
Presented by:
Alastair Pidgeon

www.scisys.co.uk

Validation of a High-
Performance Emulator for SVF

Alastair Pidgeon, Paul Robinson, Sean McClellan, SciSys UK Ltd. 
Fabrice Bellard, FFQTECH
Paulo Marques, Luís Pureza, University of Coimbra
Felice Torelli, ESA ESTEC TEC-SWS

FFQTECH 



FFQTECH 

Outline

Software Processor Emulator
Motivations
Dynamic Translation in a Nutshell
QEMU => QERC/QERL
Project Objectives 
Enhancements Performed
Validation for SVF Use
Results So Far
Future Work
Summary



FFQTECH 

Introduction

Innovation Triangle Initiative (ITI) Project
FFQTECH: Inventor
University of Coimbra: Academia
SciSys: Developer and End-User

Objective is to demonstrate that a QEMU-based 
emulator can be used within an SVF
Milestones

KO: February 2008
SRR: July 2008
MTR: September 2008
Delivery: Early 2009



FFQTECH 

Software Processor Emulator

Host Computer

Host Operating System

Target Processor
Emulator

Target Processor 
Operating System

Target Processor 
Application Software

I/O Models

Simulator Emulated Target Processor

Other Models

Main Uses
OBSW 
Development & 
Debug
Open Loop Tests 
for OBSW
Closed-Loop 
Software 
Validation
Operations/
Training 
Simulators



FFQTECH 

Motivations

Current processor emulators are 50-100 times 
slower than host

Work for older generation of space processors
Relied on increasing clock-speed to keep pace
Mainly serial in nature - multi-core machines little help

LEON2/3
3-5 times ERC32
performance

Need a new 
approach

Hardware
Software

Align to TSIM, the 
de facto standard



FFQTECH 

Dynamic Translation – In a Nutshell

Traditional emulators read each target instruction 
and translate to the equivalent host instruction(s) –
every single time they are encountered
Dynamic translation compiles blocks of target 
instructions to host instructions
Blocks typically between branches, ~5-10 
instructions long
Blocks compiled on the fly and stored in memory
When a block is encountered again it is retrieved 
from memory and executed

This is the where the performance gain comes from
BUT

Execution at block level raises issues with the processor 
clock and I/O timing.



FFQTECH 

Intepretation vs. Dynamic Translation

Interpretation Dynamic Translation 



FFQTECH 

QEMU => QERC/QERL

QEMU Dynamic Translation Emulator
Open Source
Supports many target processors including SPARC
FAST

BUT
Mainly used to emulate complete machine (not just a 
processor)
No support for ERC32
No support for LEON
Virtual timers rely on 
host clock – no link to 
instructions executed
No shared library
No TSIM interface

Intel Pentium 4 EM64T @ 3.6 GHz



FFQTECH 

Generic QEMU Target and Host Support

CPU Architecture TARGET HOST

Dev only 
TCG

Dev only 
TCG



FFQTECH 

Project Objectives

Assess areas where QEMU would need to be 
enhanced

Instruction Timing/IO
Removal of compiler dependencies
Further improved performance

Perform selected enhancements and compare 
benchmarks with baseline QEMU
Add a TSIM-like interface to allow plug-and-play
Validate QERL/QERC

Boot and run Linux/RTEMS and applications within QERL
VSRF/RSVF 6 using “EagleEye” OBSW
Validate in Aeolus Simulator



FFQTECH 

Enhancements Performed

Many of the identified improvements were done by the open 
source community
Tiny Code Generator – minimises compiler dependencies
Performance Improvements

Alignment checks
Condition codes
Register allocation
Global register allocation for the register window pointer
Better exception handling
~50% improvement over baseline QEMU 0.9.1

Cycle Counting
Addition of instruction latencies in each block
No cache or memory timing taken into account
Floating-point instruction timings approximate

Added key elements of TSIM interface
QEMU gdb interface used instead of TSIM



FFQTECH 

LEON2 AT697 Support Status

Peripheral Status Observations
Interrupt Controller

Secondary Interrupt Controller Not in AT697

Timer Unit No second timer yet

UARTs No UART2 yet

Parallel IO Handled as MMIO

LEON Configuration Register

Memory Configuration



FFQTECH 

ERC32 Support Status

Peripheral Status Observations
Interrupt Controller

System Control Register

DMA Not used in OBSW

UARTs No UART B yet

Timers No watchdog yet

General Purpose Interface Handled as MMIO

Memory Configuration



FFQTECH 

Results So Far

Supports both ERC32 and LEON2
The parts actually used by OBSW
Configurable to ERC32 or LEON by command
TSIM interface largely supported

Approximately 5x faster than TSIM on same 
hardware
Runs Linux & RTEMS within QERL
Has run in VSRF/RSVF via 
TSIM interface but work 
ongoing
Some fixes provided back 
to QEMU



FFQTECH 

Future Work

Complete validation on VSRF/RSVF6
Resolve VSRF/RSVF 6 issues
Run with ERC32 version
Run with LEON2 version

Validate within the Aeolus Simulator
Run real OBSW in a real-time, closed loop context for 
ERC32



FFQTECH 

Summary of QERC/QERL

Derived from open source QEMU
LGPL Licence applies
Alignment with QEMU now maintained

Allows improvements to QEMU to be incorporated
Performance is ~5x that of conventional emulators
Provides the ability to run OBSW in a simulated 
LEON2 faster than real-time
Provides a low-cost alternative to TSIM for ERC32 
and LEON based OBSW development and simulations
Allows multiple processor emulations on a single 
machine

But TSIM interface would need to be extended to specify 
because it does not allow a processor instance to be 
specified


	Validation of a High-Performance Emulator for SVF
	Outline
	Introduction
	Software Processor Emulator
	Motivations
	Dynamic Translation – In a Nutshell
	Intepretation vs. Dynamic Translation
	QEMU => QERC/QERL
	Generic QEMU Target and Host Support
	Project Objectives
	Enhancements Performed
	LEON2 AT697 Support Status
	ERC32 Support Status
	Results So Far
	Future Work
	Summary of QERC/QERL

