employs 

declarative parallelism to direct scheduling [11]. The Plural 

architecture and its RC64 incarnation are discussed 

in [12]—[17] and is the subject of the MacSpace European 

FP7 research project [18]. An early hardware scheduler is 

reported in [19]. The baseline multistage interconnection 

network has been introduced in [20]. Example of SDR 

modem implementation on RC64 and simulated 

performance results are given in [26]. 

Other efforts to introduce rad-hard manycores for space 

include the FPGA-based AppSTAR at Harris [22], Maestro 

at Boeing [23] and RADSPEED at BAE Systems [24]. 

III. RC64 ARCHITECTURE 

This section presents the Plural architecture of RC64 

(Figure 1). RC64 architecture defines a shared-memory 

single-chip many-core. The many-core consists of a 

hardware synchronization and scheduling unit, 64 DSP 

cores, and a shared on-chip memory accessible through a 

high-performance logarithmic interconnection network. The 

cores contain instruction and data caches, as well as a 

private ‘scratchpad’ memory. The data cache is flushed and 

invalidated by the end of each task execution, guaranteeing 

consistency of the shared memory. The cores are designed 

for low power operation using ‘slow clock’ (typically 

slower than 500 MHz). Performance is achieved by high 

level of parallelism rather than by sheer speed, and access to 

the on-chip shared memory across the chip takes only a 

small number of cycles. 

The on-chip shared memory is organized in a large number 

of banks, to enable many ports that can be accessed in 

parallel by the many cores, via the network. To reduce 

collisions, addresses are interleaved over the banks. The 

cores are connected to the memory banks by a multi-stage 

many-to-many interconnection network. The network 

detects access conflicts contending on the same memory 

bank, proceeds serving one of the requests and notifies the 

other cores to retry their access. The cores immediately retry 

a failed access. Two or more concurrent read requests from 

the same address are served by a single read operation and a 

multicast of the same value to all requesting cores. As 

explained in the next section, there is no need for any cache 

coherency mechanism. 

The CEVA X1643 DSP core comprises the following parts. 

The computation unit consists of four multiplier-

accumulators (MAC) of 16-bit fixed point data, supporting 

other precisions as well, and a register file. Ramon Chips 

has added a floating point MAC. The data addressing units 

includes two load-store modules and address calculation. 

The data memory unit consists of the data cache, AXI bus 

interface, write buffers for queuing write-through 

transactions and a scratchpad private memory. The program 

memory unit is the instruction cache. Other units support 

emulation and debug and mange power gating. Thus, the 

DSP core contains three memories: an instruction cache, a 

write-through data cache and a scratchpad private memory. 

Implemented in 65nm CMOS and designed for operation at 

300 MHz, RC64 is planned to achieve 38 GFLOPS (single 

precision) and 76 GMAC (16-bit). With 12 high speed serial 

links operating at up to 5 Gbps in each direction, a total 

bandwidth of 120 Gbps is provided. Additional high 

bandwidth is enabled for memories (25 Gbps DDR3 

interface of 32 bit at 800 Mword/s with additional 16 bits 

for ECC) and for high performance ADC and DAC (38 

Gbps over 48 LVDS channels of 800 Mbps). The device is 

planned to dissipate less than 10 Watt in either CCGA or 

PBGA 624 column or ball grid array packages. 

IV. RC64 PROGRAMMING MODEL 

The Plural PRAM-like programming model of RC64 is 

based on non-preemptive execution of multiple sequential 

tasks. The programmer defines the tasks, as well as their 

dependencies and priorities which are specified by a 

(directed) task graph. Tasks are executed by cores and the 

task graph is ‘executed’ by the scheduler.  

In the Plural shared-memory programming model, 

concurrent tasks cannot communicate. A group of tasks that 

are allowed to execute in parallel may share read-only data 

but they cannot share data that is written by any one of 

them. If one task must write into a shared data variable and 

another task must read that data, then they are dependent—

the writing task must complete before the reading task may 

commence. That dependency is specified as a directed edge 

in the task graph, and enforced by the hardware scheduler. 

Tasks that do not write-share data are defined as 

independent, and may execute concurrently. Concurrent 

execution does not necessarily happens at the same time—

concurrent tasks may execute together or at any order, as 

determined by the scheduler. 

Some tasks, typically amenable to independent data 

parallelism, may be duplicable, accompanied by a quota 

that determines the number of instances that should be 

executed (declared parallelism [11]). All instances of the 

same duplicable task are mutually independent (they do not 

write-share any data) and concurrent, and hence they may 

be executed in parallel or in any arbitrary order. These 

instances are distinguishable from each other merely by 

their instance number. Ideally, their execution time is short 

(fine granularity). Concurrent instances can be scheduled for 



 

execution at any (arbitrary) order, and no priority is 

associated with instances. 

Each task progresses through at most four states (Figure 2). 

Tasks without predecessors (enabled at the beginning of 

program execution) start in the ready state. Tasks that 

depend on predecessor tasks start in the pending state. Once 

all predecessors to a task have completed, the task becomes 

ready and the scheduler may schedule its instances for 

execution and allocate (dispatch) the instances to cores. 

Once all instances of a task have been allocated, the task is 

All allocated. And once all its instances have terminated, the 

task moves into the terminated state (possibly enabling 

successor tasks to become ready). 

Terminated
All

Allocated
ReadyPending

 

Figure 2. Task State Graph 

Many-flow pipelining facilitates enhanced core utilization in 

streamed signal processing. Consider the task graph 

examples for executing JPEG2000 image compression and 

the processor utilization charts of Figure 3. In (a), five tasks 

A-E are scheduled in sequence. Tasks B and D are 

duplicable with a large number of instances, enabling 

efficient utilization of 64 cores. Tasks A,C,E, on the other 

hand, are sequential. Execution time of compressing one 

image is 160 time units, and overall utilization, reflected by 

the ratio of colored area to the 64×160 rectangle, is 65%. 

The core utilization chart (on the right) indicates the number 

of busy cores over time, and different colors represent 

different tasks. In the many-flow task graph (Figure 3b), a 

pipeline of seven images is processed. During one iteration, 

say iteration k, the output stage sends compressed image k, 

task E processes image k+1, task D computes the data of 

image k+2, and so on. Notice that the sequential tasks A,C,E 

are allocated first in each iteration, and duplicable instances 

occupy the remaining cores. A single iteration takes 95 time 

units and the latency of a single image is extended to five 

iterations, but the throughput is enhanced and the core 

utilization chart now demonstrates 99% core utilization. 

Data dependencies are expressed (by the programmer) as 

task dependencies. For instance, if a variable is written by 

task tw and must later be read, then reading must occur in a 

group of tasks {tr} and tw{tr}. The synchronization action 

of completion of tw prior to any execution of tasks {tr} 

provides the needed barrier. 

 

Figure 3. Many-flow pipelining: (a) task graph and single 

execution of an image compression program, (b) many-flow task 

graph and its pipelined execution 

V. RC64 HARDWARE SCHEDULER 

The hardware scheduler assigns tasks to cores for execution. 

The scheduler maintains two data structures, one for 

managing cores (Figure 4) and the other for managing tasks 

(Figure 5). Core and task state graphs are shown in Figure 6 

and Figure 2, respectively. 

The hardware scheduler operates as follows. At start, all 

cores are listed as Idle and the task graph is loaded into the 

first three columns of the Task Management Table. The 

scheduler loops forever over its computation cycle. On each 

cycle, the scheduler performs two activities: allocating tasks 

for execution, and handling task completions.  

 

Core # State Task # Instance # … … 

0      

1      

2      

…      

Figure 4. Core Management Table 

 



 

Task # 
Duplication 

quota 
Dependencies State 

# 

allocated 

instances 

# 

terminated 

instances 

0      

1      

2      

…      

data from task graph    

Figure 5. Task Management Table 

BusyIdle

 

Figure 6. Core State Graph 

To allocate tasks, the scheduler first selects ready tasks from 

the Task Management Table. It allocates each such task to 

idle cores by changing the task state to All Allocated (if the 

task is regular, or if all duplicable instances have been 

dispatched), by increasing the count of allocated instances in 

the Task Management Table, and by noting the task number 

(and instance number, for duplicable tasks) in the Core 

Management Table. Finally, task/instance activation 

messages are dispatched to the relevant cores. The 

activation message for a specific core includes the code 

entry address and (in case of a duplicable instance) the 

instance ID number. 

To handle task completions, the scheduler collects 

termination messages from cores that have completed task 

executions. It changes the state of those cores to Idle. For 

regular tasks, the task state is changed to Terminated. For 

duplicable tasks, the counter of terminated tasks in the Task 

Management Table is incremented, and if it has reached the 

quota value then the state of that task is changed to 

Terminated. Next, the scheduler updates the Dependencies 

entry of each task in the table which depends on the 

terminated task: the arrival of that token is noted, the 

dependency condition is recomputed, and if all precedencies 

of any task have been fulfilled then the state of that task is 

changed to Ready, enabling allocation and dispatch in 

subsequent scheduler computation cycles. 

The scheduler capacity, namely the number of simultaneous 

tasks which the scheduler is able to allocate or terminate 

during each computation cycle, is limited. Any additional 

task allocations and task termination messages beyond 

scheduler capacity wait for subsequent cycles in order to be 

processed. A core remains idle from the time it issues a 

termination message until the next task allocation arrives. 

That idle time comprises not only the delay at the scheduler 

(wait and processing times) but also any transmission 

latency of the termination and allocation messages over the 

scheduler-to-cores network.  

The allocation and termination algorithms are shown in 

Figure 7. 

Scheduling efficiency depends on the ratio of scheduling 

latency (reflected in idle time of cores) to task execution 

time. Extremely fine grain tasks (e.g., those executing for 

1~100 cycles) call for very short scheduling latencies (down 

to zero cycles) to be efficient. Alternatively, speculative 

advanced scheduling may fill queues attached to each core 

so that the core can start executing a new instance once it 

has completed a previous instance (see [16] for such an 

analysis). However, typical tasks tend to incur compiled 

overhead (prologue and epilogue code sequences generated 

by even the most efficient optimizing compilers), and 

typical programming practices of parallel tasks tend to avoid 

the shortest tasks, resulting in average task duration 

exceeding 100 cycles. With average scheduling latency of 

only 10-20 cycles, enabled by hardware implementation, we 

obtain execution efficiency close to 99%. 

The hardware scheduler is implemented as custom logic in 

RC64. Two other possibilities will be considered in future 

generations, one based on two content-addressable memory 

(CAM) arrays implementing the two management tables, 

and another implementation as software executing on a 

dedicated fast core with its dedicated high throughput 

memory. 

 

 

Figure 7. Allocation (top) and termination (bottom) algorithms 

ALLOCATION 

1. Choose a Ready task (according to priority, if 

specified) 

2. While there is still enough scheduler capacity and 

there are still Idle cores 

a. Identify an Idle core 

b. Allocate an instance to that core  

c. Increase counter of allocated task 

instances  

d. If # allocated instances == quota, change 

task state to All Allocated and continue to 

next task (step 1)  

e. Else, continue to next instance of same 

task (step 2) 

TERMINATION 

1. Choose a core which has sent a termination 

message 

2. While there is still enough scheduler capacity 

a. Change core state to Idle 

b. Increment # terminated instances  

c. If # terminated instances == quota, change 

task state to Terminated 

d. Recompute dependencies for all other 

tasks that depend on the terminated task, 

and where relevant change their state to 

Ready 



 

A special section of the scheduler schedules High Priority 

Tasks (HPTs), which are designed as ‘interrupt handling 

routines’ to handle hardware interrupts. As explained in 

Section VII, all I/O interfaces (including interfaces to 

accelerators) are based on DMA controllers that issue 

interrupts once completing their action. The most urgent 

portion of handling the interrupt is packaged as a HPT, and 

less urgent parts are formulated as a normal task. HPT is 

dispatched immediately and pre-emptively by the scheduler. 

Each core may execute one HPT, and one HPT does not 

pre-empt another HPT. Thus, a maximum of 64 HPTs may 

execute simultaneously. RC64 defines fewer than 64 

different HPTs, and thus there is no shortage of processors 

for prompt invocation of HPTs. 

VI. RC64 NETWORKS ON CHIP 

RC64 contains two specialized Networks on Chip (NOCs), 

one connecting the scheduler to all cores and other 

schedulable entities (DMA controllers and accelerators), and 

a second NOC connecting all cores and other data sources 

(DMA controllers) to the shared memory. 

A. Scheduler NOC 

The scheduler-to-cores NOC employs a tree topology. That 

NOC off-loads two distributed functions from the scheduler, 

task allocation and task termination. 

The distributed task allocation function receives clustered 

task allocation messages from the scheduler. In particular, a 

task allocation message related to a duplicable task specifies 

the task entry address and a range of instance numbers that 

should be dispatched. The NOC partitions such a clustered 

message into new messages specifying the same task entry 

address and sub-range of instance numbers, so that the sub-

ranges of any two new messages are mutually exclusive and 

the union of all new messages covers the same range of 

instance numbers as the original message. The NOC nodes 

maintain Core and Task Management Tables which are 

subsets of those tables in the scheduler (Figure 4 and Figure 

5, respectively), to enable making these distributed 

decisions. 

The distributed task termination process complements task 

allocations. Upon receiving instance terminations from 

cores or subordinate nodes, a NOC node combine the 

messages and forwards a more succinct message specifying 

ranges of completed tasks. 

B. Shared Memory NOC 

The larger NOC of RC64 connects 64 cores, tens of DMA 

controllers and hardware accelerators to 256 banks of the 

shared memory. To simplify layout, floor-planning and 

routing, we employ a Baseline logarithmic-depth multistage 

interconnection network [20], symbolically drawn in Figure 

1. Some of the NOC switch stages are combinational, while 

others employ registers and operate in a pipeline. Two 

separate networks are used, one for reading and another one 

for writing. The read networks accesses and transfers 16 

bytes (128 bits) in parallel, matching cache line size and 

serving cache fetch in a single operation. The write network 

is limited to 32 bits, compatible with the write-through 

mechanism employed in the DSP cores. Writing smaller 

formats (16 and 8 bits) is also allowed. 

VII. RC64 ACCELERATORS AND I/O  

Certain operations cannot be performed efficiently on 

programmable cores. Typical examples require bit level 

manipulations that are not provided for by the instruction 

set, such as used for error correction (LDPC, Turbo code, 

BCH, etc.) and for encryption. RC64 offers two solutions. 

First, several accelerators for pre-determined computations 

(such as LDPC and Turbo Coding, useful in DVB-S2 and 

DVB-RCS for space telecommunications) are included on 

chip. They are accessible only through shared memory, as 

follows. First, the data to be processed by the accelerator are 

deposited in shared memory. Next, the accelerator is 

invoked. Data is fetched to the accelerator by a dedicated 

DMA controller, and the outcome is sent back to shared 

memory by a complementing second DMA controller. This 

mode of operation decouples the accelerator from the cores 

and eliminates busy waiting of cores. 

The second possibility is to employ an external acceleration 

on either an FPGA or an ASIC. High speed serial links on 

RC64 enable efficient utilization of such external 

acceleration. This mode offers scalability and extendibility 

to RC64. 

All input / output interfaces operate asynchronously to the 

cores. Each interface is managed by one DMA controller for 

input and a second DMA controller for output. Many 

different types of I/O interfaces are available in RC64, 

including slow GPIO and SpaceWire links, high rate 

DDR2/DDR3 and ONFI flash EDAC memory interfaces 

(error detection and correction is carried out at the I/O 

interfaces, offloading that compute load from the cores), 

high speed serial links (implementing SpaceFibre [25], 

serial Rapid IO and proprietary protocols) and 48-link 

LVDS port useful for ADCs, DACs and other custom 

interfaces. 

All DMA controllers are scheduled by the scheduler, submit 

interrupt signals to the scheduler (as explained in Section V 

above), and read and write data directly to the shared 

memory through the NOC (see Section VI above). The 

system software required for managing I/O is described in 

Section VIII below. 

VIII. RC64 SYSTEM SOFTWARE 

The system run-time software stack is shown schematically 

in Figure 8. The boot sequence library is based on the boot 

code of the DSP core. It is modified to enable execution by 

many cores in parallel. Only one of the cores performs the 

shared memory content initialization. The boot code 



 

includes DSP core self-test, cache clearing, memory 

protection configuration and execution status notification to 

an external controlling host.  

The Runtime Kernel (RTK) performs the scheduling 

function for the DSP core. It interacts with the hardware 

scheduler, receives task allocation details, launches the task 

code and responds with task termination when the task is 

finished. The RTK also initiates the power down sequence 

when no task is received for execution. 

The first task allocated by the scheduler is responsible for 

loading the application task graph into the scheduler. This 

code is automatically generated during a pre-compile stage 

according to the task graph definition. Application tasks are 

allocated after the initialization task is finished. 

Certain library routines manage EDAC for memories, 

encapsulate messaging and routing services to off-chip 

networking (especially over high speed serial SpaceFibre 

links), respond to commands received from an external host 

(or one of the on-chip cores, playing the role of a host), 

perform FDIR functions, and offer some level of 

virtualization when multiple RC64 chips are employed in 

concert to execute coordinated missions. 

 

 

Figure 8. RC64 Run Time Software. The kernel enables boot, 

initialization, task processing and I/O. Other services include 

execution of host commands, networking and routing, error 

correction and management of applications distributed over 

multiple RC64 chips 

Other components of the RTK manage I/O and accelerators. 

Configuring the interfaces requires special sequences such 

as link detection and activation, clock enabling, DMA 

configuration, etc. Each interface has its own set of 

parameters according to the required connectivity, storage 

type, data rate and so on. 

Figure 9 demonstrate the hardware-kernel-application 

sequence of events in the case of an input of a predefined 

data unit over a stream input link. The DMA controller, 

previously scheduled, stores input data into a pre-allocated 

buffer in memory (step 1). Upon completion, it issues an 

interrupt (step 2). A HPT is invoked (step 3, see Section V) 

and stores pointers and status in shared memory, effectively 

enqueuing the new arrival (step 4). It ends up by issuing a 

‘software event’ to the scheduler (step 5). Eventually, the 

scheduler dispatches a task that has been waiting for that 

event (step 6). That task can consume the data and then 

dequeue it, releasing the storage where the data was stored 

(step 7). Other I/O operations are conducted similarly. 

 

 

Figure 9. Event sequence performing stream input 

IX. RC64 SOFTWARE DEVELOPMENT TOOLS 

RC64 SDK enables software development, debug and 

tuning, as shown in Figure 10. The IDE tool chain includes 

a C/C++ compiler for the DSP core, an assembler, a linker, 

and a library of DSP functions customized for the core, 

taking full advantage of its VLIW capability (computing 

and moving data at the same time) and SIMD (performing 

several multiply and accumulate operations in parallel). 

RC64 Parallel programming is supported by the task 

compiler, which translates the task graph for the scheduler, a 

many-task emulator (MTE) that enables efficient 

development of parallel codes on personal computers, and a 

many-core debugger, which synchronizes debug operations 

of all cores. The RC64 parallel simulator is cycle accurate, 

fully simulating the cores as well as all other hardware 

components on the chip. 

The profiler provides complete record of parallel execution 

on all 64 cores. The event recorder generates traces with 

time stamps of desired events. The kernel and libraries are 

described in Section VIII above. 



 

X. RC64 RADIATION HARDNESS AND FDIR 

RC64 will be implemented in 65nm CMOS using 

RadSafe™ rad-hard-by-design (RHBD) technology and 

library [21]. RadSafe™ is designed for a wide range of 

space missions, enabling TID tolerance to 300 kRad(Si), no 

latchup and very low SEU rate. All memories on chip are 

protected by various means and varying levels of error 

correction and detection. Special protection is designed for 

registers that hold data for extended time, such as 

configuration registers. The two external memory interfaces, 

to DDR2/DDR3 and to ONFI flash memories, implement 

several types of EDAC. For instance, ten flash memory 

chips can be connected for eight byte wide datapath and two 

flash devices for storing Reed Solomon ECC. 

  

Figure 10. RC64 Software Development Kit.  

RC64 implements extensive means for fault detection, 

isolation and recovery (FDIR). An external host can reset, 

boot and scrub the device through dual RMAP SpaceWire 

ports. RC64 contains numerous error counters and monitors 

that collect and report error statistics. Trace buffers, 

allocated in shared memory as desired, enable rollback and 

analysis (in addition to helping debug). Faulty sub-systems 

may be shut down and the scheduler is designed to operate 

with partial configurations.  

XI. CONCLUSIONS 

RC64 is a many core architecture suitable for use in space. 

It is designed for simplified PRAM-like shared memory 

programming and high performance at low power. RC64 

goal is to enable future software-defined satellites in all 

space endeavors. RC64 is presently under design and all 

performance figures reported herein and in [26] are based on 

simulations. RC64 is planned for availability before the end 

of the decade. RC64 R&D project is funded by Israel Space 

Agency and by the European Union. 
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