
Rad-Hard Microcontroller For Space Applications

Fredrik Johansson, Jan Andersson, Fredrik Sturesson,
Nils-Johan Wessman, Magnus Hjorth

Cobham Gaisler, Kungsgatan 12, SE-411 91, Göteborg, Sweden

Tel: +46 31 775 86 50
info@gaisler.com

Steven Redant, Wim Sijbers, Geert Thys
IMEC

Kapeldreef 75, 3001 Leuven, Belgium

Tel: +32 16 28 11 41
info@imec.be

Claudio Monteleone
European Space Agency,

Keplerlaan 1, PO box 299, NL-2220AG Noordwjik, The Netherlands

Tel: +31 71 56 56791
claudio.monteleone@esa.int

ABSTRACT

This paper describes a mixed-signal LEON3FT
microcontroller ASIC (Application Specific Integrated
Circuit) targeting embedded control applications with
hard real-time requirements. The prototype device is
currently in development at Cobham Gaisler, Sweden,
and IMEC, Belgium, in the activity Microcontroller for
embedded space applications, initiated and funded by
the European Space Agency (ESA).

The presentation and paper will describe the architecture
and functionality of the device. This abstract describes
an on-going development where the devices are in the
architectural design stage before detailed
implementation phase. The presentation and final paper
will contain further details on the device and will
describe the latest progress made within the activity.

BACKGROUND

Software based data acquisition, dataprocessing and
simple control applications are widely used in space-
craft subsystems. They allow implementation of soft-
ware based control architectures that provide a higher
flexibility and autonomous capabilities versus hardware
implementations. For this type of applications, where
limited processor performance are is required, general
purpose microprocessors are usually considered incom-
patible due to high power consumption, high pin count
packages, need of external memories and missing peri-
pherals. Low-end microcontrollers are considered more
attractive in many applications such as:

• Propulsion system control

• Sensor bus control

• Robotics applications control

• Simple motor control

• Power control

• Particle detector instrumentation

• Radiation environment monitoring

• Thermal control

• Antenna pointing control

• AOCS/GNC (Gyro, IMU, MTM)

• RTU control

• Simple instrument control

• Wireless networking

In these kind of applications the microcontroller device
should have a relatively low price, a low power con-
sumption, a limited number of pins and must integrate
small amount of RAM and most of the I/O peripherals
for control and data acquisition (serial I/Fs, GPIO’s,
PWM, ADC etc.). The requirements for memory and
program length are usually minimal, with no or very
simple operating system and low software complexity.

MICROCONTROLLER APPLICATIONS

Spacecraft subsystem control and monitoring of
parameters such as power supply voltages, currents,
pressures and temperatures are ideal applications for the
LEON3FT microcontroller. Bridges between different
communication standards or interface of an equipment
towards a higher level controller or the central On Board
Computer (OBC) are also ideal applications for the
LEON3FT microcontroller.

mailto:jan.andersson%7D@gaisler.com
mailto:info@imec.be

The LEON3FT microcontroller can perform advanced
data handling to offload any higher level controller or
the central On Board Computer (OBC). By hiding the
data handling details the transmitting data volume can
be reduced and simplified functionalities and timing
requirements are requested to the higher level controller.

The LEON3FT microcontroller integrates several on-
chip data bus standards, such as SpaceWire, CAN, MIL-
STD-1553, I2C, SPI, UART and can easily provide data
packetization for serial communication using standard
protocols. The microcontroller can also efficiently
replace FPGAs in accomplishing the above
functionalities. Generally the FPGA implementation is
faster but much more complexity and flexibility can be
captured in the software of a microcontroller even with
limited processing capability. The correct use of FPGAs
in space applications can be complex to achieve and
also cost, package size and availability of integrated
analog functions can favour the use of a microcontroller
with respect to FPGA.

Below are listed a number of possible microcontroller
use cases and specific applications.

• Nanosatellite controller

• Instrument Control Unit

• Remote Terminal control

• Mass Memory control

• Propulsion Unit control

• Electric Motor Control

MICROCONTROLLER ARCHITECTURE

Figure 1 shows an overview of the architecture. The
system consists of three AMBA AHB buses, one main
system bus, one debug bus and one bus for DMA traffic.

The main bus will include the LEON3FT core
connected to a shared on-chip RAM and ROM. The
main bus also connects all other peripheral cores in the
design as well as the external memory controllers.
Several peripherals are connected through two AMBA
AHB/APB bridges where the bridges are integrated with
the design's DMA controller.

The debug AMBA AHB bus connects a serial UART
debug communications link and one JTAG debug
communication link to the debug support unit and also
to the rest of the system through an AMBA AHB bridge.

The third bus, a dedicated 32-bit Debug bus, connects a
debug support unit (DSU), AHB trace buffers and
several debug communication links. The Debug bus
allows for non-intrusive debugging through the DSU
and direct access to the complete system, as the Debug
bus is not placed behind an AHB bridge with access
restriction functionality.

The list below summarizes the specification for the
system:

• System Architecture
◦ LEON3FT 32-bit SPARC V8 processor with

LEON reduced instruction set
◦ System AHB bus connecting processor,

AHB/APB bridges
◦ Separate debug AHB bus connecting debug

communication links to DSU in order to allow
non-intrusive debugging

◦ On-chip ROM, SRAM.
◦ Off-chip PROM, SRAM and memory mapped

IO.
◦ Pin sharing via switch matrix
◦ Atomic operations

• Processor core
◦ LEON3FT with tightly coupled data RAM and

tightly coupled instruction RAM, 32-bit MUL
◦ GRFPU floating-point unit with 4-word

instruction FIFO
◦ Reduced instruction set, without removing

support for full instruction set.
◦ SPARC V8e extensions (SVT, partial WRPSR,

alternative window pointer)
◦ Debug support unit with performance

monitoring and AHB/instruction trace buffers

Fig. 1. Architecture overview

• Peripherals
◦ Integrated on-chip 13-bit ADC/DAC, 100ksps
◦ Power On Reset and Brown Out Detector
◦ JTAG debug communication link
◦ 8-bit UARTs
◦ CCSDS CRC accelerator with DMA engine
◦ MIL-STD-1553B interface
◦ CAN controller
◦ SpaceWire
◦ General purpose I/O port
◦ PWM and Pulse generator
◦ PacketWire receiver and transmitter
◦ I2C master and slave interface
◦ SPI master/slave controller
◦ Clock gate unit for power control
◦ DMA controller
◦ Hardware memory scrubber
◦ Memory protection unit
◦ Oscillator, PLL and pad control units
◦ Temperature sensors

• External memory interfaces
◦ Fault-tolerant 8 bit PROM/SRAM/IO

controller with BCH ECC
◦ SPI memory controller with support for Dual

Memory Redundancy and BCH ECC
◦ I2C memory controller with support for Dual

memory Redundancy

Processor performance and determinism

In order to improve determinism, the LEON3FT
microcontroller contains only a local instruction and
data static RAM with fixed response times. All EDAC
units in the system have the same latency and behaviour
in the corrected as in the uncorrected case. This also
applies to the CPU, so dynamic SEU handling schemes
such as the LEON3FT pipeline restart on error options
is not used.

Local instruction RAM tightly coupled to the LEON3FT
CPU will be the main memory to execute the software.
Due to its direct connection to the CPU, the execution of
the software will be deterministic. For applications
where full cycle-level determinism is not needed, it will
also be possible to execute software from an external
SRAM.

The local instruction memory will be implemented
using dual-port RAM. The memory's second port will be
connected to the main system AHB. This will allow
modifying of the local instruction RAM without the
intervention of the CPU. The contents of this memory
will be protected against SEU errors with EDAC and
scrubbing.

If the DMA peripherals and the processor are connected
to a shared single-port memory, or to a memory via the

same bus, and try to simultaneously access the shared
resource then the DMA activity will have an effect on
the execution time. On the other hand DMA activity will
have no impact on SW execution time by using a dual-
port on-chip data RAM and a separate bus for the DMA
peripherals. This means that there is a separate access
path for the CPU core to local instruction and data
RAMs that is unaffected by concurrent DMA activity.

For applications demanding determinism on nested
interrupts, a special interrupt handling scheme will be
implemented in software where nested interrupts are
allowed to occupy one additional register window. The
number of levels of nested interrupts that can be handled
without additional timing penalty depends on the
complexity of the software implementation.

In the architecture, deterministic interrupt latency will
be achieved by:

• Running software (including interrupt
handlers) from local RAM and accessing any
data needed during the interrupt handling
through port separate from AMBA ports.

• Adapting the register window usage (using a
flat model) structure to avoid unexpected
window over/underflow traps. This is done in
the compiler and application code, and most
OS code does not need modification.

• The alternate window pointer feature from the
SPARC V8E extension to allow window
over/underflow handlers to run with traps
enabled.

• Register file partitioning to allow partitioning
of the register file (the windows) to different
“contexts”. Contexts can for example be
threads to speed up context switching and/or
interrupt contexts to dedicate windows to ISRs.

SPARC Reduced instruction set

LEON-REX is an extension to the SPARCv8 instruction
set. Similar extensions exist for other architectures such
as THUMB/THUMB2 for ARM and MIPS16 for MIPS.
The reduced SPARC V8 instruction set variant has been
developed by Cobham Gaisler and is integrated into the
device.

The main design goal has been to reduce code size,
thereby reducing memory storage needed for the code,
and to reduce memory bandwidth needed for the
instruction code fetching.

Another design goal is to allow retrofitting the extension
in existing LEON3/LEON3FT pipelines and into the
existing software/compiler stack, and to provide
backward compatibility. User can develop C code as
usual (with bare-C or a small RTOS) and the existing

LEON environment (GRMON, compilers etc) can be
used for development.

LEON REX is designed to allow gradual transition
where existing SW environment can be used unmodified
and converted piece by piece to use new instruction set.

The compressed instruction set is an optional extension
of the SPARC V8 ISA, and existing code can be used
without modification. Compressed and regular code can
be mixed in the same application, thus the user can
avoid changing critical code that has already been
validated.

The first version of the instruction set extension has
been specified and tested on prototype hardware and
tests has shown that a compression ration of 30-50%
compared to normal SPARC V8 code is achievable in a
real world scenario.

LEON/REX and Runtime improvements

The new LEON/REX alternate window pointer feature
(AWP) support and the improved interrupt single vector
trap handler (SVT) have been tested and characterized
in a series of measurements running on prototype
hardware.

By delaying a timer interrupt N clocks into an overflow
or underflow trap handling the interrupt latency and
interrupt latency jitter as a result of SAVE/RESTORE
can be quantified.

Five different software runtime configurations were
benchmarked:

• Current BCC SVT

• Improved BCC SVT

• Improved BCC SVT with AWP

• Current BCC MVT

• Current BCC MVT with AWP

In order to understand where the latencies comes from
the time from the interrupt is asserted to the time the
ISR is reached is split up in three parts presented in the
plots below:

• Interrupt assert to acknowledge (assert to first
instruction of trap executed)

• Acknowledge to the Interrupt Service Routine
(first instruction of trap to first instruction of
ISR)

• Total latency (Assert to ISR first instruction)

The worst case interrupt latencies seen when an
interrupt is asserted on top of a window
underflow/overflow handler are presented in the table
below. The highlighted rows are estimates results that

can achieved in the LEON/REX environment.

Latency / Config Assert to Acknowledge Acknowledge to ISR Total – Assert to ISR

Overflow Underflow Overflow Underflow Overflow Underflow

CWP, SVT 134 143 539 281 673 424

CWP, new SVT 70 62 296 166 366 228

AWP, new SVT 35 34 202 166 207 200

CWP, MVT 60 52 262 152 322 204

AWP, MVT 25 24 188 152 193 176

Table 1: Worst case latencies measured

The new LEON/REX architecture also improves the
“context” switching by allowing partitioning of the
register file (the windows) to different “contexts”. By
assigning windows to software threads or interrupts the
software execution don't have to wait for the LEON3FT
processor to store used windows on the stack.

Benchmark on prototype systems shows a large
reduction of software execution time of switching
“context”

Programmable DMA controller

Cobham Gaisler has developed a DMA controller able
to preform concurrent programmable sequences of data
transfers between any on-chip peripherals in the AMBA
address space. The DMA controller is able to transfer
data both between peripherals, between peripherals and
memory and between memory areas. If the accessed
memory is internal or external does not matter, as long
as the memory is mapped into AMBA address space
reachable from the AHB bus where the core is mapped.

The DMA controller has been specifically designed to
offload the CPU and provide DMA capabilities to
peripherals that do not have an internal DMA engine.
The CPU is offloaded by the fact that the peripheral
event is directly routed to the DMA controller. By
routing events directly to the DMA controller or even
directly between peripherals, these interrupts are in
effect offloaded from the CPU. These reduce also the
number of concurrent interrupts the CPU must handle
and that may erode the system determinism.

Pin-multiplexing

The device shall be an attractive solution for a wide
range of applications. Because of the small package and
high number of interfaces, the functionality of the pins
must be configurable and the pins must be shared
between several peripherals. The number of
configurable user pins has been chosen to be 64.

Clocking, reset and maximum frequency

The maximum operating frequency for the AMBA
system is 50 MHz. The device can have separate clock
signal inputs for system, SpaceWire, CAN and MIL-
STD-1553B interfaces. The clocks signals can also be
derived from single source via clock multipliers and
dividers inside the device.

In order to avoid problems with reset sequencing, the
device has one single reset input that is sequenced
internally to provide reset signals to the different clock
domains within the device.

SUPPORT FOR PROFILING AND DEBUGGING

The device provides debug interfaces via the JTAG and
UART. The dedicated Debug bus allows non-intrusive
debugging since the DSU, trace buffers and
performance counters can be accessed without causing
traffic on the Processor AHB bus.

The design also supports filtering for both the AHB and
instruction trace buffers.

The LEON3 statistics unit provides performance
counters, with support for filtering, for a large number
of events, including:

• Data write buffer hold

• Branch prediction miss

• Total/Integer/Floating-point instruction count

• Total execution count

• AHB bus statistics for Processor AHB bus and
Master I/O AHB bus

The interrupt controller in the design supports interrupt
time stamping with time stamps interrupt line assertion
and processor interrupt acknowledge.

SUPPORT FOR PROM-LESS APPLICATIONS

The device provides an easy access for systems that
want to avoid having a boot-PROM connected to the
device and prefer to upload software remotely.

The device can be accessed and remotely configured via
SpaceWire, SPI, UART and I2C.

TARGET TECHNOLOGY AND PACKAGE

The technology used is UMC 180 nm, using the DARE
library from IMEC, and the package is a 132 pin CQFP

SOFTWARE SUPPORT

The architecture is already supported by all operating
systems and tool-chains provided by Cobham Gaisler.

CONCLUSION

The device in development is a SPARC V8
microcontroller that is based on the well known LEON
architecture. The device is a prototype for a possible
future device targeted at microcontroller applications
and will have several new features that are not found in
contemporary LEON devices. This includes
architectural features to improve determinism,
availability of the device in a low pin-count package,
and support for the reduced instruction set.

	Processor performance and determinism
	SPARC Reduced instruction set
	LEON/REX and Runtime improvements
	Programmable DMA controller
	Pin-multiplexing
	Clocking, reset and maximum frequency

