
SESP 2008

A FIRST EXPERIENCE ON
USING SMP2 FOR THE
VIRTUAL SPACE SYSTEM

Christian Laroque VEGA
Mauro Pecchioli ESA/ESOC
Nuno Sebastiao ESA/ESOC

Presentation Outline

Introduction to SMP2

Virtual Space System Concepts

Development Process

Software Reuse

GSTVi Assembly

Events

Dynamic Simulation

Conclusion

SMP2 Standard

The main purpose of the Simulation Model Portability (SMP) standard is to promote
portability and reuse of simulation models. These goals are shared and highly regarded
by both Space Agencies and Industry
The new SMP2 standard, specified in the year 2004, offers the following advantages for
the development of simulation systems:
Support for Modern Software Engineering Techniques: use of modern software
engineering techniques and in particular object-orientation and component-based design.
Model Reuse: SMP2 improves the productivity and medium and long-term reliability in
the development of simulators by helping the modeller in developing reusable models.
Model Integration: SMP2 supports integration of individual models to form a complete
system simulation. Improved model integration is closely related to model reuse.
Model Development Productivity: SMP2 helps reducing the effort required by the
model developer to implement the infrastructure elements of a model, such that it can be
integrated into the simulation environment or with other models. The modeller can
therefore focus on the development of the functional aspects of the model, and not on
the infrastructure aspects.
Configurable and Flexible Simulation: SMP2 allows developing highly configurable
and flexible simulations, such that the simulated system configuration can be rapidly
changed or evolved.

Virtual Space System Concepts (1)

GSTVi

Spacecraft
Model

Ground
Equipment

Model

Network
Interface

Model

Mission
Control
System
Model

EGSE FEE
I/FFEE

T
T
C
S
t
r
e
a
m
s

Network
Interface
System

Mission
Control
System

GSTVi DB

SCOS 2000
MIB

Virtual Space System Concepts (2)

GSTVi

Spacecraft
Model

Ground
Equipment

Model

Network
Interface

Model

Mission
Control
System
Model

EGSE FEE
I/FFEE

T
T
C
S
t
r
e
a
m
s

Network
Interface
System

Mission
Control
System

Virtual Space System Concepts (3)

GSTVi: Ground Systems Test and Validation Infrastructure

GSTVi provides individual components that are assembled together to
form a test system

GSTVi provides predefined assemblies – new assemblies can easily
be defined thanks to SMP2 standard mechanisms

Assemblies correspond to 14 use cases that were selected to drive
specification and design of GSTVi

For each use case has been defined its objective, and the functionality
to test

GSTVi implemented against the version 1.2 of the SMP2 standard

GSTVi Assembly Z

SLE
Ground
Model
(SGM)

GSTVi SMP2 Model

SMP2 Interface

Software Component

External Interface
SIMSAT4

TM Path

TC Path

TTC
 S

tream
s

LAN

SCM
User Supplied SMP2
Model

SSME

MCSM

DRR

TM
Files

TC
Files

DRR

TC
Files

TM
Files

NISM LAN

GSTVi

GSTVi top level models:
Mission Control System model
Network Interface System model
Spacecraft Model
EGSE FEE I/F model
Runtime Configuration Manager

GSTVi infrastructure models:
Parameter pool
TM/TC encoder decoder
PUS services
Data Recorder & Replayer (frames, packets)

Performances:
Management of up to 50,000 parameters
Data rates up to 10 MBits/s

Development Process

Magic Draw

Framework
Modelling
Designer

EGOSMF
Catalogue
Generator

EGOSMF
Code

Generator

SMP2
Catalogue

(XML)

SMP2
Assembly

(XML)

C++
Skeleton

Code

read

generate

read

generate

read

generate

EGOSMF
Document
Generator

read ADD DDD
ICD

Documents

generate

Design Database

Development Process

Single source approach is a key issue

this is the only way to keep the project – UML design,
documentation, source code, catalogues and assemblies - consistent

Tools - EGOSMF
Used prototype tools for GSTVi
Some modifications / improvements have been implemented using the GSTVi
experience and feedback
C++ code generator does not allow for all constructions
Concurrent development – how to share a UML model, SMP2 catalogues or
assemblies

Conclusion
Single source approach is highly recommended
Reliable Tools are very important
Tools must be easy to use and integrated in the development environment
Concurrent development must be carefully organised

Portability

GSTVi was first developed using an enhanced version of SIMSAT3

VEGA added to SIMSAT3:
A SMP2 adapter implementing the SMP2 standard and allowing loading and
execution of SMP2 models in the simulation
Distribution of up to 150 models on 50 machines

Development and integration was done on SIMSAT3

When SIMSAT4 became available:
GSTVi was ported to SIMSAT4
No modification of the SMP2 model source code has been needed
Adaptation has been needed on the code loading the libraries, on the MMI and
some infrastructure components (non SMP2)

SMP2 models are portable across platforms

Software Reuse

The GSTVi models are not implemented from scratch, but reuse lots of existing
code:
The Portable Spacecraft Simulator (PSS) for the implementation of the GSTVi
spacecraft model, and the implementation of the IMBU interface;
The NDIU Lite software for the implementation of the EGSE FEE I/F GSTVi
model;
The Hershel-Planck TM/TC Encoder and Decoder for the encoding and
decoding of telemetry and telecommand packets in the GSTVi spacecraft and
MCS models;
The NCTRS for the implementation of the Network Interface Model (NIS).
Some component from SIMPACK for the telemetry frame processor in the
MCS model.
Some component from the ROS/MEX simulator and Cryosat simulator for the
implementation of PUS services on the GSTVI spacecraft model:

Memory management (PUS service 6)
On-board storage and retrieval (PUS service 15)

Software Reuse – Migration to SMP2

Reused software must be migrated to SMP2

Two approaches have been identified

1st Approach - Full SMP2
Fully migrate the existing code to be SMP2 compliant

2nd Approach – SMP2 layer
Keep the existing code as is, and provide a SMP2 layer around this code to allow

interfacing it with the rest of the simulation SMP2 code.

Software Reuse – Migration to SMP2

SMP2 Models Existing Component Implementation

Component X

Component X

1st Approach – Full SMP2

Component X

Component X

2nd Approach – SMP2 Layer

SMP2 Layer

Software Reuse – Migration to SMP2

1st Approach - Full SMP2
1. Reverse engineer the existing code in the UML model
2. Clean-up the model, change the types to use SMP2 native types
3. Define SMP2 native types for external non-SMP2 software
4. Split the existing components in small SMP2 models that can be assembled using the SMP2

assembly
5. Define the fields and operations that must be published to the simulation
6. Generate the catalogues files
7. Generate the code from the catalogue files, and insert in the generated code skeleton the code

from the existing implementation
8. Compile and test the SMP2 models

Example: GSTVi spacecraft model PUS services, parameter pool

2nd Approach - SMP2 Layer
1. Design a SMP2 layer around the existing code
2. Generate the catalogue file containing the SMP2 layer
3. Implement the SMP2 layer

Example: GSTVi NIS model – need to keep existing core implementation, and SLE API
interfaces

Software Reuse – Migration to SMP2

 1st Approach: Full SMP2 2nd Approach: SMP2 layer
Advantages The component is fully SMP2, and

can take full advantage of all SMP2
functions.

 Only one environment development
needs to be available, i.e. the SMP2
compliant one with associated tools.

 The code is uniform and easier to
maintain and understand.

 The existing code can be re-used with
a reduced effort and risk.

 There is no need to re-test all
component functions, since most of
them remain un-changed.

Drawbacks The modification of the existing code
to be fully SMP2 compliant requires
a big effort.

 Requires full re-testing.

 To interface the SMP2 code to the
existing non-SMP2 one, additional
code needs to be written which only
purpose is to convert types/interfaces
and to publish data.

 The code is not uniform. For instance,
SMP2 code uses SMP2 types, the non-
SMP2 code not.

 The development environment is not
uniform across one component.

Software Reuse – Migration to SMP2

Conclusion:

Careful analysis must be performed during the design phase to choose
the correct approach

Interfacing SMP2 code to non SMP2 code can be a challenge
Identify classes to migrate to SMP2
Convert types to SMP2 types
Convert interfaces to SMP2 ones where possible

Powerful C++ code generator tools are needed in order to allow
generation of classes representing SMP2 models, but to which can be
added and maintained non-SMP2 code

GSTVi Assembly (1)

The SMP2 assembly
Defines how a collection of SMP2 model instances is assembled for the runtime simulation
Offers the possibility to initialise SMP2 model fields

Very powerful mechanism for assembling the GSTVi components in a test environment

But
SMP2 assembly does not provide all needed functions for GSTVi
No possibility to automatically execute a script when an assembly is loaded – this would be
useful to load catalogues files or shared libraries of specific versions
No possibility to link an SMP2 assembly with the SIMSAT architecture file defining the
components loaded in the simulation at runtime

Definition of GSTVi assembly, which is composed of
A SMP2 assembly file;
A SIMSAT architecture file;
A script file used to load the GSTVi model libraries or run a specific setup test.

Users only need to select the GSTVi assembly at runtime to fully initialise the
simulation
GSTVi defines 14 different assemblies

GSTVi Assembly (2)

When the user selects the GSTVi assembly, the GSTVi system:
1. Checks the GSTVi assembly
2. Starts a simulation with the specified architecture file
3. Executes the start-up function defined in the script file
4. The start-up function:

Loads the catalogues
Loads all the needed GSTVi model libraries;

5. Loads the SMP2 assembly
6. Executes the setup function defined in the script file to perform any final initialisation

step.

Events

SMP2 provides mechanism for
Definition of events
Firing events
Performing specific processing on event reception

But one important missing function is that there is no way to associate
data with the event

For GSTVi, there is a need to associate data with the events:
Associate the event with the name of a telemetry parameter for the event
“parameter value goes out-of-range”, “parameter value goes in-range”, “parameter
value matches a predefined value”
Associate the event with the name of a telemetry packet and the packet itself for the
event “TM packet generated”
Associate the event with the name of a telecommand packet and the packet itself for
the event “TC packet received”

GSTVi has defined its own scriptable-event mechanisms

Loading and Publication of Sub-Models (1)

GSTVi has specific needs:

GSTVi has „static“ SMP2 models defined in the assembly

But most of the models are created dynamically at initialisation time after
reading the GSTVi mission tailoring database.

Example: The TM/TC parameters are defined in configuration, and can only be created after
reading the configuration

One GSTVi mission tailoring database is defined for each mission to support

The choice of the mission is done at initialisation by the user, after the
simulation is started

No possibility to define this statically in the assembly !

The user may decide to switch to another mission during the simulation to
simulate spacecraft passes

Need to unload the models and load new ones

Loading and Publication of Sub-Models

The initialisation of the simulation must be done in 4 separate steps:

1. Start the simulation and load the SMP2 adapter

2. Perform the first initialisation (Configure()) which allows publication of
some data and operation to the simulation

3. Allow the user to select the GSTVi mission tailoring database

4. Terminate the initialisation process (Connect()) and switch to Standby
state.

To achieve this, the SMP2 standard had to be modified (from version
1.1 to 1.2) on request of GSTVi specific requirements

Simulation state diagram

Loading and Publication of Sub-Models

The SMP2 standard imposes important constraints on the design and
implementation of the SMP2 models :

Publication of SMP2 models and fields and operations is only possible in the
Building state

Published data and models cannot be un-published and un-loaded

This is fine for modelling of static models, which do not create any model or
data during the simulation

But this is an important limitation for modelling of systems comporting
dynamically created models/data, like GSTVi

Examples:
- re-selection of a different mission
- management of a command stack on the MCS model
- management of SLE links on the NIS model

Conclusion (1)

The SMP2 standard offers the needed component model function needed for
the development of the system
SMP2 Assembly is very useful to assemble the GSTVi virtual space system
SMP2 allows to dynamically create models and publish dynamic data in the
initialisation phase
The SMP2 models are easily portable – GSTVi was originally developed on
SIMSAT3 and the models have been easily ported to SIMSAT4 without the
need to change any code.
Single source approach for design and implementation is efficient if well used
and controlled
Tools offer a good productivity if reliable and well integrated in the
development environment
Concurrent development must be analysed and controlled, depending on the
available tools.
Reuse of existing code is not always simple, and can be a challenge

Conclusion (2)

The SMP2 component model misses some function
AddRef() and Release(), memory allocator

SMP2 does not address how dynamic shared library implementing the
SMP2 models are loaded. No SMP2 interface for loading shared
library is provided

Once in stand-by state, it is not possible to dynamically load and
create models or to publish additional data

No possibility to un-load data or models

No possibility to associate data with events

SMP2 containers are mapped in C++ to a vector, with no possibility to
decide on a key for indexing the vector

performance problem for large containers

Conclusion (3)

Support for Modern Software Engineering Techniques

Model Reuse

Model Integration

Configurable and Flexible Simulation

Model Development Productivity

n/a

www.vega-group.com

Independent Programme and System Assurance
Technical Excellence . Pragmatic Solutions . Proven Delivery

	A FIRST EXPERIENCE ON USING SMP2 FOR THE VIRTUAL SPACE SYSTEM
	Presentation Outline
	SMP2 Standard
	Virtual Space System Concepts (1)
	Virtual Space System Concepts (2)
	Virtual Space System Concepts (3)
	GSTVi Assembly Z
	GSTVi
	Development Process
	Development Process
	Portability
	Software Reuse
	Software Reuse – Migration to SMP2
	Software Reuse – Migration to SMP2
	Software Reuse – Migration to SMP2
	Software Reuse – Migration to SMP2
	Software Reuse – Migration to SMP2
	GSTVi Assembly (1)
	GSTVi Assembly (2)
	Events
	Loading and Publication of Sub-Models (1)
	Loading and Publication of Sub-Models
	Simulation state diagram
	Loading and Publication of Sub-Models
	Conclusion (1)
	Conclusion (2)
	Conclusion (3)

