SCISYS VEGA

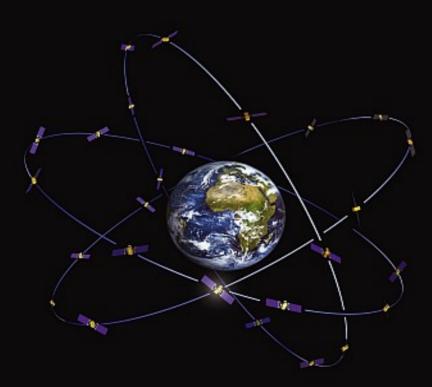
Galileo Constellation Operations Simulator

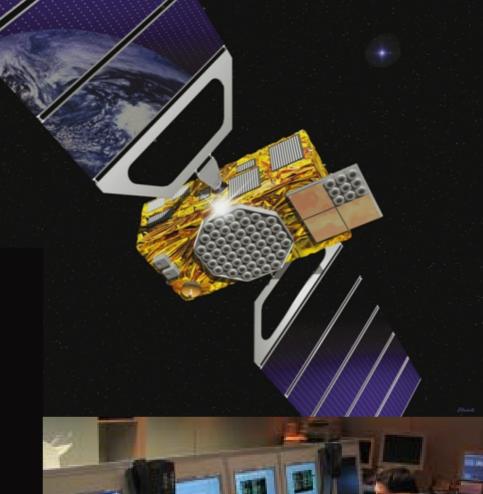
Presented by: Alastair Pidgeon

www.scisys.co.uk

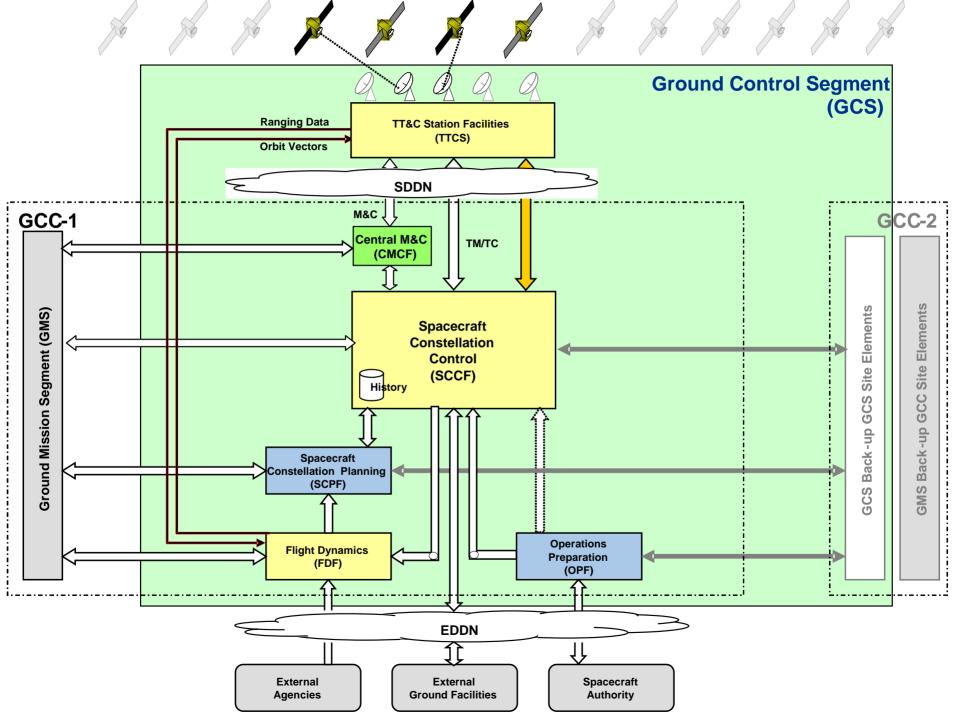
Alastair Pidgeon, Steven Straw SciSys UK Ltd. Christian Bodemann, Michael Irvine Vega I-T GmbH

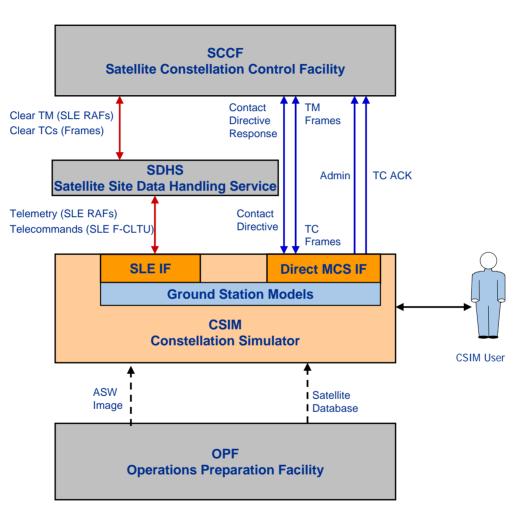
Overview


- An Introduction to CSIM
 ⇒ What it is
 - ⇒ Operations context and Use Cases
- Architecture Overview
 - ⇒ Design Drivers and Trade-Offs
 - ⇒ High-Level Architecture
 - Spacecraft Model Distribution
 - ⇒ Constellation Support
- Current Status
- Conclusions

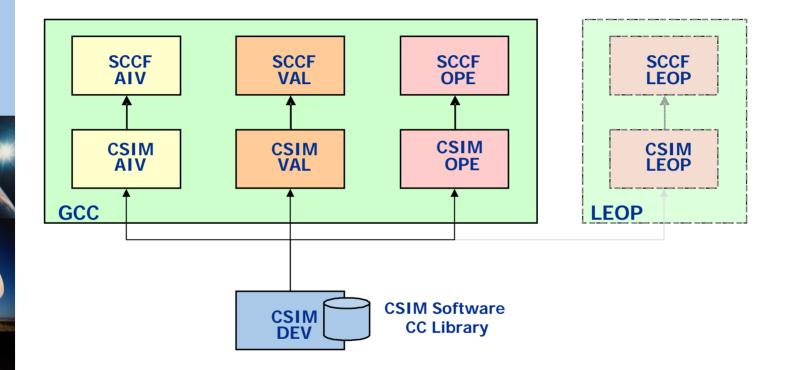

What is the Constellation Simulator?

- Simulates the Galileo spacecraft constellation to support ground segment validation & operations
- Features
 - ⇒ Models all spacecraft in and out of ground contact
 - ⇒ Accepts TC from the control system & responds appropriately
 - ⇒ Generates payload and platform housekeeping TM
 - Models onboard mass memory (stores TM when out of ground station contact)
 - ⇒ Runs the real onboard software image
 - ⇒ Models predefined failure cases
- Supports Galileo IOV (4 spacecraft)
- Demonstrate it will support FOC (41 spacecraft in the current worst case replenishment scenario)


October 2008 SESP 2008



CSIM Operational Context


October 2008 SESP 2008

Use Cases ... Different Configurations

- Testing
 ⇒ GCS Functionality
 - ⇒ Spacecraft Database
 - ⇒ Overall Ground Segment
- Operations Procedure Validation
- Operations Rehearsals
 - ⇒ Operator (Nominal and Simulated Anomalies)
 - ⇒ Manoeuvre Operations
 - ⇒ On-Board Software Maintenance
 - ⇒ Satellite Deployment/LEOP (planned)
 - ⇒ Two GCC Operation
- Simulation Scenario Preparation

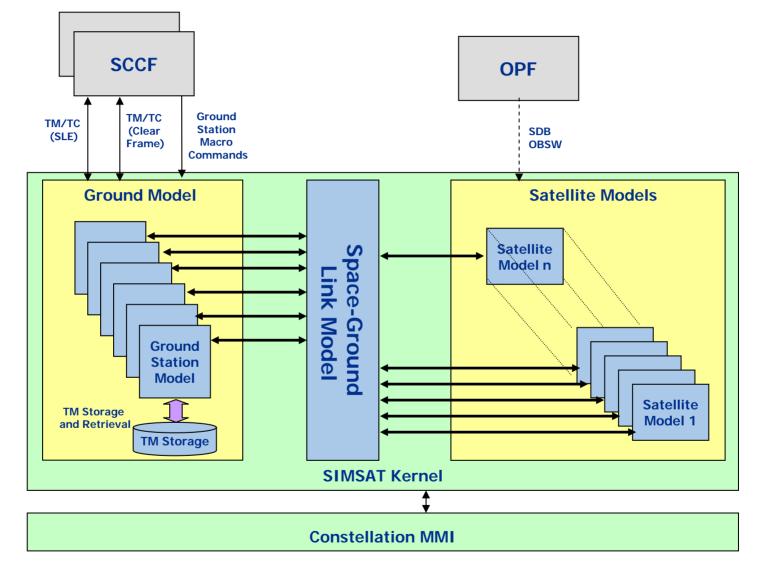
CSIM Hardware Chains

Key Design Drivers

- Support
 - ⇒ Up to 6 high-fidelity (emulated) spacecraft
 - ⇒ Up to 36 low-fidelity spacecraft plus 5 high fidelity
- Capable of supporting a heterogeneous fleet
 - ⇒ Different OBSW and Satellite Database (SDB) versions
 - ⇒ Different onboard hardware (later FOC spacecraft?)
 - ⇒ Different spacecraft configurations (failures etc.)
- Provide a single user interface from which to run and control the entire constellation simulation
- Multiple spacecraft contacts to multiple ground stations
- Long duration mission (20 years)
- Cost and Schedule

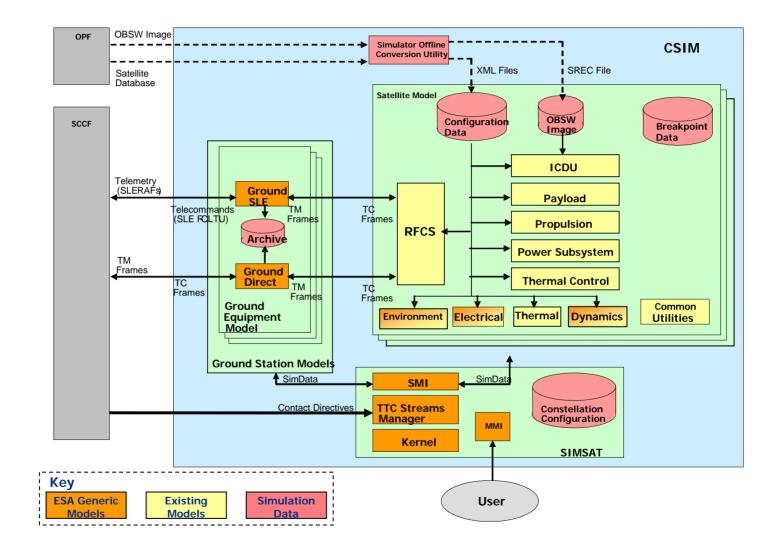
Fidelity

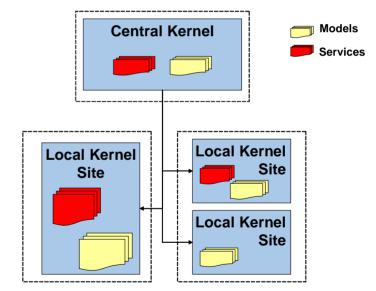
- A modern spacecraft simulator has to model the onboard software several options:
 - Software Emulator (high-fidelity, CPU hungry, uses real OBSW image, new images/patches can be loaded)
 - Recompilation of OBSW (high-fidelity, moderate CPU, cannot easily integrate new OBSW versions, patching not possible)
 - ⇒ Full functional model (moderate CPU, replicates most functions of OBSW, difficult and expensive to develop & maintain, patching not possible)
 - Simple functional model (very limited functionality mainly TM/TC, simple or no AOCS control laws, low CPU, little need to align with OBSW)
- CSIM requires a balance between fidelity and performance


Design Trade-Offs

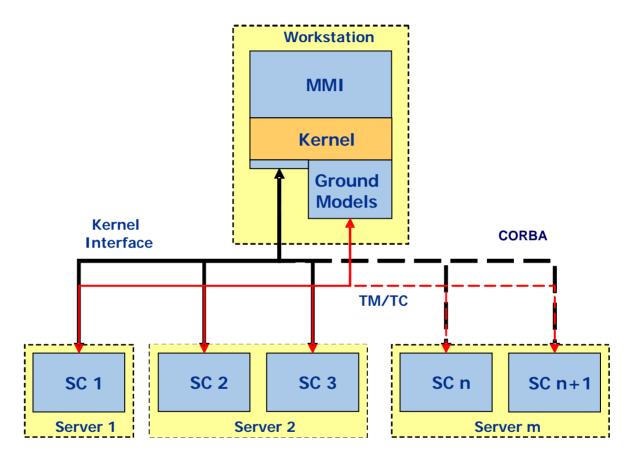
- High-fidelity emulated models for spacecraft in ground contact, low-fidelity for out of contact
 - \Rightarrow (2+2) for IOV
 - \Rightarrow (5+36) for FOC
 - \Rightarrow (6+0) for FOC LEOP
- No inter-spacecraft links simplifies architecture
- Reuse of existing ESA infrastructure
 - ⇒ SIMSAT 3.0 (LINUX) => SIMSAT 4.0
 - ⇒ SMP2 Simulation Model Portability Standard
 - ⇒ Generic Models (Orbit, Dynamics, Power, Ground)
 - ⇒ ESA 64-bit ERC32 software emulator
- QERC emulator for "low fidelity" models in D2
- Reuse existing models of similar equipment provides a *starting point* - reduced cost and risk

October 2008 SESP 2008


CSIM Overview



Spacecraft Models and Reuse


Constellation Infrastructure Enhancements

- Support for Constellation MMI
 - ⇒ Summary view of spacecraft status
 - ⇒ Constellation commanding, monitoring & management
 - ⇒ Drill-down to details of individual spacecraft
- Distributed Simulation
- Central Kernel
 - ⇒ Ground models
 - ⇒ Overall schedule
- Local Kernel Site
 - ⇒ Spacecraft model Scheduling
 - ⇒ Logging
 - ⇒ Data Grouping (to MMI)
 - ⇒ Save & Restore

CSIM Model Distribution

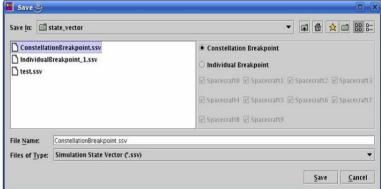
October 2008 SESP 2008

Constellation Management Support

- Supports user creating a constellation configuration from individual spacecraft
- Configuration used to support initialisation of spacecraft models
- User can

⇒	Add	spacecraft

- ⇒ Remove spacecraft
- Spacecraft each has
 - ⇒ Unique operations name
 - ⇒ CCSDS spacecraft ID (stored in the OBSW)
 - ⇒ Specified OBSW version
 - ⇒ Fidelity
- User can save and load a named configuration


	Configuration N	ame : <new configurat<="" th=""><th>ion></th><th></th></new>	ion>	
	Configuration No	inte : snew contiguiat	10112	
Operations Spacecraft Id	CCSDS Spacecraft Id	OBSW version	Configuration Folder	Fidelity
GalileoSat01			/Config1/	Hi-Fidelity
GalileoSat02	0x112	v1.2.1	/Config2/	Hi-Fidelity
GalileoSat03	0x113	v1.2.2	/Config3/	Hi-Fidelity
GalileoSat04	0x114	v1.2.4	/Config4/	Hi-Fidelity
GalileoSat05	0x115	v1.3.0	/Config5/	Hi-Fidelity
GalileoSat06	0x116	v1.3.1	/Config6/	Hi-Fidelity
GalileoSat07	0x117	v1.3.3	/Config7/	Lo-Fidelity
GalileoSat08	0x118	v2.2.0	/Config8/	Lo-Fidelity
GalileoSat09	0x119	v2.2.2	/Config9/	Lo-Fidelity
	Existing Configurations			

Constellation "Breakpoint"

- Ability to save/restore the state of the entire constellation
- Allow spacecraft to be reinitialised in a different orbit/epoch
- Scripts place SC state into safe mode allowing epoch and orbit position change before save and restore back into fine-pointing mode.
- All spacecraft breakpoints independent of each other
- Scripts to save/restore run in parallel for each spacecraft
- Constellation enlargement by allowing individual spacecraft to be restored into a constellation breakpoint

Current Status

- CDR successfully completed in February 2008
 - ⇒ Detailed Design
 - ⇒ Consolidation of Ground Control Segment issues affecting CSIM
- Deliveries
 - ⇒ D1: January 2009
 - ♥ IOV Constellation Capable
 - SOC ERC32 Emulator
 - Some workstation, 2 servers (2 SC per server) per chain
 - ♥ Used to support GCS Segment Integration
 - ⇒ D2: June 2009
 - Section 2010, Launch planned for May-2010, latest.
 - ♥ Used to support IOV Launch Preparations
 - ℅ Will integrate QERC high-performance processor emulator
 - ✤ No additional hardware
 - ♥ Full constellation capability demonstration on combined HW from three chains

Conclusions

- CSIM is a highly challenging simulator development
 ⇒ Up to 41 heterogeneous spacecraft
 - ⇒ Distributed simulation
- Careful design choices allow risk to be minimised
 - ⇒ Minimal changes to the simulation infrastructure
 - ⇒ Avoid "throwing hardware at it"
 - ⇒ Reuse of existing models of similar equipment
 - ⇒ Support for IOV and scalable to FD
- Development is ongoing for D1
 - Completion of spacecraft models (driven by SC design information)
 - ⇒ Integration of OBSW v1 (TM/TC and Data Handling)
 - ⇒ Integration of OBSW v2 (most AOCS modes, no payload)
 - ⇒ Integration of OBSW v3 (FDIR)
 - ⇒ Validation of constellation infrastructure

October 2008 SESP 2008

19

Acknowledgements

 EADS Astrium Ltd. - Ken Booty, the Astrium CSIM Project Manager

Max Pignede, the ESA Technical Officer

