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ABSTRACT

This  paper  describes  a  mixed-signal  LEON3FT 
microcontroller  ASIC (Application  Specific  Integrated 
Circuit)  targeting  embedded  control  applications  with 
hard  real-time  requirements.  The  prototype  device  is 
currently in development at  Cobham Gaisler,  Sweden, 
and IMEC, Belgium, in the activity Microcontroller for  
embedded space applications, initiated and funded by 
the European Space Agency (ESA).

The presentation and paper will describe the architecture 
and functionality of the device. This abstract describes 
an on-going development where the devices are in the 
architectural  design  stage  before  detailed 
implementation phase. The presentation and final paper 
will  contain  further  details  on  the  device  and  will 
describe the latest progress made within the activity.

BACKGROUND

Software  based  data  acquisition,  dataprocessing  and 
simple control applications are widely used in  space-
craft  subsystems.  They allow implementation  of  soft-
ware based control  architectures that  provide a higher 
flexibility and autonomous capabilities versus hardware 
implementations.  For  this  type  of  applications,  where 
limited processor performance are is required, general 
purpose microprocessors are usually considered incom-
patible due to high power consumption, high pin count 
packages, need of external memories and missing peri-
pherals. Low-end microcontrollers are considered more 
attractive in many applications such as:

• Propulsion system control

• Sensor bus control

• Robotics applications control

• Simple motor control

• Power control

• Particle detector instrumentation

• Radiation environment monitoring

• Thermal control

• Antenna pointing control

• AOCS/GNC (Gyro, IMU, MTM)

• RTU control

• Simple instrument control

• Wireless networking

In these kind of applications the microcontroller device 
should have a relatively low price,  a  low power con-
sumption, a limited number of pins and must integrate 
small amount of RAM and most of the I/O peripherals 
for  control  and  data  acquisition  (serial  I/Fs,  GPIO’s, 
PWM, ADC etc.).  The  requirements  for  memory and 
program length  are  usually minimal,  with no  or  very 
simple operating system and low software complexity.

MICROCONTROLLER APPLICATIONS

Spacecraft  subsystem  control  and  monitoring  of 
parameters  such  as  power  supply  voltages,  currents, 
pressures and temperatures are ideal applications for the 
LEON3FT microcontroller.  Bridges  between  different 
communication standards or interface of an equipment 
towards a higher level controller or the central On Board 
Computer  (OBC)  are  also  ideal  applications  for  the 
LEON3FT microcontroller.
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The LEON3FT microcontroller  can perform advanced 
data handling to offload any higher level controller or 
the central On Board Computer (OBC). By hiding the 
data handling details the transmitting data volume can 
be  reduced  and  simplified  functionalities  and  timing 
requirements are requested to the higher level controller. 

The  LEON3FT microcontroller  integrates  several  on-
chip data bus standards, such as SpaceWire, CAN, MIL-
STD-1553, I2C, SPI, UART and can easily provide data 
packetization for  serial  communication using standard 
protocols.  The  microcontroller  can  also  efficiently 
replace  FPGAs  in  accomplishing  the  above 
functionalities.  Generally the FPGA implementation is 
faster but much more complexity and flexibility can be 
captured in the software of a microcontroller even with 
limited processing capability. The correct use of FPGAs 
in  space  applications  can  be  complex  to  achieve  and 
also  cost,  package  size  and  availability  of  integrated 
analog functions can favour the use of a microcontroller 
with respect to FPGA.

Below are listed a number of possible microcontroller 
use cases and specific applications.

• Nanosatellite controller

• Instrument Control Unit

• Remote Terminal control

• Mass Memory control

• Propulsion Unit control

• Electric Motor Control

MICROCONTROLLER ARCHITECTURE

Figure  1  shows an  overview of  the  architecture.  The 
system consists of three AMBA AHB buses, one main 
system bus, one debug bus and one bus for DMA traffic.

The  main  bus  will  include  the  LEON3FT  core 
connected  to  a  shared  on-chip  RAM and  ROM.  The 
main bus also connects all other peripheral cores in the 
design  as  well  as  the  external  memory  controllers. 
Several peripherals are connected through two AMBA 
AHB/APB bridges where the bridges are integrated with 
the design's DMA controller.

The debug AMBA AHB bus connects  a  serial  UART 
debug  communications  link  and  one  JTAG  debug 
communication link to the debug support unit and also 
to the rest of the system through an AMBA AHB bridge.

The third bus, a dedicated 32-bit Debug bus, connects a 
debug  support  unit  (DSU),  AHB  trace  buffers  and 
several  debug  communication  links.  The  Debug  bus 
allows  for  non-intrusive  debugging  through  the  DSU 
and direct access to the complete system, as the Debug 
bus is  not  placed  behind  an  AHB bridge  with access 
restriction functionality.

The  list  below  summarizes  the  specification  for  the 
system:

• System Architecture
◦ LEON3FT 32-bit SPARC V8 processor with 

LEON reduced instruction set
◦ System AHB bus connecting processor, 

AHB/APB bridges
◦ Separate debug AHB bus connecting debug 

communication links to DSU in order to allow 
non-intrusive debugging

◦ On-chip ROM, SRAM.
◦ Off-chip PROM, SRAM and memory mapped 

IO.
◦ Pin sharing via switch matrix
◦ Atomic operations 

• Processor core
◦ LEON3FT with tightly coupled data RAM and 

tightly coupled instruction RAM, 32-bit MUL
◦ GRFPU floating-point unit with 4-word 

instruction FIFO
◦ Reduced instruction set, without removing 

support for full instruction set.
◦ SPARC V8e extensions (SVT, partial WRPSR, 

alternative window pointer)
◦ Debug support unit with performance 

monitoring and AHB/instruction trace buffers

Fig. 1. Architecture overview



• Peripherals
◦ Integrated on-chip 13-bit ADC/DAC, 100ksps
◦ Power On Reset and Brown Out Detector
◦ JTAG debug communication link
◦ 8-bit UARTs
◦ CCSDS CRC accelerator with DMA engine
◦ MIL-STD-1553B interface
◦ CAN controller
◦ SpaceWire
◦ General purpose I/O port
◦ PWM and Pulse generator
◦ PacketWire receiver and transmitter
◦ I2C master and slave interface
◦ SPI master/slave controller
◦ Clock gate unit for power control
◦ DMA controller
◦ Hardware memory scrubber
◦ Memory protection unit
◦ Oscillator, PLL and pad control units
◦ Temperature sensors

• External memory interfaces
◦ Fault-tolerant 8 bit PROM/SRAM/IO 

controller with BCH ECC
◦ SPI memory controller with support for Dual 

Memory Redundancy and BCH ECC
◦ I2C memory controller with support for Dual 

memory Redundancy

Processor performance and determinism

In  order  to  improve  determinism,  the  LEON3FT 
microcontroller  contains  only  a  local  instruction  and 
data static RAM with fixed response times. All EDAC 
units in the system have the same latency and behaviour 
in  the  corrected  as  in  the uncorrected case.  This  also 
applies to the CPU, so dynamic SEU handling schemes 
such as the LEON3FT pipeline restart on error options 
is not used.

Local instruction RAM tightly coupled to the LEON3FT 
CPU will be the main memory to execute the software. 
Due to its direct connection to the CPU, the execution of 
the  software  will  be  deterministic.  For  applications 
where full cycle-level determinism is not needed, it will 
also be possible to execute software from an external 
SRAM.

The  local  instruction  memory  will  be  implemented 
using dual-port RAM. The memory's second port will be 
connected  to  the  main  system AHB.  This  will  allow 
modifying  of  the  local  instruction  RAM  without  the 
intervention of the CPU. The contents of this memory 
will  be protected against  SEU errors with EDAC and 
scrubbing. 

If the DMA peripherals and the processor are connected 
to a shared single-port memory, or to a memory via the 

same bus, and try to simultaneously access the shared 
resource then the DMA activity will have an effect on 
the execution time. On the other hand DMA activity will 
have no impact on SW execution time by using a dual-
port on-chip data RAM and a separate bus for the DMA 
peripherals. This means that there is a separate access 
path  for  the  CPU  core  to  local  instruction  and  data 
RAMs that is unaffected by concurrent DMA activity.

For  applications  demanding  determinism  on  nested 
interrupts,  a special  interrupt handling scheme will be 
implemented  in  software  where  nested  interrupts  are 
allowed to occupy one additional register window. The 
number of levels of nested interrupts that can be handled 
without  additional  timing  penalty  depends  on  the 
complexity of the software implementation.

In the architecture,  deterministic interrupt latency will 
be achieved by:

• Running  software  (including  interrupt 
handlers) from local  RAM and accessing any 
data  needed  during  the  interrupt  handling 
through port separate from AMBA ports.

• Adapting the register  window usage  (using a 
flat  model)  structure  to  avoid  unexpected 
window over/underflow traps. This is done in 
the  compiler  and  application  code,  and  most 
OS code does not need modification.

• The alternate window pointer feature from the 
SPARC  V8E  extension  to  allow  window 
over/underflow  handlers  to  run  with  traps 
enabled.

• Register file partitioning to allow partitioning 
of the register file (the windows) to  different 
“contexts”.  Contexts  can  for  example  be 
threads  to  speed  up  context  switching and/or 
interrupt contexts to dedicate windows to ISRs.

SPARC Reduced instruction set

LEON-REX is an extension to the SPARCv8 instruction 
set. Similar extensions exist for other architectures such 
as THUMB/THUMB2 for ARM and MIPS16 for MIPS. 
The reduced SPARC V8 instruction set variant has been 
developed by Cobham Gaisler and is integrated into the 
device. 

The  main  design  goal  has  been  to  reduce  code  size, 
thereby reducing memory storage needed for the code, 
and  to  reduce  memory  bandwidth  needed  for  the 
instruction code fetching.

Another design goal is to allow retrofitting the extension 
in  existing  LEON3/LEON3FT pipelines  and  into  the 
existing  software/compiler  stack,  and  to  provide 
backward  compatibility.  User  can  develop  C code  as 
usual (with bare-C or a small RTOS) and the existing 



LEON environment  (GRMON,  compilers  etc)  can  be 
used for development.

LEON  REX  is  designed  to  allow  gradual  transition 
where existing SW environment can be used unmodified 
and converted piece by piece to use new instruction set.

The compressed instruction set is an optional extension 
of the SPARC V8 ISA, and existing code can be used 
without modification. Compressed and regular code can 
be  mixed  in  the  same  application,  thus  the  user  can 
avoid  changing  critical  code  that  has  already  been 
validated.

The  first  version  of  the  instruction  set  extension  has 
been  specified  and  tested  on  prototype  hardware  and 
tests  has  shown that  a  compression ration of  30-50% 
compared to normal SPARC V8 code is achievable in a 
real world scenario.

LEON/REX and Runtime improvements

The new LEON/REX alternate window pointer feature 
(AWP) support and the improved interrupt single vector 
trap handler (SVT) have been tested and characterized 
in  a  series  of  measurements  running  on  prototype 
hardware.

By delaying a timer interrupt N clocks into an overflow 
or  underflow  trap  handling  the  interrupt  latency  and 
interrupt latency jitter as a result of SAVE/RESTORE 
can be quantified. 

Five  different  software  runtime  configurations  were 
benchmarked:

• Current BCC SVT

• Improved BCC SVT

• Improved BCC SVT with AWP

• Current BCC MVT

• Current BCC MVT with AWP

In order to understand where the latencies comes from 
the time from the interrupt is  asserted to the time the 
ISR is reached is split up in three parts presented in the 
plots below:

• Interrupt assert to acknowledge (assert to first 
instruction of trap executed)

• Acknowledge to the Interrupt Service Routine 
(first  instruction of trap to first  instruction of 
ISR)

• Total latency (Assert to ISR first instruction)

The  worst  case  interrupt  latencies  seen  when  an 
interrupt  is  asserted  on  top  of  a  window 
underflow/overflow handler  are  presented in  the table 
below. The highlighted rows are estimates results that 

can achieved in the LEON/REX environment.

Latency / Config Assert to Acknowledge Acknowledge to ISR Total – Assert to ISR

Overflow Underflow Overflow Underflow Overflow Underflow

CWP, SVT 134 143 539 281 673 424

CWP, new SVT 70 62 296 166 366 228

AWP, new SVT 35 34 202 166 207 200

CWP, MVT 60 52 262 152 322 204

AWP, MVT 25 24 188 152 193 176

Table 1: Worst case latencies measured

The new LEON/REX architecture also improves the 
“context” switching by allowing partitioning of the 
register file (the windows) to different “contexts”. By 
assigning windows to software threads or interrupts the 
software execution don't have to wait for the LEON3FT 
processor to store used windows on the stack.

Benchmark on prototype systems shows a large 
reduction of software execution time of switching 
“context”

Programmable DMA controller

Cobham Gaisler has developed a DMA controller able 
to preform concurrent programmable sequences of data 
transfers between any on-chip peripherals in the AMBA 
address space. The DMA controller is able to transfer 
data both between peripherals, between peripherals and 
memory  and  between  memory  areas.  If  the  accessed 
memory is internal or external does not matter, as long 
as  the  memory is  mapped  into  AMBA address  space 
reachable from the AHB bus where the core is mapped.

The DMA controller has been specifically designed to 
offload  the  CPU  and  provide  DMA  capabilities  to 
peripherals that  do not have an internal  DMA engine. 
The CPU is  offloaded  by the  fact  that  the  peripheral 
event  is  directly  routed  to  the  DMA controller.   By 
routing events directly to the DMA controller or even 
directly  between  peripherals,  these  interrupts  are  in 
effect  offloaded from the CPU. These reduce also the 
number of concurrent interrupts the CPU must handle 
and that may erode the system determinism. 



Pin-multiplexing

The device  shall  be  an  attractive  solution  for  a  wide 
range of applications. Because of the small package and 
high number of interfaces, the functionality of the pins 
must  be  configurable  and  the  pins  must  be  shared 
between  several  peripherals.  The  number  of 
configurable user pins has been chosen to be 64.

Clocking, reset and maximum frequency

The  maximum  operating  frequency  for  the  AMBA 
system is 50 MHz. The device can have separate clock 
signal  inputs  for  system,  SpaceWire,  CAN and  MIL-
STD-1553B interfaces. The clocks signals can also be 
derived  from  single  source  via  clock  multipliers  and 
dividers inside the device. 

In  order to avoid problems with reset sequencing, the 
device  has  one  single  reset  input  that  is  sequenced 
internally to provide reset signals to the different clock 
domains within the device.

SUPPORT FOR PROFILING AND DEBUGGING

The device provides debug interfaces via the JTAG and 
UART. The dedicated Debug bus allows non-intrusive 
debugging  since  the  DSU,  trace  buffers  and 
performance counters can be accessed without causing 
traffic on the Processor AHB bus.

The design also supports filtering for both the AHB and 
instruction trace buffers.

The  LEON3  statistics  unit  provides  performance 
counters, with support for filtering, for a large number 
of events, including:

• Data write buffer hold

• Branch prediction miss

• Total/Integer/Floating-point instruction count

• Total execution count

• AHB bus statistics for Processor AHB bus and 
Master I/O AHB bus

The interrupt controller in the design supports interrupt 
time stamping with time stamps interrupt line assertion 
and processor interrupt acknowledge.

SUPPORT FOR PROM-LESS APPLICATIONS

The  device  provides  an  easy  access  for  systems  that 
want  to  avoid having a boot-PROM connected to the 
device and prefer to upload software remotely.

The device can be accessed and remotely configured via 
SpaceWire, SPI, UART and I2C.

TARGET TECHNOLOGY AND PACKAGE

The technology used is UMC 180 nm, using the DARE 
library from IMEC, and the package is a 132 pin CQFP

SOFTWARE SUPPORT

The architecture is  already supported by all  operating 
systems and tool-chains provided by Cobham Gaisler.

CONCLUSION

The  device  in  development  is  a  SPARC  V8 
microcontroller that is based on the well known LEON 
architecture.  The device  is  a  prototype  for  a  possible 
future  device  targeted  at  microcontroller  applications 
and will have several new features that are not found in 
contemporary  LEON  devices.  This  includes 
architectural  features  to  improve  determinism, 
availability of the device in a low pin-count package, 
and support for the reduced instruction set.
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