Approval Process of an ESCC Qualified ASIC Supply Chain based on a Mixed-Signal IP Library

Jan Steinkamp, Frank Henkel, Volker Lück, Hans-Dieter Herrmann

AMICSA: 15.06.2016

Overview

- Motivation
- Introduction of the ASIC Supply Chain
- HARD Library Elements IP List
- Evaluation Test Flow
 - Preliminary SEE and TID Test Results
- Outlook

Motivation

- Capability Approval for an ASIC Supply Chain under the ESCC system
 - Reduction on development time
 - Lower Risk and Costs
 - Trade-off between:
 - Full custom design with full qualification
 - Semi optimized Product based on available standard ICs
- First introduction of this ASIC Supply Chain on the AMICSA 2014:
 - 180 nm CMOS Mixed-Signal Radiation Hard Library as base for a full ASIC supply chain

I M S T

QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

ASIC Supply Chain

- I/O Lib
- IP Library for analog and mixed-signal IPs
 - Cover a wide range of application
 - Contains .lef, .lib, VHDL entity and VHDL models
 - For P&R tools
 - Available for customers without schematic and layout view
- Script to implement TMR structures and scan chains
 - Will be used by IMST for customer or IMST designed netlists
- CQFP Package family is available for:
 - Pin count 32 up to 256
 - Die size 2.2 mm^2 up to 100 mm^2

IP Library Elements

- Technology
 - XFABs XH018 has been validated to be suitable for RadHard designs
 - Support for customers with low wafer numbers
- Radiation Hardness specification:
 - Single event latch-up free up to LET of 80 MeV/mg/cm² and 125°C, according to ESCC 25100
 - SEU/SET test, according to ESCC 25100
 - TID test for total dose > 300krads (Si) according to ESCC 22900 Specification

HARD Library IP blocks

IP Block	Main Characteristics					
4-Wire SPI Interface	1.8V, extendible register bank with 8 register and 16 bit, each. Refr logic for SEE mitigation implemented					
I/O Cells	3.3V & 5.0V digital + Analog I/O, TMR In/Out					
LVDS Driver	1.8V, Fmax=622 MHz					
LVDS Receiver	1.8V and 3.3V, Fmax=622 MHz					
Reconfigurable Multifunctional Operational Amplifier	 Inverting OpAmp with variable gain: -10 dB +30 dB; 1dB step size Non inverting OpAmp with variable gain: -10 dB +30 dB; 1dB step size LPF; 3 different cut off frequencies I/U Converter with different input ranges Schmitt Trigger Voltage buffer Open Loop configuration 					
Bandgaps	1.8V & 3.3V trimable					
Reference Bias Generators	1.8V & 3.3V with PtoPR and constant currents & adjustable voltage references					
Temperature sensor	1.8V, temperature range from -40°C+150°C					
POR Generator	POR delay: 5µs					
LDO	Input voltage: 3.3V Output Voltage: 1.8V with adjustable short protection, 150mA I max					

HARD Library IP blocks

IP Block	Main Characteristics			
Level shifter High-Low	input signals with 0V1.8V			
	output signals with -5V3.2V			
Level shifter Low- High	input signals with -5V3.2V			
	output signals with 0V1.8V			
Digital Level shifter High-Low	3.3V-1.8V			
Digital Level shifter Low- High	1.8V - 3.3V			
16bit MUX	Max. signal frequency: 800 MHz			
12 bit ADC	charge-scaling SAR ADC			
	fast mode: 200 KS/s			
SRAM	2k x 32 bit SP-SRAM module			
	Clock frequency: 50 MHz.			
12 bit DAC	segmented current steering DAC			
Trim Cell	64 bit OTP			
Serializer / Deserializer	Data Rates: 600 Mbps with a reference clock			
	Power: <500 mW			
Clock PLL	16 bit 2 nd order SDM fractional-N divider			
	period jitter: 50ps (PK-PK)			
DCXO	Supports 5 MHz 50 MHz crystals			
VCO with frequency divider	VCO frequency from 80 MHz – 600 MHz			
bank	Divider bank ration from 1 to 128			
CQFP package family	•Pin count: 256, 208, 132, 64 and 32			
	•100 Ω differential ports for LVDS interfaces			
	•Die size from 2.2 mm ² up to 100 mm ²			

QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

Evaluation Test Programme

• Project Plan:

Evaluation Test Programme

Inspection

- **Dimensions**
- Weight
- **Electrical Measurement**
- **External Visual Inspections**
- Particle Impact Noise Detection (PIND) ٠
- Radiographic Inspection
- Hermeticitiy ٠
- Marking and Serialisation
- Initial Electrical measurements according to Detailed Spec
- **Destructive Tests**

Endurance Tests

- Step-Stress-Test ٠
- **Radiation Tests**
- **Construction Analysis**
- Package Tests
- ESD Test

- - Accelerated Electrical Endurance
 - 1000 hrs @ tbd °C
 - 500 hrs @ tbd °C
 - 168 hrs @ tbd °C

10 QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

TID Test

- Facility of ESTEC:
 - Co60 Gamma ray source
- Radiation Test Plan:

Total Dose [krad] (Si)	Dose Rate [krad/hrs] (Si)		
0_1	0		
0_2	0		
9	0.275		
33	0.275		
104	0.275		
200	3.3		
300	3.3		
24h annealing	0		
192 h annealing	0		

QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

Preliminary TID Test results

- 1.8 V Bandgap vs. 3.3 V Bandgap
 - 1.8 V Transistors with thinner gate oxide have less TID effects compared to the 3.3 V Transistors

M S

Preliminary TID Test results

- Resistance of a Transmission Gate with 3.3 V Transistors
 - On-resistance at 700 mV Bias
 - Resistance drops versus higher total dose and returns to initial value after annealing

Preliminary TID Test results

- Transfer function of the ADC @ 200 kRad: 1st Design vs. Re-design
 - At high input voltages, the stored energy is leaking during conversion
 - Even for 1.8 V transistors low leakage is detected
 - Effect on Low Power Circuits
 - Effect can be eliminated by proper switch designs

14 QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

SEE Test

- SEE Test for this test campaign need to be done
 - Results from previous project is available
- Facility Cyclon Resource Center L-I-N
 - CYCLONE110
- Test Conditions:

Test	lon M/Q=5	Energ. (MeV)	¥	Range (µm)	LET(MeV/mg/ cm^2)	Temp [°C]
						20
1	²⁰ Ne ⁴⁺	78	0	45	6.4	
						20
2	⁴⁰ Ar ⁸⁺	151	0	40	15.9	
						20
3	⁸⁴ Kr ¹⁷⁺	305	0	39	40.4	
						20
4	¹²⁴ Xe ²⁵⁺	420	0	37	67.7	
						20
5	¹²⁵ Xe ²⁵⁺	420	40	28.34	88.4	
						125
6	¹²⁵ Xe ²⁵⁺	420	40	28.34	88.4	

SEE Test Results

- Representative Results shown for the 1.8 V Bandgap
 - Comparators are counting SETs with a magnitude of ±50 mV
 - SEU detected in SPI controller input pad
 - Enable bit and other control bits are randomly changed
 - Consequently counter values are not valid for LETs > 67.7 MeV
 - Problem has been fixed in current design, but need to be validated

SEE Test Results

- SETs have been monitored by an oscilloscope, too
- Magnitude and wave form varies for different LETs
- Representative plot for Argon Ion resulting in a 200 mV pulse
- Redesign has been improved for less SET sensitivity, but needs to be validated

Outlook

- Finishing Evaluation Phase with Audit
- Finishing Qualification Phase
 - Capability Approval in Q1/2017
- Become an ASIC fabless manufacturer following ESCC rules
- Providing a space qualified technology & supply chain for Mixed-Signal ASICs

Acknowledgement

The project is supported by the German Government

National Aeronautics and Space Research Centre

Qualitäts- und Produktsicherung

TESAT SPACECOM is project partner

