

The most important thing we build is trust

DSP Benchmark Results of the GR740 Rad-Hard Quad-Core LEON4FT

Cobham Gaisler June 16, 2016

Presenter: Javier Jalle

ESA DSP DAY 2016

Overview

GR740 high-level description

- GR740 is a new general purpose processor component for space
 - Developed by Cobham Gaisler with partners on STMicroelectronics
 C65SPACE 65nm technology platform
 - Development of GR740 has been supported by ESA
- Newest addition to the existing Cobham LEON product portfolio (GR712, UT699, UT700)
 - The GR740 will work with Cobham Gaisler ecosystem:
 - GRMON2
 - OS/Compilers
 - etc ...

GR740 high-level description

Overview

- Higher computing performance and performance/watt ratio than earlier generation products
 - Process improvements as well as architectural improvements.
- Current work is under ESA contract "NGMP Phase 2: Development of Engineering Models and radiation testing"
- Development boards and prototype parts are available for purchase

Already available! contact: sales@gaisler.com

Overview

Block diagram

Architecture block diagram

Overview

Block diagram

Architecture block diagram (simplified)

Core components

- 4 x LEON4 fault tolerant CPU:s
 - 16 KiB L1 instruction cache
 - 16 KiB L1 data cache
 - Memory Management Unit (MMU)
 - IEEE-754 Floating Point Unit (FPU)
 - Integer multiply and divide unit.
- 2 MiB Level-2 cache
 - Shared between the 4 LEON4 cores

	FPU		
LEON4			
Caches	MMU		

Floating point unit

- Each Leon4FT core comprises a a high-performance FPU
 - As defined in the IEEE-754 and the SPARC V8 standard (IEEE-1754).
 - Single and double precision floating-point numbers

- The design combines
 - a fully pipelined unit for most operations
 - a non-blocking iterative unit for execution of divide and square-root operations

Floating point unit

- Types of floating-point operations:
 - addition, subtraction, multiplication, division and square-root, compare, convert and move
- Arithmetic operations have one clock cycle throughput and a latency of four clock cycles
 - Except divide and square-root operations that have a throughput of 16 - 25 clock cycles and latency of 16 - 25 clock cycles
 - Latency can be hidden by scheduling instructions

Core components

- System-on-chip based on AHB bus infrastructure
- SDRAM controller with EDAC and scrubber
- PROM/IO controller with EDAC
- 5 x Timer, 5 x IRQ controller
- IOMMU for peripheral DMA

- Debug support and debug interfaces (for GRMON connection)
 - Ethernet EDCL (using either of the two MACs above)
 - JTAG
 - Spacewire RMAP (using separate GRSPW2 for debug only)

Interfaces

- Communication Interfaces
 - 8-port Spacewire router with on-chip LVDS
 - -2 x 1Gbit/100Mbit Ethernet MAC
 - PCI master/target with DMA, 33 MHz
 - Dual-redundant CAN
 - -MIL-STD-1553B interface (bus A/B)
 - 2 x UART
 - 16 x GPIO

Fault tolerance

- Design is radiation hardened using multiple techniques
 - C65SPACE process and cell libraries designed and characterized for radiation hardness
 - Memories SEU-protected at design level using EDAC schemes.
 - TMR techniques used in selected parts of design
- Hardness to be validated by radiation testing (SEE, TID) on prototype.
- Baseline is to re-use exact same ASIC design and package for future flight models.

COBHAM

Key performances

Clock frequencies

- System clock (CPU:s, L2Cache, on-chip buses)
 - Nominal frequency is 250 MHz, generated by PLL from external 50 MHz clock (STA and prod. test)
 - Full temp range (-40 to +125 Tj) with margins for aging and clock jitter
 - -4 CPUs x 250 MHz x 1.7 DMIPS/MHz = 1700 DMIPS
- Memory clock
 - 100 MHz supported internally and achieved on evaluation board (using commercial SDRAMs and external clock buffer).
- Clock gating capabilities for unused interfaces and cores.

Key performances

Clock frequencies

- Spacewire PHY: 400 MHz
 - Generated by separate PLL from external clock input (50 MHz nom)
 - Receiver is sampling with DDR

Gigabit Ethernet

GR740 Evaluation board

- Double eurocard form factor
- GR740 prototype device
- 256 MiB SDRAM with ECC
- 8 MiB NOR Flash
- Interfaces of the chip (2xEth, 8xSpW, PCI, UART, CAN, 1553, PROM/IO) available
- Use stand-alone with standard 5-12V power supply or mount in compact-PCI rack.
- Connect with GRMON using USB

contact: sales@gaisler.com

 \rightarrow See it live at our exhibit table in the break!

Benchmarking effort on GR740

- A benchmarking campaign is currently ongoing
 - Mainstream CPU benchmarks: Dhrystone / Whetstone, CoreMark, EEMBC, SPEC2000, Parsec
 - Custom micro-benchmarks
 - Some of these benchmarks are interesting for a DSP-audience
- CoreMark result comparison:
 - UT699: 1.50 CoreMarks / MHz
 - GR712RC: 1.86 CoreMarks / MHz / core
 - GR740: 1.97 CoreMarks / MHz / core
- More results to be presented within next couple of months
- In addition, reference workloads to measure power consumption

Description

- EEMBC automotive contain several signal processing algorithms benchmarks interesting for a DSP audience
 - FIR and IIR filter
 - FFT and iFFT transformation
 - iDCT transformation
 - Basic integer and floating point arithmetic
 - Results can be compared with COTS devices in <u>www.eembc.org</u>
 - Results are obtained with out-of-the-box C code.
 - Better results are expected with optimized code

Basic arithmetic, FIR and IIR filter

- EEMBC Integer and floating point arithmetic:
 - Each iteration performs the following computation: $\arctan(x) = x * P(x^2)/Q(x^2)$, where P and Q are polynomials with 9 coefficients.
 - 1.67 usec per iteration
- EEMBC FIR filter:
 - Each iteration computes the result of a 35-tap FIR low pass and a 35-tap FIR high pass filter in series
 - 6 usec per iteration (85.7 nsec per tap)
- EEMBC IIR filter:
 - Each iteration computes the result of a Direct-Form II N-cascaded second-order High- and low-pass IIR filter.
 - 11.3 usec per iteration

FFT, iFFT and iDCT

- EEMBC FFT and iFFT:
 - Each iteration computes the result of 512 fft and ifft transform over and input signal with 4096 samples.
 - FFT: 1.1 ms per iteration
 - iFFT: 1 ms per iteration
- EEMBC iDCT:
 - Each iteration computes the result of a 8x8 block iDCT transformation on a 1KiB image.
 - 82.2 usec per iteration

Comparative

EEMBC automotive compared to other processors

Benchmarks are not parallelized

- We have run multiple instances in parallel using Linux support.
- Due to their small size, that fits on the L1, they show almost a perfect scalability (4x).

Comparison with other DSPs

Data provided by ESA

chip	TSC 21020 Rad-hard chip	DARE+MPBB demo chip	NGDSP example (21469 hardened)	TI 6713 - COTS based computer	GR740 (non-optimized code)
Max theor. Performance @ Clock	60 MFLOP (IEEE) 20 MIPS @ 20 MHz	140 MFLOP (*) 300 MIPS @ 100 MHz	1.35 GFLOPS (IEEE) 225 MIPS @ 225 MHz	1.2 GFLOP (IEEE) 200 MIPS @ 200 MHz	1 GFLOP (IEEE) 1000 MIPS 4 cores @ 250 MHz
Туре	1 DSP	1 GPP + 2 DSP	1 DSP	1 DSP	1 GPP
1024 pt FFT	975 usec	47 usec	40.88 usec	142 usec	TBD
1 MAC (FIR 1 tap)	50 nsec	5 nsec	2.22 nsec	2.5 nsec	TBD

CCSDS Lossless compression

Software provided by ESA

- CCSDS 121 Lossless compression
 - Lossless RICE compression according to the Recommended Standard CCSDS 121.0-B-2.
 - C reference software provided by ESA.
 - 2.06 seconds for 1 MiB input image (16-bit sample).

	TI 6727 DSP	GR740
Msamples/s	0.592	0.25364922

- CCSDS 123 Hyperspectral Compression
 - Lossless compression for hyperspectral and multispectral images according to the Draft Recommended Standard CCSDS 123.0-R-1.
 - C reference software provided by ESA.
 - 644.21 seconds for 35 MiB input image.

COBHAM

Parallel applications on the GR740

PARSEC 2.1 results

- PARSEC are multithreaded benchmarks.
 - Representative of shared-memory programs for multiprocessors.
 - Evaluates performance of parallel applications

Interference on the GR740

• When multiple cores are running they compete for resources:

– Shared CPU bus is the main source of interference

 Non-blocking L2 cache using SPLIT protocol

- CPU waiting on an L2 cache miss does not block the bus.
- Reduces interference.
- Micro-benchmarks show a 3.3x improvement in a extreme scenario

Conclusions

- The GR740 provides a significant performance increase compared to earlier generations of European space processors
 - High-speed interfaces on-chip
 - Improved support for profiling and debugging
 - Software tools and backward compatibility with existing SPARC V8 software
- The GR740 constitutes the engineering model of the ESA NGMP:
 - Developed under ESA contract
 - The GR740 is also fully developed in Europe
- The GR740 is the highest performing European space-grade processor to date

- Development boards and prototype parts are available for purchase
- Additional characterization of silicon, resolving TBDs of datasheet values during 2016
- Radiation testing of prototypes during 2016
- Qualification phase expected 2016/2017

END OF PRESENTATION

• Thank you for listening!

Website: www.gaisler.com/gr740

For questions contact: sales@gaisler.com

The most important thing we build is trust

DSP Benchmark Results of the GR740 Rad-Hard Quad-Core LEON4FT

Cobham Gaisler June 16, 2016

Presenter: Javier Jalle

ESA DSP DAY 2016