

High Resolution Radiation Hardened DAC in CMOS-SOI Featuring a Return-to-Zero Matrix

M. Karaolis¹, A. Stafylidis¹, O. Dokianaki¹, K.Papathanasiou, K. Makris¹, D. Fragopoulos¹, C. Papadas¹, B. Glass²

⁽¹⁾ Integrated Systems Development (ISD S.A.), Athens, GREECE

⁽²⁾ European Space Research and Technology Center (ESA/ESTEC) – Microelectronics Section (TEC-EDM), THE NETHERLANDS

AMICSA 2016, Gothenburg, Sweden

Outline

Design

- Description
- Radiation Hardening
- Digital Part
- Analog Part
- Return-to-Zero feature
- Results

Flow

- Analog Flow
- Digital Flow
- Top Design Flow
- Conclusions and next steps

24-bit Digital-to-Analog Converter DAC24

Specifications

24-bit sigma-delta current steering DAC

Resolution	24 bit				
Specified bandwidth	0.1mHz-50kHz				
Effective resolution	>18bit				
Dynamic Range	> 108dB				
Signal-to-Noise Ratio	> 108 dB				
Sampling rate	Up to 310 kSps				
Monotonicity	Full code range				
Power dissipation	62 mW				
LET for SEL immunity	≥ 70 MeV/mg/cm ⁻²				
SEU immunity	Protection of critical memory cells				
SET immunity	Protection of the digital part				
TID tolerance	≥100 krad				
Temperature range (functional)	-55 °C < T < 125 °C				
Temperature range (full performance)	0 °C < T < 50 °C				

AMICSA 2016, 12-16 June 2016

DAC highlights

Features

- 24-bit resolution
- multi-bit ΣΔ modulator topology
- Single clock domain
- Very low frequency operation
- Return-to-Zero output stage operation Test Signals
- Differential current steering output
- ΣΔ modulator bypass mode
- Simple synchronous serial input interface
- Selectable oversampling ratios allow sampling rates up to 310kSa/s
- Analog bandwidth from DC to 50kHz
- 1.8V digital power supply
- 3.3V analog power supply and I/Os
- Embedded or external voltage reference
- Radiation hardened against SEE and TID

Applications

- High resolution actuator drive
- High accuracy calibration
- Servo loop control

Digital part

- Modulator design
 - 3rd order feed-forward ΣΔ modulator
 - 5-bit quantizer
 - Selectable sampling frequency via control over OSR (x32, x64, x128, x256)
 - Idle Tone avoidance by introduction of dither

Dynamic Element Matching (DEM)

- The output element mismatch error is minimized by the use of a DEM algorithm.
- Data Weighted Averaging (DWA) as an efficient DEM algorithm.
- Algorithm's objective → achieve an equal use of elements in long-term by rotating the output elements (current sources) in a cyclic fashion.
- DWA uses only one index, which is updated with the addition of the input every clock cycle.

Time	Input	Index	1	2	3	4	5	6	7
1	3	1							
2	2	4							
3	5	6							
4	6	4							
5	2	3							
6	7	5							

Analog part

- Bandgap cell provides an accurate reference voltage (1.25V) with a low temperature coefficient.
- First order RC filter reduces any noise from the bandgap block.
- Low noise Op-Amp along with M1 and current setting resistor (Rref or Rext) implements the reference current source for generating the reference current lref.
- IRef can be set by selecting the internal resistor RRef or connecting an external resistor Rext.
- Differential elementary current sources built around the regulated cascode topology.
- Use of PMOS transistors for lower flicker noise(1/f)

Radiation hardening: analog part

- Deep Trench Isolation (DTI) option cuts away the parasitic structures between PMOS and NMOS that may trigger SEL
- All NMOS transistors are of enclosed layout type (ELT) which greatly improve analog degradation due to TID effects (overconsumption due to severe leakage currents at edge formed parasitic channels)
- Relaxed layout rules
- Decoupling capacitors to eliminate SET in all critical points
- Simulation of SET

S

G

Simulation in 21 corners and MC

ELT

- Radiation induced charges are trapped in the oxides or at Si interface.
- Overconsumption due to severe leakage currents at edge formed parasitic channels may lead to total loss of circuit functionality.

Radiation hardening: digital part

- Technology level
 - Atmel AT58K85 0.15 µm is a rad-hard proven technology.
- Library level
 - oversized and robust standard cells were used (including latches and flip-flops).
- Digital design level
 - Global insertion of TMR logic in FSMs and counters
 - Synchronous reset

RTZ output stage

Return-to-Zero functionality to improve linearity

[3] Adams R., Nguyen Q. K., Sweetland K., A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling, IEEE Journal of Solid-State Circuits, VOL.33, No.12, December 1998.

RTZ implementation

Layout

ISD s.A.

Transient simulation

Analog/Digital/Top Design Flow for DAC24

Mixed signal developments

- Radiation tolerant mixed-signal ASIC development for the space industry AO7794
 AO7794
 - Development of a flow and a library
 - ASIC development via re-use
 - SEC & TCV for production
 - Flow
- Atmel ATMX150RHA technology
 - 150nm CMOS SOI, 5 metal, 1 poly
 - Supplies: 1.8V logic with 3.3V analog and I/Os
 - Extensive device and cell library
 - Rad-hard proven logic
 - Front to back design flow fully supported by the PDK
 - Fully SPICE modeled and characterized devices for analog design included: bipolar transistor, MIM capacitors, 70A oxide FETs,...
 - Low noise performance as demonstrated by circuit simulations
 - Full and direct support by the Atmel team on the PDK and design

Digital flow (2/4)

- Input to the flow
 - Verified RTL in a set of testcases selected to cover different OSR values, dithering, bypass and reset modes.
- Synthesis translate RTL to gate-level netlist:
 - □ Design Compiler K-2015.06
 - ATMX150RHA-max+mil+nldm library
 - □ Master clock: 10MHz, 50% duty cycle
- DFT insertion scan chain inserted in the design
- Post-Synthesis Verification
 - Same set of tests is run, in order to ensure the correct functionality of the design (netlist/sdc after DFT insertion are used)
- Static Timing Analysis
 - verify the timing parameters of the design using Primetime

Digital flow (3/4)

- Formality Check
 - Compare VHDL files with the netlist (both before and after DFT inserion) for ensure functional equivalence.
- Physical Implementation
 - □ Inputs:
 - Verilog netlist after synthesis and DFT insertion
 - LEF files of the digital core standard cells
 - LIB files providing timing and power parameters for the cells
 - SDC file for the timing constraints generated at synthesis step
 - DEF file providing information on the floorplan, IO pins and power lines.
 - □ Routing of special nets (power supplies)
 - Placement of the cells
 - Placement of spare cells
 - □ Clock tree synthesis (CTS)
 - Routing of the design

Digital flow (4/4)

- Physical Implementation (continue)
 - Filler insertion
 - Geometry and connectivity verification
 - Timing verification
 - □ Extraction of GDS/netlist to be imported to Virtuso for chip integration
 - Manual corrections to prevent DRC violations in Virtuoso (same are not appeared as issues in Encounter).

Post-layout Verification

Same set of tests is run, in order to ensure the correct functionality of the final design (netlist/sdc after place&route are used)

Static Timing Analysis

□ verify the timing parameters of the design using Primetime

Formality Check

Compare VHDL files with the netlist (after place&route) for ensure functional equivalence.

Top Design flow

Performed by Atmel

Conclusions and next steps

- First samples expected end of June 2016
- Preparation for the validation phase based on the validation plan
- Evaluation of the design improvements with respect to the RTZ feature.
- Dissemination about the AO7794 library and flow
- Enrichment of the library (fast ADCs, etc)

Acknowledgments

The authors would like to thank Mr. Michel Porcher (Atmel), Rok Dietrich and Richard Janssen (ESA) for their continuous support.

Thank you for your attention! Questions?