

## SIPHRA Silicon Photomultiplier Readout ASIC

Prototype ASIC for SiPM Based Gamma-Ray Detector

> Hans Kristian Otnes Berge (hans.berge@ideas.no)

**IDEAS - Integrated Detector Electronics AS** 

# SIPHRA, an ASIC designed to measure gamma radiation in space

- Why measure gamma rays ?
  - We want to measure high energy radiation from cosmic sources to understand basic processes of the universe.
  - Understand the dark energy and dark matter puzzle.
  - Measure properties of planetary bodies by emitted and gamma rays.
  - Understand the radiation spacecrafts may be exposed to.



### LaBr Scintillator with SiPMs



Figure 1: Silicon photomultiplier SMT package from SensL (left) and tiling example (right). Drawings by SensL.



IIII.com/estore/arrayj-60035-64p-pcb/

ideas

Standard Output Pulse Shape



Ulyanov et al., "Study of silicon photomultipliers for the readout of scintillator crystals in the proposed GRIPS gamma-ray astronomy mission", Proc. of Science, arXiv:1302.5786v1

2016-06-13

C2520-IDE-SIPHRA-Presentation\_AMICSA-2016



### Block Diagram of System Components





## SIPHRA Features and Block Diagram

#### IDE3380 (SIPHRA) Features

- 16 readout channels
  16 current sensitive inputs (≤ 16 nC)
  1 summing channel
- Programmable attenuation to handle charge up to
  -16 nC, -8 nC, -4 nC, -400 pC at AIN inputs, or
  +40 pC, +4 pC, +0.4 pC at FIN inputs
- Programmable shaping time 200 ns, 400 ns, 800 ns, 1600 ns
- 16 inputs (AIN) with programmable offset voltage
- Pulse height spectroscopy

16 shapers followed by track-and-hold Programmable hold timing Analog and/or 12-bit digital readout 3 ksps/channel max.

- Trigger generation

Internal from charge discriminator via programmable threshold in every channel External (trigger on input, trigger on sum)

- Power

15 mW without CMIS, 30 mW with CMIS active Flexible power down scheme of channels or functions

- SEL/SEU radiation hardened
- SPI Interface



## SIPHRA Floorplan and Pad Frame



Chip active area: 7.6 mm×6.8 mm, 103 (119<sup>1)</sup>) Pins Planned Packaging Options: Plastic PQFP120, Bare-Die <sup>1)</sup> Normally either 16 AIN or 16 FIN inputs will be bonded, not both.



### Main Requirements for IDE3380

| Parameter             | Value                                                     | Comment                                                                                             |
|-----------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| SiPM type             | SensL B-60035<br>MPPC S10943-3183                         | Note 3.4 nF capacitance. 100 ns decay time<br>constant.<br>Note 12 pF capacitance, using FIN input. |
| Supply voltage (V)    | $3.2 \text{ V} \leq \text{V} \leq 3.4 \text{ V}$          |                                                                                                     |
| Power (W)             | <2 mW/channel<br>~2mW standby                             | Unused functions can be powered down<br>When power on analog VDD                                    |
| Temperature           | 0°C - 60°C                                                |                                                                                                     |
| TID (TID)             | $5 \text{ krad}(\text{Si}) \leq \text{TID} (\text{req.})$ | Requirement. Expect much higher tolerance.                                                          |
| SEU LET <sub>th</sub> | ≥ 60 MeVcm <sup>2</sup> /mg (req.)                        |                                                                                                     |
| SEL                   | Immune                                                    |                                                                                                     |
| Number of channels    | 16 + 1                                                    | The ASIC has 16 channels + 1 summing channel.                                                       |
| ADC resolution        | 12 bits, ENOB > 11<br>bits                                | 12-bit SAR ADC                                                                                      |
| ADC conversion rate   | 50 ksps                                                   | Hit rate 1/sec in flight, 1000/sec in test                                                          |

### **IDEAS** Radiation Tolerant **Standard Cell Library** Small Library (<50 cells)</li> Synthesis and Implementation with Cadence tools Previously Measured Radiation **Tolerance:** SEU LET<sub>th</sub> 50 MeVcm<sup>2</sup>/mg SEL LET<sub>th</sub> ≥ 135 MeVcm<sup>2</sup>/mg



### SEE Radiation Tolerance by Design

### $0.35 \mu m$ AMS CMOS



SEE tests at UCL HIF





### Signal Flow



### SIPHRA Architecture







### CMIS - Current Mode Input Stage

CMIS main functions:

- to provide a stable programmable input voltage at AIN. The input offset sets the SiPM bias voltage, allowing compensation of breakdown voltage variation among several SiPMs.
- 2. to scale down the detector current



CMIS performance:

- Designed for large negative charge Saturation: -16 nC, -8 nC, -4 nC, -0.4 nC
- Programmable gain attenuation: 1/10, 1/100, 1/200, and 1/400
- Large capacitive load up to several nF,
- Large leakage current up to  $-100 \ \mu$ A.
- Input voltage is regulated to a stable bias

voltage set via an 8-bit DAC over the range of 1 V.

 Input impedance 5..30 Ohm below 10 MHz. Above 10 MHz, input impedance becomes reactive and peaks with a few 100 Ohm at 250 MHz.



### CMIS - Current Mode Input Stage



- Common-gate input (regulates DC bias)
  - Input voltage is regulated to a stable bias voltage set via an 8bit DAC over the range of 1 V.
- Bias current 0-20µA.
  - Needed to keep current mirror ready for fast transients.

## Current integrator, stand-alone

| Parameter Input load                                   |                                   | Setting                                                  | Typical simulation result                                                                                       |  |
|--------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Gain, peak                                             |                                   | -1 V/750fC<br>-1 V/3pC<br>-1 V/30pC                      | -0.941 V/750fC<br>-0.954 V/3pC<br>-0.959 V/30pC                                                                 |  |
| Non-linearity (full-scale, resistive feedback)         |                                   | 1V/750fC<br>1V/3pC<br>1V/30pC                            | <= 0.02%                                                                                                        |  |
| Input/Output voltage range                             |                                   | 2V/2V-0.7V                                               | 2V/2V-0.5V was used                                                                                             |  |
| Noise Eno (Vrms)<br>(ideal gain values,<br>ideal VREF) | 14 pF<br>14 pF<br>14 pF<br>0.3 pF | 1V/750fC<br>1V/3pC<br>1V/30pC<br>1V/30pC                 | 648 μVrms<br>355 uVrms<br><u>86.3 uVrms</u><br>111 uVrms<br>(CB buffer Eno=157 uVrms)                           |  |
| Noise ENC                                              | 14 pF<br>14 pF<br>14 pF<br>0.3 pF | 1V/750fC<br>1V/3pC<br>1V/30pC<br>1V/30pC                 | 486 aC      (3.04k c)        1.07 fC      (6.66k c)        2.59 fC      (16.2k c)        3.33 fC      (20.8k c) |  |
| Phase Margin                                           | 14 pF<br>14 pF<br>14 pF<br>0.3 pF | Min 1V/750fC<br>Min 1V/3pC<br>Min 1V/30pC<br>Min 1V/30pC | >89.0<br>>68.6<br>>71.82<br>>62.59                                                                              |  |
| Open-loop gain                                         |                                   |                                                          | >76 dB                                                                                                          |  |
| PSRR                                                   |                                   | 1V/30pC                                                  | >45 dB below 1 MHz                                                                                              |  |
| Power consumption                                      |                                   | typical<br>peak<br>powerdown                             | 468 uW<br>< 3 mW<br>100 pW                                                                                      |  |





+Volt

+ ₩M+

Sensor w/

positive charge

output



### Dynamic Range, Trigger Range

#### SIPHRA Pulseheight Output vs. Charge at CMIS Channel Input



| CMIS  | Trigger threshold<br>charge range |          |  |
|-------|-----------------------------------|----------|--|
| gain  | Minimum                           | Maximum  |  |
| 1/10  | -4 pC                             | -560 pC  |  |
| 1/100 | -43 pC                            | -5.4 nC  |  |
| 1/200 | -87 pC                            | -10.8 nC |  |
| 1/400 | -175 pC                           | -20.9 nC |  |



### Dynamic Range, Noise

- Analog readout:
  - Dynamic range 65 dB 78 dB (simulation)
- Digital readout:
  - 10.8 bit 11.5 bit (ADC limit)
- Cross-talk 0.1%
  - Post-Layout simulation (Ideal supply, Excl. package bonds, leads.)

| CMIS gain | Shaping<br>time [ns] | Saturation<br>charge [pC] | ENC [pC] | Dynamic<br>range | Dynamic<br>range [dB] |
|-----------|----------------------|---------------------------|----------|------------------|-----------------------|
| 1/10      | 200                  | -510                      | 0.24     | 2125             | 66.5                  |
|           | 400                  |                           | 0.28     | 1823             | 65.2                  |
|           | 800                  |                           | 0.28     | 1797             | 65.1                  |
|           | 1600                 |                           | 0.28     | 1841             | 65.3                  |
| 1/100     | 200                  | -4980                     | 0.83     | 6000             | 75.6                  |
|           | 400                  |                           | 0.73     | 6822             | 76.7                  |
|           | 800                  |                           | 0.67     | 7433             | 77.4                  |
|           | 1600                 |                           | 0.63     | 7904             | 78.0                  |
| 1/200     | 200                  | -9830                     | 1.62     | 6068             | 75.7                  |
|           | 400                  |                           | 1.40     | 7021             | 76.9                  |
|           | 800                  |                           | 1.28     | 7680             | 77.7                  |
|           | 1600                 |                           | 1.18     | 8331             | 78.4                  |
| 1/400     | 200                  | -19500                    | 3.27     | 5963             | 75.5                  |
|           | 400                  |                           | 2.80     | 6964             | 76.9                  |
|           | 800                  |                           | 2.56     | 7617             | 77.6                  |
|           | 1600                 |                           | 2.37     | 8228             | 78.3                  |

### <u>ideas</u>

### 12 bit ADC 50+ ksps



Simulated parameters:

| Parameter                                   | MIN        | ТҮР                                                          | MAX             |
|---------------------------------------------|------------|--------------------------------------------------------------|-----------------|
| Resolution                                  |            | 12-bit (11 ENOB)                                             |                 |
| Supply voltage                              | 2.7 V      | 3.3 V                                                        | 3.6 V           |
| Positive voltage reference (VREFP)          | 2.15 V     | 2.65 V                                                       | AVDD            |
| Negative voltage reference (VREFN)          |            | 0.65 V                                                       | 1.15 V          |
| Voltage reference difference (VREFP-VREFN)  | 1 V        | 2V                                                           | AVDD            |
| Impedance between VREFP and VREFN           | 0.83*TYP   | 96 kΩ                                                        | 1.25*TYP        |
| Input voltage range (differential)          | ±1 V       | ±2 V                                                         | ± (AVDD-100 mV) |
| Input voltage range (single-ended)          | 1 V        | 2 V                                                          | AVDD-100 mV     |
| Input voltage                               | 100 mV     | -                                                            | AVDD            |
| Input capacitance                           | 0.9*TYP    | 11.5 pF (sample mode)<br>1 pF (hold mode)                    | 1.1*TYP         |
| Input resistance                            | 0.9*TYP    | 430 Ω                                                        | 1.1*TYP         |
| Sampling frequency                          | -          | 50 ksps                                                      | 100 ksps        |
| DNL                                         | ± 0.25 LSB | ± 0.5 LSB                                                    | ± 1 LSB         |
| INL                                         | ± 0.5 LSB  | ± 0.75 LSB                                                   | ± 1 LSB         |
| Offset error                                | 1 LSB      | 0.5 LSB                                                      | 1 LSB           |
| Gain error                                  | 1 LSB      | 0.5 LSB                                                      | 1 LSB           |
| Average power consumption (VDD = 3.3 V)     |            | < 1 mW @ 50 ksps                                             |                 |
| Average power consumption (standby mode)    | -          | 29 μW (@ 1 kHz hit rate. clock<br>active 1 MHz during sleep) | -               |
| Average power consumption (power down mode) | -          | 3 μW (clock active. 1 MHz)<br>10 nW (clock off)              | -               |
| Temperature range                           | -20 °C     | 25 °C                                                        | 60 °C           |

<sup>[1]</sup> Standby mode is when the ADC and its reference buffers are subjected to intermediate wake ups, in order to be able to wake up within one clock cycle (given Tclk > ' us).

2016-06-13

C2520-IDE-SIPHRA-Presentation\_AMICSA-2016

### **Digital Readout Flow**





38.0

40.0

34.0

### **Digital Readout Flow**



#### IDE3380 Readout, when waking from standby

2016-06-13

Trock : 3 SYS CLK cycles to wake up readout clock

Tsa : adc\_div\_fac[] - 0.5 SYS\_CLK cycles (every channel)



### IDE3380 Test System





Block diagram of the ASIC design validation and test system.

The ASIC design validation is scheduled for the fall 2016, using IDEAS Galao development kit to interface to TOIC test PCB. The Galao development kit is based on the Xilinx Zynq-7000 with custom firmware for the SIPHRA ASIC readout and control. The system is controlled via Ethernet (GbE) from a computer. The SIPHRA ASIC is located on the ROIC test board, which allows one to connect to the detector array.



Software (Python Scripting, LabView API)



### References

- 1. J. Greiner et al., "GRIPS Gamma-Ray Imaging, Polarimetry and Spectroscopy", arXiv:1105.1265, see also <u>http://www.grips-mission.eu</u>
- Xin Wu et al., "PANGU: A High Resolution Gamma-ray Space Telescope", arXiv:1407.0710v2, 17. Jul 2014.
- 3. <u>S. Zhang et al., "The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's</u> <u>Future Space Station", arXiv:1407.4866</u>, 18. Jul 2014.
- 4. <u>SensL, SiPM Datasheet, "C-Series Datasheet, Low Noise, Blue-Sensitive Silicon</u> <u>Photomultipliers", Rev. 2.1, Preliminary, December 2015.</u>
- 5. IDEAS IDE3466 ASIC for RADEM on JUICE, Datasheet, and Proc. SPIE Astro. 2016.
- 6. IDEAS NIRCA, Near Infrared Readout and Controller ASIC, Datasheet, Proc. SPIE DSS, 2016.
- 7. <u>P. Paahlsson et al., "Preliminary validation results of an ASIC for the readout and control of near-infrared large array detectors", Proc. SPIE 9451, Infrared Technology and Applications XLI, 94512J (4 June 2015); doi: 10.1117/12.2180439</u>



We would like to acknowledge the support from the European Space Agency (ESA contract number 4000113026), the Norwegian Space Center (contract number BAS.05.14.1), and the University of Geneva.

IDE3380 (SIPHRA) is now in manufacturing and we expect first samples July 30.

### Thank You

www.ideas.no hans.berge@ideas.no

C2520-IDE-SIPHRA-Presentation\_AMICSA-2016



### THE END