

DiReRa New Rad-Hard Chip-Set for Radiometers

AMICSA 2016

Outline

- Radiometer Architecture
- Requirements and Frequency Plans
- IC Process Constraints and Requirements
- DiReRa Chip-Set: RF Front-End
- DiReRa Chip-Set: AD-Converter
- Measurement Results
- Radiation Hardening TID
- Radiation Hardening Heavy Ions
- Conclusions and Road Map

AMICSA 2016

AMICSA 2016

- Full H-V polarimetric radiometer TRYO Aerospace.
- Measures both H and V polarizations at the same time.
- DiReRa chip-set is shown in orange. It consists of:
 - \rightarrow L-band RF front-end.
 - → Dual-channel 1-bit AD-converter (comparator).

© 2016 Saphyrion Sagl

3

AMICSA 2016

- IC Reduce size and power consumption considerably.
- Maintain compatibility with existing LICEF-3 radiometer.
- Isolation between channels is critical.
- ➢ RF bandwidth = 20MHz, flatness = ± 0.1-0.2dB.
- Support different frequency plans.

No.	RF Frequency	LO Frequency	IF Frequency	Sampling Freq.	Note
1	1200-1600 MHz	1180-1580 MHz	25-35 MHz	130 MHz	ESA SoW.
2	1413.5 MHz	1396 MHz	17.5 MHz	55.84 MHz	TA – LICEF-3.
3	1413.5MHz	1384.65MHz	28.85MHz	115.38MHz	TA – SMOSops.
4	1200-1600 MHz	1167.5-1567.5 MHz	32.5 MHz	130 MHz	As 1, centered.
5	1200-1600 MHz	1037.5-1437.5 MHz	162.5 MHz	130 MHz	As 1, higher IF.
6	1413.6 MHz	1288 MHz	125.6 MHz	55.84 MHz	As 2, higher IF.

IC Constraints and Requirements

- Single process must fit everything.
- Limited component types and values, large tolerances, but excellent component matching.
- Coupling via common substrate and pins.

Requirem.

Constraints

- Proper GHz RF performances (dominant requirement).
 Rad-hard can be radiation hardened.
- Available in small quantities a few 100 dies yearly.
 - AMS S35 0.35µm HBT BiCMOS process.

AMICSA 2016

© 2016 Saphyrion Sagl

5

RF Downconverter ASIC

► Architecture

- Single conversion superheterodyne, active mixer.
- Balanced signal path (except LNA), 50Ω RF, 600Ω IF.
- ➢ High Z local oscillator port and good mixer isolation:
 → Bridging is possible.

AMICSA 2016

© 2016 Saphyrion Sagl

6

RF Downconverter ASIC

Layout and Test Fixture

Size: 1280µm x 1200µm.
 42 pads, bonded to 40 pins.

QFN test plastic package. JEDEC MO-220, VJJD-5

AMICSA 2016

AD-Converter ASIC

- Dual channel 1-bit AD-converter (dual comparator).
- Latched regenerative architecture (high sens., low power).
- \succ 0-1 imbalance ≤ 0.5%: *critical*.
- Direct and muxed outputs with deglitching circuit (compatible with existing LICEF-3 baseband processor). 8

AMICSA 2016

AD-Converter ASIC

Layout and Test Fixture

Size: 610µm x 880µm.
 16 pads, bonded to 16 pins.

QFN test plastic package. JEDEC MO-220, VGGC-2 9

AMICSA 2016

Measured Results

Parameter	Conditions	Value	Unit	Notes					
DiReRa RF Front-End									
	High gain setting	18.3	dB	Noise matched, 50 Ω .					
LINA Yalli	Low gain setting	6.5	dB						
	High gain setting	1.7	dB	Noise matched, 50Ω .					
LINA HOISE ligure	Low gain setting	2.3	dB						
Mixer SSB voltage gain	Balanced input, 50Ω	14.7	dB	Balanced output, no load.					
Mixer SSB noise figure		12.3	dB						
IF-strip gain range	TIF output	23.5-81.6	dB	PGAs+VCA, balanced, no load.					
IF-strip PGA gain step		1	dB	Balanced I/Os, no load.					
IF-strip VCA gain range	VC=0V to 2V	12	dB	Maximum gain is limited.					
Output 1dB compr. point	PNS output, no load	-4.5	dBu	Referred to 600Ω.					
DADC 1-bit AD-converter									
Sampling frequency	Maximum	130	MHz	Operates from ~0Hz to 130MHz.					
DC-offset	Input referred	±3.7	mV	Measured at DC, 2 samples.					
0-1 imbalance	−4dBu, −40 to 125°C	0.5	%	Band-limited AWGN.					

10

AMICSA 2016

Radiation Hardening – TID

► TOTAL DOSE – Objective: ≥ 1kGy(Si) [100krad(Si)].

- Effects MOS: Vt shift, leakages; BJT: β degradation.
- Strongly process dependent, no way to predict ELDRS.
 But AMS S35 is already well tested (SY10x7 devices):
 TD > 1kGy at 0.12Gy/min.
- Some circuit/layout tricks:
 - \rightarrow Differential stages:
 - Vgs shifts will compensate.
 - → High current or active bias circuits:
 - Allow for β reduction.
 - \rightarrow Layout techniques.

© 2016 Saphyrion Sagl

AMICSA 2016

AMICSA 2016

Radiation Hardening – SEL

- ► HEAVY IONS Objective: LET ≥ 85MeV·cm²/mg.
- SEL is potentially destructive. Some SEL-tolerant techniques:
- Continuous uninterrupted guard rings.
- Good distributed substrate/well contacts.
- Silicon on Insulator (SOI) but beware TID effects.
- SEL at LET < 60MeV·cm²/mg requires SEL protection.</p>

Radiation Hardening – SET/SEU

SET/SEU cause noise (analog) or operating errors (digital) but are not destructive. SEE protection *shall not* compromise performance excessively! Some SEE-tolerant techniques are:

- Drive strength hardening (DSH).
- Error correction (ECC, TMR, DICE).
- Glitch suppression, charge storage devices.
- Self-resetting sequential circuits, no dead cycles.
- Fast recovery analog circuits.

► DSH provides *intrinsic protection*, i.e. prevents SEE from occurring, but effectiveness is limited to ~5-15MeV·cm²/mg.

► The other methods *don't prevent* SEE but only correct its effects. LET \ge 85MeV·cm²/mg can be achieved with ECC or TMR, DICE is ~30-50MeV·cm²/mg (on 0.35µm process). 13

AMICSA 2016

Conclusions, Road Map

The DiReRa chip-set has been designed, manufactured and tested with good results, now it should be industrialized:

- Do a preliminary irradiation test on current prototypes.
- Finalize design, do an engineering run.
- Procure and assemble the packages.
- Develop production screening.
- Do a qualification of the chip-set.
- Prepare all needed documentation.

Once these steps are completed the chip-set is ready to be used in a radiometer and will be introduced in Saphyrion's catalogue.

AMICSA 2016

Thank you for your attention

AMICSA 2016