

THE EUTEF SIMULATOR MODEL: A HYBRID IMPLEMENTATION FOR OPERATIONS TRAINING AND VALIDATION

SESP 2008 presentation E.A. Kuijpers ⁽¹⁾, K.A. van Aarsen⁽²⁾, E.Dutruel⁽³⁾ A.Kramer⁽¹⁾, Z.Pronk⁽¹⁾, F.Raijmakers⁽²⁾

⁽¹⁾National Aerospace Laboratory NLR, Space department ⁽²⁾Atos Origin ⁽³⁾ESA/ESTEC -TEC-SWG

• Simulation Payload Utilisation Columbus

- European Technology Exposure Facility (EuTEF) Simulation
- Simulation at User Support and Operation Centre(USOC)
- Integration tools in infrastructure

• EuTEF Simulator Model

- EuTEF Data Handling Power Unit (DHPU) central core
- EuTEF hybrid approach
- Project description

• Software and Hardware Design

- Stimuli and monitoring hardware
- Software design

• Experiences and conclusions

- EuTEF external facility in orbit on Columbus with nine instruments (technology experiments) co-ordinated via EuTEF Data Handing Power Unit(DHPU)
- Engineering Model essential for validation while Flight Model in orbit and for EuTEF only EuTEF DHPU EM available

- Erasmus User Support Operation Centre (USOC) at ESTEC responsible for training and validation operations
 - European Drawer Rack (EDR) internal Columbus Facility
 - European Technology Exposure Facility (EuTEF)
- Environment at USOC for operations
 - Columbus Distributed Monitoring Control System (CD-MCS)
 - Standardisation and integration with other ground segment centres
- Simulator objective for training and validation USOC
 - Preparation and operator training
 - Validation of operational products (procedures, timelines)
- Simulation used for testing local systems and configuration databases
- Generic tools (ESA provided) and payload specific tools(USOC)

• DaSS simulation

- Data Services SubSystem DaSS
- Simulation interface to Columbus Centre and up-/downlink developed by SESS/Col-CC
- Columbus Simulator
 - Java based simulation tool developed by SESS Germany
- Columbus Emulator
 - Interface to EM and Columbus (Astrium)
- PaCTS
 - Toolset including "Microgravity Advanced Research and Support Centre simulator"
- Local simulation only
 - EAC, Col-CC, NASA tools not included

- EuTEF DHPU EM central core
- Columbus external and instrument internal interfaces

Connectors: J1: Power in J2: Power instr. 1-4 J3: Power instr. 5-8 J4: Discrete cmd 28V J5: Ethernet J6: Temp. sensor J7: Milbus to APM J10: RS-422 Ground test J11: RS-422 instr. J12: Milbus to P/L J15: Temp. sensor. J16: Discrete sign. Instr.

ESM hybrid approach

- EuTEF DHPU EM central core
 - Available as part of development

• Mimic conditioning and monitoring EuTEF DHPU EM

- Stimuli: power load, thermal environment(thermistors)
- Data handling to instruments: RS-422 and Mil-Std-1553
- External Columbus interfacing

• Integrate development model Earth Viewing Camera(EVC)

- Realistic model TAXI interface images
- Mil-Std-1553 interface

• Interface to instrument Mission DataBase (i-MDB)

- Instrument MDB knowledge not available at start of project
- Central reference for operational products

• Difference with EDR approach

- EDR-PCDF System Simulator (all software)
- EDR EM + instrument drawer models (all hardware)

Project description

• NLR main contractor, Atos Orgin subcontractor

• Funding as part of the Erasmus USOC infrastructure support

Integration in USOC infrastructure

Conditioning and monitoring

- Mil-Std-1553 instrument i/f
- RS-422 instrument i/f
- A digital I/O module for power-on
- Digital line detection
- Interface to resistors simulating temperatures

Integration interfacing hardware

• Earth Viewing Camera – Hardware interface to convert

 Hardware interface to convert electrical to optical TAXI for USOC interfacing

Power on detection

 Instruments started based on powering on of DHPU 28 V outlets

Thermal simulation

- Manual
- Software control via relay board option

• Power load

- Simulator control 4 loads
- RS-232 I/F
- Manual subset

Software ESM Workstation design

- The generic EuroSim based platform (green/yellow line pattern)
- The generic EuTEF instrument interface software (yellow)
- Specific EUTEF instrument modeling software (blue)

Payload Models using generic scripts

- Perl Script for i-MDB import and generation of C-functions

 Input extracted from CD
 - MCS operations interface
- State Transition Diagram
 - EVENTS, CONDITIONS, ACTIONS
- PERL script
 - STD conversion to C-code for integration with EuroSim models

PART OF SYNTAX STD-files

definitions = 'DEFINITIONS:', '\n',

c_definitions, '\n'

'ENDDEFINITIONS', '\n';

c_definitions = <any C code in global scope> ;

event = 'EVENT:', event_trigger, '\n',

['CONDITIONS:', conditions, '\n',]

['RESPONSE:', response_statement, '\n',]

['COMMENT:', quoted_string, '\n',]

'ACTIONS:', '\n',

c_statements,

'ENDACTIONS', '\n';

User interfaces

Simulator interface (EuroSim)

EuTEF Operator interface (CD-MCS)

Experiences (1)

- Integration with on-going developments
 - Phased approach
 - Training and familiarisation in parallel

• Instrument MDB import

 Performed several times during development for new updates

• EuTEF DHPU EM use

- Essential for on-board debugging
- Dependency on availability

Real-time vs non real-time

 Timelined operations involved separate development Space Applications Services, Belgium, partner in Erasmus USOC

• Change to 24-hours operations – ESM use for new operators

Experiences (2)

- Options to integrate experiences during flight operations – Reuse FM experience via i-MDB
 - validation
 - During operations limited development

Integration of Earth Viewing Camera Hardware references essential

- Software simulation backup
- Additional instrument Models available
 - Compatility allowed integration
 - Software simulation for fault-injection
- TRIBOLAB state model
 - Procedure validation
- Software simulation DEBLE-2
 - Mix of software and hardware model use for debugging of interfaces

Hybrid approach challenging

- Realism EuTEF DHPU EM hardware required
- Additional instrument models appreciated
- Software simulation essential tools
- Generic and payload specific simulation tools
 - All used in USOC environment for operations training and validation

• Flexibility demonstrated

- Configuration changes
- Resolution of issues during preparation and flight operations with integration of lessons learned

• Thanks for your attention

• Questions/comments?

• Acknowledgements

- ESA contract no. 13980/99/NL/PG: WO-14 realised with Dutch national support for the Erasmus USOC
- Carlo Gavazzi Team for support use of EuTEF DHPU EM
- Support at NLR on hardware and software integration
- Operators at Erasmus USOC for inputs

Backup option for EuTEF DHPU EM

instrument-MDB and facility MDB

• PaCTS related MDB for DHPU EM, i-MDB for ESM

www.nlr.nl - info@nlr.nl