Planetary Rover Mobility Performance Simulation Tool

Bernd Schäfer, Andreas Gibbesch, Rainer Krenn, Bernhard Rebele

German Aerospace Center (DLR), Institute of Robotics and Mechatronics Oberpfaffenhofen, D-82234 Wessling, Germany

SESP 2008 – 10th International Workshop

ESTEC, Noordwijk, NL, 7-9 October 2008

R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Contents

- Background and Motivation for Rover Mobility/Locomotion Simulations in Software: Mars Rovers from NASA and ESA
- Rover Mobility/Locomotion Modeling
 - Polygonal Contact Model
 - Rover Locomotion on Rocky Terrain
 - Soil Contact Model
 - Rover Locomotion in Soft, Sandy Soil
- Demonstration of Simulation Capabilities
 - Simulation Results of ExoMars Rover Locomotion
 - Trafficability, gradeability (uphill, crosshill)
 - ➤ Multi-pass
 - → Drawbar pull
- Validation and Verification, Simulation Architecture
- Outlook & Conclusions

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Background: Planetary Rovers, on Mars NASA MER (Jan 2004) + ESA ExoMars (> 2013)

Suspension: rocker-bogie each side

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Suspension: 3 bogies

DLR

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ESA's ExoMars: > 2013

all 6 wheels actuated for driving and steering

Get the wheel driving and steering torques to the soil for good traction performance

Typical examples of wheel tracks on sandy and pebble terrain

MER-A Sol 61 Legacy Pan (Middle Ground Hollow)

NASA's MER-rover Spirit wheel track: MER-A Sol 61 Legacy Pan (Middle Ground Hollow)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

5 > Planetary Rover Mobility > Bernd Schäfer

MER on Mars: typical wheel tracks in soft soils

Opportunity (MER-B) wheel tracks: by Navcam (left) and by Pancam observation (right)

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

6 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008

MER-B Sol 373

Movements over Soils - Limitations

MER-B Sol 57

Failed egress from 'Eagle Crater' (got stuck)

Climbing 'Husband Hill'

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Wheel-Soil Contact: Modelling the Reality

- Modelling the rover chassis by multiple rigid bodies,
- Adding some kind of spring and damping properties to hinges (if necessary)
- Modelling of flexibility in wheel
- Modelling of contact dynamics (PCM and SCM) for soft and hard soil characteristics
- Modelling special wheel-soil properties like bulldozing and multipass effects
- Modelling of soft soil properties when impacted during rover passes like wheel tracks, soft soil displacement, deposition and erosion

PDLR

R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft 8 > Planetary Rover Mobility > Bernd Schäfer

ExoMars Multibody System:

ExoMars: suspension 3-bogy concept

Transverse bogie rotation axis I/F's to rover body Longitudinal bogie rotation axis Deployment axis Drive axis Front

Baseline concept: top view

Baseline concept: front view

Baseline concept: side view

PDLR

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

10 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008

ExoMars: Rover Breadboard in Testbed

DLR

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

11 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008

Flexible Wheel Design (with Grousers)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Motivation for Rover Mobility/Locomotion Simulations in Software

- Rover chassis in project phases A/B not available
 - Support of chassis development on subsystem level
 - design of wheel drives (max. required torques)
 - design of steering drives
 - wheel design (number and shape of grousers)
 - ➤ bogie design (single, parallel)
 - Prove of skills of overall system rover
 - Trafficability and gradeability (uphill/downhill and crosshill) in both, rocky and sandy terrain
 - Drawbar pull DP = traction performance metric
 - DP = Max. tractive thrust available from soil over the vehicle wheel-soil contact area Resistances
 - force/torque impact on chassis
- Support of procedure and control development (phases C/D/E)
 - Parameter variations (soil properties, trajectories)
 - ➤ Hardware-in-the-loop simulations (controller, onboard computer)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Polygonal Contact Model – PCM / 1 Wheel-Ground-Interaction in Rocky Terrain

- ✓ Terrain and wheel surfaces represented by polygon meshes
- Individual polygon properties
 - ✓ Vertex positions
 - ✓ Surface normal orientation
 - ➔ Area size
 - Stiffness (Young's modulus, Poisson ratio)
 - ✓ Areal damping coefficient
 - Friction coefficient
- Applicable for arbitrarily shaped contact surfaces
- Applicable for multiple point contact problems

Polygonal Contact Model – PCM / 2 Wheel-Ground-Interaction in Rocky Terrain

Contact detection by Boundary Volume Hierarchy algorithm (Binary Box Tree)

- Calculation of relative kinematics at contact region
 - Intersection border polygon
 - Penetration depth inside polygon
 - Relative velocities

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Picture: Hippmann

Polygonal Contact Model – PCM / 3a Wheel-Ground-Interaction in Rocky Terrain

Comparison of half-space approximation (left) and surface layer model (right)
 Contact region to be small compared to the overall dimensions of the bodies
 Surface layer method uses a rigid half space for both contact surfaces (E=inf) with linearly elastic surface layer

Polygonal Contact Model – PCM / 3b Wheel-Ground-Interaction in Rocky Terrain (Multiple Contact Problem)

Contact dynamics by Elastic Foundation Model

$$p_i = \frac{K}{s}u_i; \quad K = \frac{1-v}{(1+v)(1-2v)} \cdot E$$

 p_i : Individual contact pressure

 u_i : Individual contact penetration

v: Poisson ratio of elastic layer

s: Elastic surface layer thickness

Negligible impact on center of mass / inertia tensor by deformation of elastic surface layer

Polygonal Contact Model – PCM / 4 Wheel-Ground-Interaction in Rocky Terrain

✓ Application of contact forces/torques at body fixed reference frame of wheel

$$\mathbf{F}_{n,i} = -A_i \left(p_i \mathbf{n}_i + d \mathbf{v}_{n,i} \right)$$

$$\mathbf{F}_{t,i} = \mu \left| \mathbf{F}_{n,i} \right| \frac{\mathbf{v}_{t,i}}{\left| \mathbf{v}_{t,i} \right|}$$

$$\mathbf{T}_i = \mathbf{r}_i \times \left(\mathbf{F}_{n,i} + \mathbf{F}_{t,i} \right)$$

$$; \quad \mathbf{F} = \sum_i \left(\mathbf{F}_{n,i} + \mathbf{F}_{t,i} \right); \quad \mathbf{T} = \sum_i \mathbf{T}_i$$

 $\mathbf{F}_{n,i}, \mathbf{F}_{t,i}$: Individual contact forces (normal / tangential)

- \mathbf{T}_i : Individual contact torques
- p_i : Individual contact pressure
- A_i : Individual contact area size
- μ, d : Friction coefficient, areal damping coefficient
 - \mathbf{n}_i : Individual surface normal vector
 - $\mathbf{r}_{\mathrm{i}}\mathrm{:}$ Individual distance from body fixed reference frame
 - **v**_{*i*}: Individual relative velocity (normal / tangential)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Soil Contact Model – SCM / 1 Wheel-Ground-Interaction in Sandy Soil

- Soil description by elevation grid
- Individual grid node properties 7 Z_{Soil}
 - Grid resolution 7
 - Soil parameters 7 (e.g. by Bekker's formula)
 - ➤ Cohesive modulus
 - **7** Friction modulus
 - Exponent of sinkage
 - Internal friction
- Wheel description by surface point cloud
 - Vertex coordinates
 - ✓ Wheel resolution higher than soil resolution

Soil Contact Model – SCM / 2 Wheel-Ground-Interaction in Sandy Soil

- Contact detection based on elevation comparison at soil grid nodes (sinkage and relative velocities)
- Plastic deformation of soil (footprint)

in der Helmholtz-Gemeinschaft

Soil Contact Model – SCM / 3 Wheel-Ground-Interaction in Sandy Soil

✓ Contact dynamics according to Bekker's empirical formula:

$$p_i = \left(\frac{k_c}{b} + k_{\varphi}\right) z_i^n; \quad \mu = \tan(\varphi);$$

 p_i : Individual contact pressure at grid node

 z_i : Individual sinkage at grid node (plastic soil deformation)

 k_c, k_{φ} : Cohesive and frictional modulus

n: Exponent of sinkage

b: Width of contact object (wheel)

 μ : Friction coefficient

 φ : Angle of internal friction (soil)

After soil deformation:

$$p_{i} = \begin{cases} \left(\frac{k_{c}}{b} + k_{\varphi}\right) z_{i}^{n}; & z_{i} > z_{i,\max} \\ 0; & z_{i} \le z_{i,\max} \end{cases}$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Soil Contact Model – SCM / 4 Wheel-Ground-Interaction in Sandy Soil

- Soil displacement from contact interference volume (wheel tracks)
- ✓ Temporary deposition of displaced soil volume at contact zone border
 - Each sub-volume displaced from a contact grid node is spread over all border grid nodes.
 - The closer the border node the bigger the fraction of the displaced volume (fraction ~ 1/distance).
 - Thermal erosion of the soil depending on the internal friction of the soil
 - Distribution of temporarily deposed volume
 - Refilling of wheel tracks

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Soil Contact Model – SCM / 5 Wheel-Ground-Interaction in Sandy Soil

- Re-calculation of contact surface by soil displacement is the key for modeling sand specific wheel-terrain dynamics
 - ➤ Normal forces in lateral directions (in addition to friction forces)
 - ➤ Wheel rolling resistance
 - Drawbar pull
 - ✓ Multi-pass effects

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

29 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008

Validation and Verification V&V

in der Helmholtz-Gemeinschaft

DLR

obility > Bernd Schäfer October 7-9, 2008

ity > Bernd Schäfer October 7-9, 2008

Validation step 11 (final)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR

Correlation Results (Experiment – Simulation)

Good correlation 7

in der Helmholtz-Gemeinschaft

Simulation Results

in der Helmholtz-Gemeinschaft

Slope angle parameter variation from 34-44° with flexible wheels
 Symmetric stability limit for front and middle wheels
 Rear bogie not at stability limit

October 7-9, 2008

Simulation Architecture

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

36 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008

ROCC Rover Operations Control Center (ALTEC, I)

Recommendation:

3D-S Tool to be used for rover operational phases

- To prepare pre-simulations of rover trajectories for optimal trajectory finding
- To perform post-simulations of driven trajectories
- To help isolating failures in case of non-nominal trajectories driven by the Martian rover.
- To extract the right Martian soil parameters from driven paths
- To increase reliability into the next trajectories to be determined by the ground operator

Future Planetary Exploration: Rovonaut = Robonaut on Rover

..\..\Animations_Videos_Figures\Rover\RoverMitTorso_V3_MPEG4.avi

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

38 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008

39 > Planetary Rover Mobility > Bernd Schäfer October 7-9, 2008