SimTG: Successful Harmonization of Simulation Infrastructures

10th International Workshop on Simulation for European Space Programmes - SESP 2008

Claude Cazenave, Harald Eisenmann Astrium Satellites

Outline

- Background & History
- Development status
- Current applications
- Future work
- Conclusion

Background & HistorySimTG: Objectives & Goals -

- Following the ASTRIUM organization pooling all simulators within the same division of Central Engineering
- Simulation of Third Generation (SimTG) is the title of the project allowing a transnational simulators harmonization:
 - Share of the same infrastructure
 - Share of the same model library
 - Share of the same development process and tools
 - Share of expertise & resources

Background & HistorySimTG: Objectives & Goals -

- The mandatory features to consider are:
 - Compliance to "ASTRIUM user" needs
 - Compliance / Contribution to ESA simulation & modelling standardization efforts
 - Alignment with the overall ASTRIUM System Engineering process
 - Mastership of the tools by the Simulation division, for reactive user support
 - Ability to widen the scope of the simulation (i.e. Virtual S/C trends)
 - Incremental introduction of SimTG avoiding a program to manage all risks
- Forms the base for future technology improvements

Background & History - Approach & Process -

Development status - SimTG overview -

Development status SVF use case example

Development status ATB use case example

Development status SimTG kernel components

•All the components have been delivered

SimTG Model ICD provides
 SimTG model structure definition
 and SMP2 compatibility

Development status SimTG kernel technologies

- ACE: encapsulates OS services (threads, sockets, ...) on the targeted platforms
 - Linux and Linux RT (currently RedHawk)
 - Windows (using mingw)
 - VxWorks
- TAO: for CORBA communication
- XERCES: for XML file reading
- TSP: for real time simulation sampling
- Development environment
 - SVN + trac
 - GCC
 - ANT (makefiles)
 - Eclipse (optional)

Development status SMP and SimTG Models

Development status Other components

Processor emulators :

SimERC32 and SimLEON (see dedicated presentation)

SimOPS

- Light-weight test environment for simulators
- Supports defining and running validation tests

JSynoptic

- Graphical data visualization
- Visualization of on-line and offline data

Development status Other components cntd

SimDB and SimML

- Definition of simulator characterization data
- Import / export simulator and engineering data

XML based exchange of simulator data

■ SimTG M1553

Numerical simulation (calibrations according to data base)

 HW interface available on VxWorks and Linux RedHawk

SimTG Spacewire

- Numerical simulation
- HW interface ...

Current and upcoming Application of SimTG

- DIVAS
 - SVF delivered
 - Avionic prototype bench under development
- Inmarsat payload
 - SVF delivered
- BEPI
 - FVB prototype delivered
 - STB, SVF and ATB under development
- EarthCare: planned FVB, SVF, ATB
- Sentinel-2: planned FVB, SVF, ATB
- ExoMarsRover: planned FVB, STB, SVF, ATB

Next Steps

- Simulation modelling framework
 - Simulation Model Design including code generation
 - Simulator Configuration
 - Document generation
 - **-** ...
- Maintain current tool in the state of the art
 - Integration within Eclipse for SIMOPS and JSynoptic
- Virtual Spacecraft
 - Further integration with (existing) engineering databases
 - Enhanced integration with S/C visualization
 - Improved configuration to follow S/C design

Conclusion

- SimTG is a state of the art simulation environment fully operational
- SimTG kernel is development jointly by a transnational team
- SimTG development eases
 - Working together within Astrium including sharing experience, workload balancing
 - Development of common models (examples 1553, SpaceWire)
 - Set-up SimTG model library
- Simulator Modeling tool is the next challenge!

