SIMLEON: A LEON processor emulator

10th International Workshop on Simulation for European Space Programmes - SESP 2008

Claude CAZENAVE
Bernard Delatte

EADS ASTRIUM SAS

CNES

Outline

- Background
- Development process
- Current status & users
- Future work
- Conclusion

Background

1750 emulators

- At CNES
 - First development for the SPOT family in 1985
 - Reused for the PROTEUS family since 1998
- At ASTRIUM
 - First development for E3000 operation simulator in 1998
 - Used for :
 - 15 telecom spacecrafts
 - Rocsat and Theos earth observation satellites
 - Improved version to achieve SW validation developed for METOP to replace HW benches
 - Now also used for E3000 SIMAIT (numerical satellite and EGSE simulation used to prepare AIT procedures) and SVF

Background

SIMERC32 (ERC32 emulator)

- Developed in 2001/2002
- CNES/Astrium co-funding with shared IPR
- Current users :

Program	Use case	User
Pléiades	SVF, SIMAIT, SIMEFM	Astrium Satellites
	Operations (BOSS & SINUS)	CNES
Galileo	SVF	Astrium Satellites
GAIA	SVF	Dutch-Space/Astrium Satellites
Bepi-Colombo	SVF	Astrium Satellites
Vega launcher	SVF	Astrium ST
Ariane5 new generation	SVF	Astrium ST
Airbus A350	SVF	EADS Airbus

SIMLEON Development inputs

- Development started in 2006
- CNES/Astrium co-funding (extension of the SIMERC32 cooperation)
- Requirements are based on SIMERC32 specifications :
 - Overall timing accuracy should be better than 80% (today is better than 93%)
 - Addition of a "watch point" service
 - Addition of a cache mechanism (configurability : line/set number...)
 - Target platforms : Linux and Windows (x86)
- Reuse of interfaces/service definition from SIMERC32

Leon VHDL flexibility

- Leon processor is delivered as open-source VHDL IP
 - Easy to change a component
 - Processor is no more a non-modifiable black box
 - Part of design/devices can be different
 - Memory controller can be changed to add automatic scrubbing :
 - Memory controller registers differ
 - Memory controller overall behavior differs
 - Other part of the design stay in place
 - Memory mapping is easy to change
 - Type of memory (SRAM, SDRAM...) is "easy" to change too
 - ... easy to change everything by design!

ERC 32 VS Leon System designer point of view

- ERC32 : internal bus not available
- LEON: internal bus available to plug extension (custom devices...)

Development challenges (1/2)

- Emulator core was redesigned to take into account Leon2/3 flexible HW design
 - Core split in module
 - Configured via build system : fully configurable
 - Respect the same interface : exchangeable
 - Eg : memory controller :
 - Specify memory area parameters (size, timings, base address...)
 - Easily add another area at compile time

Development challenges (2/2)

Timing computation

I-Cache State	Miss	Ŧ	플	Hit	Ξŧ	Miss	Miss	Miss	Miss							
Fetch	0	1	2	ST	4	5	6	7	4	5	6	7	0	1	2	3
Decode		0	1	2	ST	ST	ST	ST	ST	4	5	6	7	0	1	2
Execute			0	1	2				ST	ST	4	5	6	7	0	1
Memory				0	1	2				ST	ST	4	5	6	7	0
Write					0	1	2				ST	ST	4	5	6	7

10

5

Bus Activity

cycles

Current status

- Validation performed by comparison with VHDL
 - Leon2 : ok
 - Processor 1.0.32-xst VHDL for LEON2
 - Validation report available
 - Leon3 : in progress
 - Processor 1.0.13 VHDL for LEON3
 - Validation report to be available at the end of the year
- Performance
 - Leon2 40 MHz, Stanford benchmark test :
 - With accurate timing (compliant with spec): 51% of real time
 - With average timing (no cache, ...): 91% of real time

Current users

- AlphaSat payload
 - SVF delivered
- AstroSat250 (Astrium platform)
 - SVF delivered
 - SIMEFM (HITL with OBC numerical model) foreseen

Future Work Performance improvement

- Current version is not yet optimised
 - Local optimisation : expected improvement up to 20%
- JIT for performances improvement
 - A dynamic binary translation has been prototyped
 - Acceleration factor is greater than 10

Conclusion

- Operational and qualified product is available
- Accuracy requirement achieved
 - Already used for the new SVF benches
- Real time performance for operation simulator is met
 - Without cache and pipeline simulation, average timing
- Some performance improvement expected for HITL use case
 - And JIT prototype demonstrates huge acceleration factor
- By managing the Leon processor complexity and the incoming JIT acceleration factor we are confident for developing the next generation processor emulators

