Multi-core DSP sub-system IP

Reliable on-board payload data processing

Gerard Rauwerda, CTO & co-founder
Gerard.Rauwerda@recoresystems.com
about Recore Systems BV

• Fabless semiconductor company
 – Based in Enschede, The Netherlands
 – Established in September 2005

• Business
 – Intellectual Property (IP) design & licensing
 – Platform devices (FlexaWare)

• Technology keywords
 – Digital Signal Processing
 – multi-/many-core System-on-Chip

• Focus
 – Payload data processing (e.g. space instruments)
 – Beamforming (e.g. advanced radar systems)
Quest for reliable processing power in space

• Need for more DSP processing for on-board payload data processing
 – To match sensor improvements
 • Increased diversity and versatility of sensors requires more control
 – Increased data rates and data volume
 • Requires increased processing performance and improve data compression

• Deep space science missions
 – Low transmission bandwidth
 – High radiation
 – Small power budget
Multi-core DSP needed

1) Xentium DSP IP
 – Powerful Digital Signal Processor

2) Network-on-Chip IP
 – Quality-of-Service on-chip interconnect

Multi-core DSP sub-system design expertise
• More processing power in chip!
• Fault-tolerant on-chip interconnect
• Heterogeneous processor platforms

© 2016 Recore Systems BV
On-going ESA activities

- **ESA CTP activity:**

- **ESA TRP activity:**
 - MPPB firmware upgrade (2015-2016)
 - Data Compression Software on Xentium DSP (2015-2016)
Fault-tolerant DSP subsystem combined with proven Leon subsystem:

- NoC-based Xentium DSP multi-core
- Heterogeneous and scalable

Step 1: Multi-core DSP prototype
Step 2: Rad.-hard prototype IC
Step 3: Rad.-hard multi-core DSP IC
FUNCTIONAL PROTOTYPE

Step 1 – Massively Parallel Processor Breadboarding (MPPB)

Demonstrated by Thales Alenia Space at ESA DSP day 2016
IP validated under radiation:
- Xentium IP
- NoC router
- NoC-SpW interface
- NoC-ADC/DAC interface

Step 2 – XentiumDARE
RAD.-HARD SILICON PROTOTYPE
Rad.-hard DSP and NoC prototyping in DARE180

- **ASIC Prototype**
 - DARE180 CMOS technology
 - Available area: 5x10 mm²
- **Architecture**
 - 1 Xentium core @100MHz
 - Network-on-Chip
 - SpW-RMAP interface
 - Bridge interface to external ADC/DAC
 - Small memory tile
Step 3 – Scalable Sensor Data Processor (SSDP)

RAD.-HARD MULTI-CORE DSP
SSDP Architecture Improvements (available as MPPB 2.0)

- Xentium hardware debug support
 – GDB support: stepping, watchpoint, breakpoint, register view, …

- Multi-core debug support (Cross Trigger Unit)
 – Debug synchronisation between Xentium and Leon cores

- Xentium performance counters
 – Hardware profiling support

- 2D DMA support in Network-on-Chip
 – source and destination strides

- Chip2Chip interface
 – Off-chip NoC flow control
Xentium DSP - Highlights

- Programmable high-performance VLIW DSP:
 - 10 parallel execution units in datapath
 - 32/40-bit fixed-point datapath
 - 16-bit SIMD

- Features
 - Single cycle latency Data Memory
 - Single cycle instruction cache latency
 - Short 3-cycle pipeline
 - Efficient complex MAC execution:
 2 16-bit **complex** MACs/cycle
 - Register bypassing (latency, energy efficiency, code size)
 - Loop buffer (energy efficiency, code size)
 - Hardware debug infrastructure

<table>
<thead>
<tr>
<th>CMOS</th>
<th>GMAC/s</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>1.6 GMAC/s</td>
<td>400 MHz</td>
</tr>
<tr>
<td>90 nm</td>
<td>0.88 GMAC/s</td>
<td>220 MHz</td>
</tr>
</tbody>
</table>

© 2016 Recore Systems BV
Xentium - datapath
parallel execution units

5 register files

2 data load/store units

2 ALU units
1 ALU with control & pack
2 multiply units
1 ALU w/ pack
2 ALU w/ shift operations units
Xentium DSP Tool chain

- **Xentium C compiler**
 - ANSI/ISO-standard C
 - Built-in functions for Xentium specific operations
 - Mix C and assembly functions calls

- **Xentium assembler**
 - Clean and readable
 - Extensive built-in preprocessor
 - Standard assembler directives

- Compile, assemble & link a program in a single step

- **Xentium ISS**
 - Trace program execution
 - Interactive debugging
 - Program profiling
Xentium SDE

C source files → C compiler → Assembler source → Assembler → Object files → Linker → Executable object file

Object file library → Archiver → Object files

Object file utilities → Xentium core → Simulator

Profiler info → Debugger → Profiler

© 2016 Recore Systems BV
Xentium Studio
software development tools

Software Development Tools

Integrated Development Environment (IDE)
Text editor, tool chain integration, project management, etc.

C-compile chain
Compiler
Assembler / Linker

Profiler

Binary utilities
Archiver, readelf, objcopy, etc.

Assembler / Linker

Simulator
(Instruction Set Simulator)

Libraries
Standard C libraries
Compiler run-time libraries
DSP libraries
IQMath libraries
...

Debugger

Loading
To memory, flash, ...

Hardware
Development boards, etc.
MPPB/SSDP software development

- **Writing code**
 - Leon
 - C or SPARC assembly
 - Xentium
 - C or Xentium assembly / DSP library

- **Compiling code**
 - Leon
 - sparc-elf-gcc
 - Xentium
 - Xentium C-Compiler or Xentium assembler

- **Linking code**
 - Xentium binaries are linked in the Leon binary
MPPB/SSDP Programming

• Xentium applications
 – DSP Kernel accelerators
 – Seen as tasks, started from the LEON host processor

• Xentium API
 – Implements synchronization with Xentiums
 • Communication (interrupts/mailboxes)
 • Task queuing
 – Uses DMA to copy data to/from the Xentiums
Network-on-Chip

- 32-bit packet-switched 2D Mesh network
- XY-routing, deadlock free
- 5-port routers featuring 4 prioritized services (virtual channels)
- Quality of Service provided by the services

- Reliability
 - Adaptive XY-routing to provide data rerouting in the NoC
 - Flit-level flow control
 - Enable the insertion of EDAC on data links to increase robustness of flits
Adaptive XY-routing
Data rerouting in NoC (1/2)

- Xentium 0 → IP
 - X-Y routing
 - detour from (1, 1)
 - detour from (1, 0)
Adaptive XY-routing
Data rerouting in NoC (2/2)
Summarizing

- Recore IP used in the **first European multi-core DSP chip for space**
 - Validated in radiation-hard CMOS (XentiumDARE)
 - Integrated in Scalable Sensor Data Processor (Thales Alenia Space)

- European Space roadmap targets development of a **new powerful many-core floating point DSP** for space applications
Next step? Heterogeneous many-core SoC

- Xentium VLIW DSP core in rad.-hard 65nm CMOS
 - Clock: 300 MHz
 - Performance: 1.2 GFLOPs/s
 - NoC per link: 9.6 Gbit/s
 - Area: 1.1 mm2
 - 75% gates utilization
 - Including NoC interface

- Many-core SoC example
 - 48 Xentium processing tiles
 - 16 memory tiles
 - 60 NoC routers
 - 8×8 mesh

\rightarrow 60 Giga MACs/s
\rightarrow 60 GFLOPs/s