

Radiation Hardened High-Voltage and Mixed-Signal IP with DARE technology

Bram De Muer, CEO AMICSA 2016, 14/06/16

WWW.ICSENSE.COM

Background

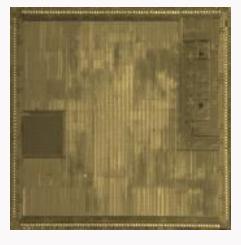
Commercial CMOS technologies for mixed-signal and high-voltage radiation applications

- Low cost / high yield
- High speed
- Low power
- Thin-gate oxide technologies => high TID tolerance

Need for an IP eco system to enable re-use and reduce cost for full SoC developments

- Standard design flow in standard technologies (ADK, PDK)
- Silicon-proven hardened digital libraries
- Silicon-proven hardened analog, mixed-signal and high-voltage IP

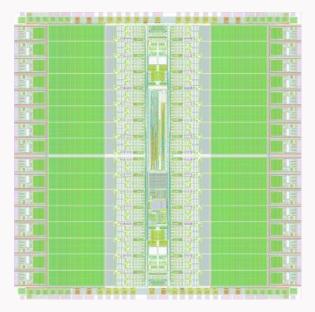
IP in imec DARE solution


imec DARE (Design Against Radiation Effects) [see previous AMICSA proceedings]

- DARE180U in UMC 0.18um CMOS technology
 - No high-voltage capabilities
 - > 1 Mrad => ELT devices => high power consumption
 - No NVM
 - Digital libraries and memory compilers available
- DARE180X in XFAB XH018 0.18um BCD technology
 - > 100kRad => lower power
 - High-voltage BCD
 - Non-volatile memory
 - Digital libraries available
- I3t80 On semiconductor 0.35um BCD
 - 80V devices available
 - No digital library

IP in imec DARE solution

- ICsense analog, mixed-signal and high-voltage IP in DARE180U and DARE180X
- All IP blocks developed for the DPC of Thales Alenia Space Belgium (ETCA)
 - 13 bit, 1MSps ADCs
 - 120MHz PLL with ultra-low SET sensitivity (no glitches)
 - 12 bit, 3.75MHz DACs
 - Voltage and current references with embedded temperature sensor
 - 100kHz accurate RC oscillator
 - 3.3V 1.8V linear regulators for analog and digital supplies
 - Inductive DCDC converters for secondary supply conversion to 3.3V and 1.8V (DARE180X only)
 - Drivers up to 18V (DARE180X only)
 - Other auxiliaries (comparators, buffers, filters, PGAs, levelshifters,)


IP in imec DARE solution

Analog, mixed-signal and high-voltage IP in i3t80 ON Semiconductor

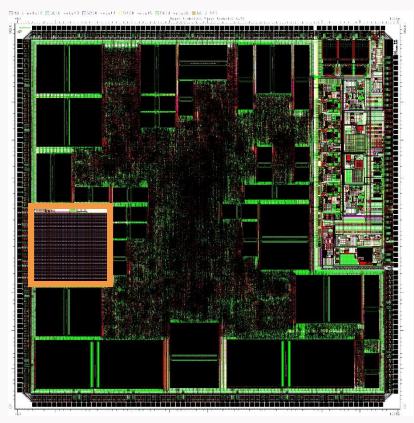
- ADK has been developed by imec
- Allows for high-voltage ASIC developments in Cadence design flow

• Contains:

- ELT pcells for nmos and pmos
- ELT for NDMOS
- Octogonal devices for IO cells
- Calibre decks have been updated for
 - ELT integration
 - Guard rings
 - N-to-n type leakage
- Used to developed a high-voltage, rad-hard ASIC with max. voltage of 40V and several amps
- SEGR and SEB minimization

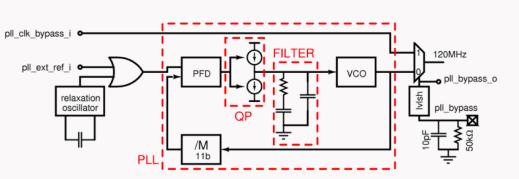
Availability of IPs in (X)DARE180

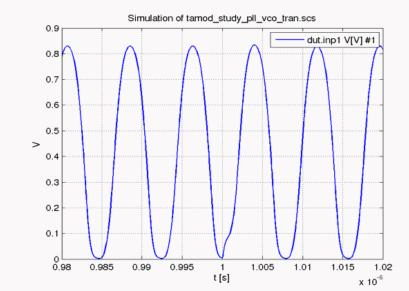
Supported ICsense analog, mixed-signal and high-voltage IP in DARE180U and DARE180X


- 13 bit, 1MSps ADC
- 120MHz PLL with ultra-low SET sensitivity (no glitches)
- 12 bit, 3.75MHz DAC
- Voltage and current references with embedded temperature sensor
- 3.3V 1.8V linear regulators for analog and digital supplies
- IP in DARE180U is silicon and radiation proven!
- IP in DARE180X is under development
- Product briefs available
- Deliverables: datasheets, VerilogAMS model, integration guidelines, encrypted Spectre netlist

Linear regulators

Digital supply


- 3.3V to 1.8V
- Current up to 700mA
- Area 4.7mm² against thermal degradation
- Analog supply
 - 3.3V to 1.9V
 - Current up to 30mA
- Package changes or current changes require simulations/redesign



PLL

- Long-term frequency spikes and phase shifts due to SET are minimized
 - Simulation example with ICsense proprietary SET flow
 - 60MeV cm2/mg strike at 1us
- Input: 100kHz accurate oscillator or Xtal
- Tailoring of frequency possible

Spec	Unit	Min	Typ	Мах	Comment
Area	mm²	-	2.3	-	
Supply PLL	v	1.8	1.9	1.98	
PLL current consumption	mA	-	-	13.8	
PLL frequency range when locked	MHz	-0.5%	120	+0.5%	Aging and TID effects not included
PLL frequency range during SET when locked	MHz	-3%	120	+3%	Deviation immediately after SET event
Cycle to cycle jitter	fs	-	-	400	
Spurious free dynamic range	dB	100	-	-	

13 bit, 1MSps ADC

Cyclic topology with input S&H

- Integrated reference buffer
- No external components
- Requires the voltage reference from ICsense

SET behavior

- ADC controller cannot enter a locked state
- Max 3 ADC samples are affected by an SET strike
- Multiplexers are hardened

adc_in1_p adc_in2_p adc_in3_p	Digital controller
adc_in4_p	
	SAH ADC
adc_in1_n 🛛 —	
adc_in5_n	Vref generation

Spec	Unit	Min	Тур	Max	Comment
Area	mm²	-	0.425	-	
Current consumption ADC	mA	-	-	6.0	
Resolution	bits	-	13	-	
LSB	mV	-	0.330	-	At the input of S/H
Sample rate	MS/s	-	-	1	
INL (differential) / (single ended)	LSB	-	-	4.0 / 6.2	
DNL	LSB	-	-	1.5	
SNDR (differential) / (single ended)	dB	-	73 / 67.5	-	100kHz

excellence | innovation | trust

DAC

- P-type current-steered 12-bit DAC
 - With DEM: 58.6kHz data rate
 - Without DEM: 3.75 MHz data rate

Spec	Unit	Min	Тур	Max	Comment
Area	mm²	-	0.39	-	
Current consumption	mA	-	4.2	4.5	
Resolution	bit	-	12	-	
LSB	uА	0.93	0.98	1.03	
Full scale	mA	3.8	4	4.2	P-type current
Output range	V	0	-	2.5	Compliance voltage of 0.5V
Data rate no DEM/DEM	MS/s	-	3.75 / 0.058	-	
DNL no DEM/DEM	LSB	-	-	2 / 0.75	
INL no DEM/DEM	LSB	-	1.5 / 1.06	1.7 / 1.26	Output buffer @ output

excellence | innovation | trust

Voltage and current reference

- Bandgap voltage of 1V
 - Reference distribution with current possible
- Bias block of 47 output currents of 10uA
- Temperature sensor embedded
- SET behavior
 - SET cannot trigger unwanted shutdown/start
 - Only minor glitches on BG voltage

	V _{DDA}
Bandgap core	Temperature Sensor
	bg_vref_core
	V _{SSA}

Spec	Unit	Min	Тур	Max	Comment
Area	mm²	-	1.67	-	
Current consumption	mA	1.65	2.0	2.55	
Nominal reference voltage (Vbg)	V	0.9874	1.0075	1.0277	
Vbg Integrated noise 1Hz – 1 GHz	μV _{RMS}	15.840	19.250	23.792	
Vbg min. PSRR 1Hz - 120MHz	dB	34	-	-	PSRR @DC >60dB
Vbg temperature drift -20-110°C	ppm	-887	-	984	After 2 nd order digital compensation
Error of temperature sensor in temperature range -20-110°C	<u>°C</u>	-0.81	-	1.01	After digital compensation.

excellence innovation trust

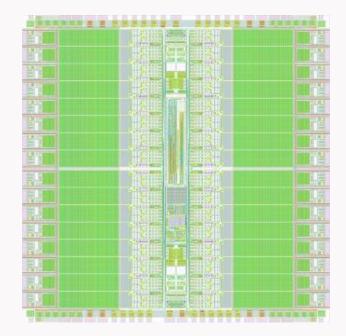
High-voltage power management in DARE180X

- Input voltages from 4 to 16.5 V
 - XFAB XH018 45V devices used to minimize SEGR
- Different blocks:
 - High-voltage regulator: 4-16.5V to 3.3V for low power blocks (max 3.5mA)
 - Shunt regulator for intermediate voltages
 - Hysteretic 1.8V inductive buck DCDC converter: 3-16.5V to 1.8V
 - maximum load current of 600 mA
 - efficiency of 70-86% for different load conditions
 - Hysteretic 3.3V inductive buck DCDC converter: 4V-16.5V to 3.3V
 - maximum load current of 350mA
 - efficiency of 86-94% for different load conditions
 - High-voltage driver up to 125mA and 16.5V

High-voltage power management in DARE180X

Radiation hardness using ICsense proprietary rad hard simulation methodology

- Effect of SET on output voltage is only +- 0.2%
- Digital controller: rad hard cells only for static signals
- For bias nodes of critical blocks (gm cells):
 - Filtering techniques
 - Higher currents in bias currents
 - Fast startup
 - Lower voltage peaks
- Current sense: LPF for deglitching the output
- Deglitched and hardened Schmitt triggers at the output
- Soft start is hardened to limit startup currents



Rad Hard high-voltage in i3t80

Driver ASIC to drive up to 40V and several amps of current

Features:

- Very low-ohmic high-voltage switches
 - VGS < 3.3V. Floating switches
- 4KV HBM ESD (high- and low-voltage)
- Minimal number of external components
- Maximal integration: bandgap refs, amplifiers, POR, regulator, reference buffers, level shifters, test
- Rad hard measures:
 - SEGR minimization: stacked NDMOS
 - Bandgap, POR and levelshifters: SET proof through filtering techniques
- Measurements ongoing

Conclusions

Blocks available and can be purchased through imec:

- 13 bit, 1MSps ADC
- 120MHz PLL with ultra-low SET sensitivity (no glitches)
- 12 bit, 3.75MHz DAC
- Voltage and current references with embedded temperature sensor
- 3.3V 1.8V linear regulators for analog and digital supplies (not standalone)
- UMC 0.18 IP: silicon and radiation proven
- **XFAB XH018 IP: under development**
- I3t80 high-voltage ASIC: proven in silicon
- Radiation hard design through the proprietary ICsense under-radiation simulation flow

Acknowledgements

- Co-authors at ICsense and imec
 - Jan Dielens, Eldert Geukens, Jonathan Van den Berk, Dries Liebens, Yves Geerts
 - Imec: Geert Thys, Steven Redant
- Thales Alenia Space Belgium ETCA for
 - The DPC collaboration
 - The XFAB XH018 developments
- RUAG Space Sweden
- **ESA for all support**
 - Richard Jansen
- Flanders Investment & Trade

Satellite motor control ASIC (Sealevel + 160 km)

RFID ASIC for airplanes (Sealevel + 10 km)

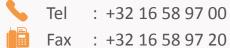
ASIC 9-DOF IMU MEMS (Sealevel)

Cancer cell detection ASIC (Sealevel)

Gas sensor ASIC (Sealevel)

Electronic compass ASIC (Sealevel)

ASIC for mining industry (Sealevel -4 km)



Corporate overview

Contact us

ICsense NV

Gaston Geenslaan 14 3001 Leuven Belgium

in <u>linkedin.com/company/icsense</u>

SET simulations flow at ICsense

- Inject double exponential current with total charge depend on LET
- Flow procedure for building block SET simulations
 - Typical conditions: inject in every node to produce short list of sensitive nodes
 - SET simulations for all sensitive nodes over PVT.
 - Adapt design if needed
- Re-inject all nodes in worst-case corners
- Clock signals: vary also injection time relative to clock period
- Top level: check e.g. if SET on bandgap does not influence PLL
- Fully automated flow integrated into our MATLAB driven design environment