LEON SVF, a hardware accelerator for LEON2-FT software tools

SESP 2008

Mauro CALENO (ESA/ESTEC) & Fréderic PASQUIER (Astrium Satellites)

9 October 2008

Contents of the presentation

- Near limit in LEON software simulators
- Rationale for hardware-based accelerator
- LEON SVF: concept, consortium and architecture
- Targeted performances
- Current status of study
- Lessons learned
- Activities to completion of contract
- Conclusions

Abbreviation note: SVF=Software Validation Facility

Near limit in LEON software simulators

- ERC32 SW-simulators emulate OBC@25MHz in real-time
 - Instruction set emulation
 - TSIM, SIMERC32, TargetSIM, ESOC-sim
 - Eg Galileo IOV, Herschel-Planck, Gaia, Bepi-Colombo
- LEON SW-simulators emulate OBC@40MHz in real-time, but
 - Flight OBC expected to clock Atmel AT697 ASIC at 80MHz
 - Simulation not fully representative, e.g. cache model
- Block-oriented dynamic translation SW-simulators:
 - Alternative emerging technique
 - Performance is boosted compared to instruction set emulation
 - Accuracy is reduced
 - Not-proven for real-time embedded application domain

Abbreviation note: OBC=On-Board Computer

Step forward: hardware-based accelerator

- Achieve real-time simulation of Leon OBC@80MHz
- Full accuracy of processor emulation by running LEON VHDL code on COTS FPGA PCI board

- Feasibility of hardware-in-the-loop emulators technology proven by SHAM product family:
 - Boards for the ASIC of ERC32, ERC32-SC, TSC21020, Ma3-1750, MAS281
 - Total of 50 boards deployed in XMM, ISO, Rosetta, Envisat,

Abbreviation note: SHAM=Simulation Handling Module; COTS=Commercial off-the-shelf: PCI=Peripheral Component Interconnect

LEON SVF Concept

Purpose:

- Validation of non-instrumented flight software for Atmel 697 (Leon)
 with full control and observability at real-time for OBC@80MHz
- Potentially operational simulators
- Demonstrate LEON SVF in two configurations:
 - Hardware configuration on COTS FPGA PCI board
 - Software configuration using SIMLEON and TSIM
 - Interchange between software and hardware configuration
 - Common interface hides SW or HW configuration (FCPP)
 - S/C and IO devices simulated by software on host
- Demonstrate LEON SVF in two representative use cases:
 - Galileo OBC Model on SIMTG infrastructure
 - Eagle Eye OBC model on VSRF/RSVF infrastructure

Abbreviation note: FCPP = Functional Component Plug-in Protocol; SIMTG= Simulation 3rd Generation; VRSF=Virtual Spacecraft; RSVF=Reference SVF

LeonSVF consortium

- Phase 1, concept study and prototyping
 - Astrium GmbH (D), Astrium SAS (F), SAAB (S), Terma (DK)
- Phase 2, design upgrade and production
 - Astrium SAS (F), Terma (DK)
- Expected finished by Q2 2009

LEON SVF Overview

RSVF demonstrator
By Terma

OBC Model (Eagle Eye with LEON2-FT features) OBC Model
(Galileo with
LEON2-FT features)

Responsibilities

Orange: Astrium

Yellow: Terma

Grey: off the shelf

Abbreviation note: ESS: Emulator Support Software

Galileo demonstrator by Astrium

LEON SVF with accelerator board

Key function Suspend Controller will suspend Leon while simulating I/O

Performances

- ADM-XRC-4LX board (*) / Xilinx Virtex-4 LX80 FPGA
 - Leon2FT runs at 66MHz in FPGA
 - 5000 I/O per second introduce small overhead 10%
 - Emulate OBC@60MHz in real-time (measured)
- ADM-XRC-5T2 board / Xilinx Virtex-5 LX220 FPGA
 - Leon2FT expected to run at 90-100MHz
 - 5000 I/O per second introduce small overhead 10%
 - Emulate OBC@80MHz in real-time (expected)

(*) commercial board by Alpha Data Parallel Systems Ltd

Current status of study

Validated on Virtex 4 at 66MHz:

- •Host simulates Galileo OBC at 60MHz
- Overall SVF speed is real-time
- •1 wait states in SRAM
- •Realistic scenarios based on 5000 IO/s
- •IO detection by the PC in 3.8us
- •Simulation overhead measured 15us / IO
- •Simulates COCOS by Saab with 1 x PWR, 1 x PWT, 1 x SPW, 1 x 1553, Mass memory
- •Scenario: real time TM, 1553 messages, playback TM

Testing on Virtex 5 at 90MHz:

- •FPGA-level testing in progress
- •Leon clocked at 60MHz (target 90MHz)
- •Preliminary measures show 60-100% of OBC@80MHz depending on cache pattern

Abbreviation note:

PWR Packet Wire Receiver, PWT=Packet Wire Transmitter, SPW=Spacewire

HW COTS: Lessons learned

- The SoW required to use a COTS FPGA board
- Pro's
 - Offload development to board supplier
 - Reduce development cost + time
- Con's
 - Constrained by market offer / adapt your requirements
 - More requirements → less offer
 - Quality depends on number of products deployed (flight hours)
 - Dependency from technical support of supplier
 - Long term availability
 - Ease of portability

Abbreviation note: SoW=Statement of Work

HW COTS: lessons learned, examples

Board with Virtex-4

- Maturity was good → smooth development of our application
- SRAM memory bank broke
 - Waste of effort and time (fortunately we had 2 boards)
 - Technical support hasn't solved the problem yet

Board with Virtex-5

- We chose same supplier to re-use our design
- Insufficient amount of SRAM → buy SRAM + DRAM and stepwise migration
- Clocking constraints → add clocking areas (design complexity)
- General lack of maturity
 - SRAM not operational → troubleshooting, stepped approach not possible
 - Dynamic memory controller does not compile → troubleshooting

Activities to completion of contract

- Finalisation of design on Virtex-5
- Full testing of Virtex 5 FPGA board
- Demonstration in system context:
 - Galileo OBC on Virtex-5 (Virtex-4 done)
 - EagleEye OBC on RSVF/VSRF
- Reference test cases generation on full software configuration (VSRF/RSVF)
- Hardware accelerator validation using reference test cases on VSRF/RSVF and Galileo on Virtex-5
- System simulator performance characterisation

Conclusion: performance & representativity

- Hardware-in-the-loop accelerator concept validated for Leon2-FT (accuracy, performance, operability)
- OBC@40MHz simulated in real-time on instruction set SW simulators
- OBC@60MHz simulated in real-time on Virtex-4
- OBC@80MHz targeted in real-time on Virtex-5
- Demonstration on Galileo and VSRF OBC simulators

Conclusion: functionality

Functions

- Run non-instrumented flight software for the AT697 Leon2FT
- Connect software simulations on host
- Non-intrusive control of flight software (RAM and I/O)
- Debug of Leon with gdb through DSU
- Interchange FPGA, TSIM and SIMLEON w/o modifications on the host simulation
- Save/restore mechanism

Miscellaneous

- Hardware accelerator 12K€ compares to SW licence 10K€
- Available Q2/09
- FPGA evolution → faster emulators

Conclusion: HW versus SW performance

