Formation Flying What's Coming Up

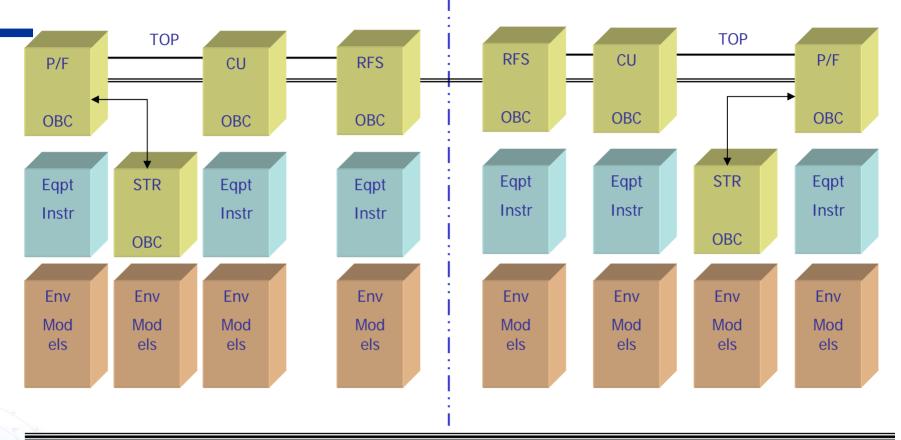
Research & Development directions for Formation Flying simulation and AIV

In cooperation with CNES and Estec

Fernand Quartier – Mathieu Joubert

Summary

- Coming up: Formation Flying challenges
- New needs
- Separability
- Simulator distribution
- Hardware in the loop
- Various related projects
- Wish List
- Celestia



Formation Flight: Major Challenges

- Agility and accuracy of Formation Flight
 - Range of new technologies (metrology, formation flight, distributed instruments)
 - Limited know how and experience
 More iterations and concurrent engineering
- Agility of development industrials, tools and teams
- Major tendency: study models become part of the flight software (Proba, Prisma)

Typical Formation Flight Configuration

Basiles

Formation Flying: What's Coming Up?

Ambition Basiles \rightarrow Simulators to test benches

- → Most important needs:
- Modularity, reconfigurability and performance
- Input/output capacity
- Overall synchronous time view

9 October 2008

Formation Flight: New Needs

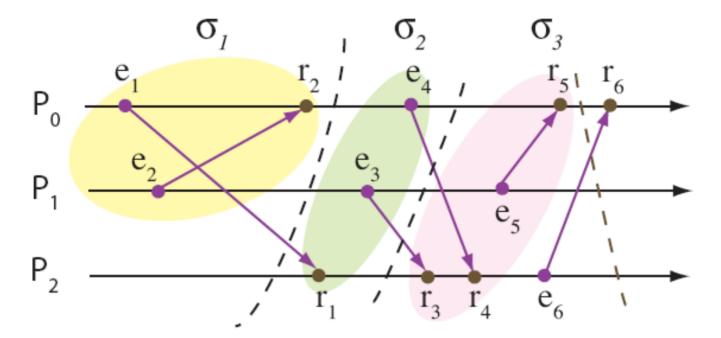
- Increased processing capability
- Distribute on multi-cores, multiprocessor and multi-systems
- Productivity
- Study simulators to operational simulators:
 - Evolve from synchronous to asynchronous (clock drifts)

Formation Flight: Hardware in the Loop

- It should be possible to replace almost every (sub) system model by real equipment
- Modular small reconfigurable bench hardware components preferred
 - Many teams in several places
 - Many potential configurations
 - (Large test hardware limits usability, deployment and concurrent development)
- Validation procedure reuse can generate major cost savings

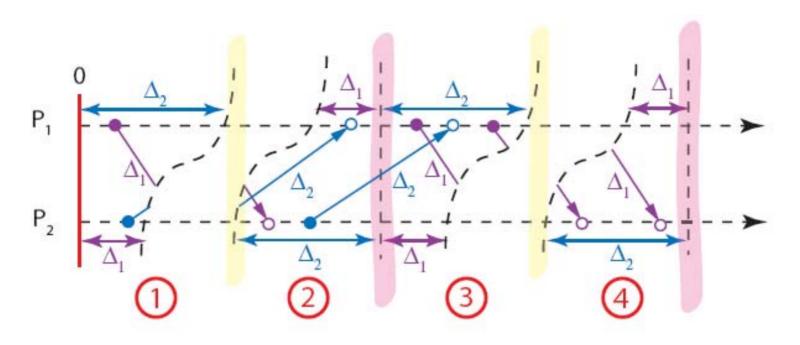
Hardware in the Loop: Study Targets

- Mainstream systems using mainstream Linux
- Real-time needs
 - Overall coherent clock system in all participating subsystems
 - Difference from one system to another better than 100 µs
 - Ability to address external I/O with a precision in the 100 µsec range (TBC)
 - Investigation shows that 10 µsec range or better might be in reach
- But
 - Linux services:
 - Unavoidable: log, windows I/F, sockets, network, Tcl/Tk commands
 - Introduce major jitter
 - 1 to 5 milliseconds: can be managed
 - > 5 milliseconds: need design changes or double buffering
 - Need be characterised
- Overall:
 - Decoupling needed between real-time and Linux side
 - Key is timing elasticity between simulators/Linux and hard real-time devices



Separability: Study Goals

- Aims at
 - Finding methodology for defining time dependencies between subsystems
 - Defining if their simulation can be distributed
- In cooperation with CNES and IRIT University of Toulouse
- Timing variations because of moving satellites is negligible in respect with other timing jitter and clock drifts


Separability: Coupes (Slices)

A coupe or slice is a time slice where no activity in one system has a causal effect on the other

Separability: Coupe Execution

Coupes allow for:

- Communication between two coupes
- Timing freedom within the coupe

Separability: Procedure

- Characterise all communication paths:
 - Period or minimal distance between two communications
 - Delay: time between the intention to communicate and its arrival
 - Offset: initial timing offset
 - Jitter: maximal jitter (and clock drift)
- Little tool to generate for each simulator
 - Timing domain: coupe distance (initial distance, sequence of distances)
 - Frequency domain: (initial phase, frequency)

Separability: Tests and Conclusions

- Tests on
 - Simulator Pleiades computer and Doris instrument
 - Pseudo parallel simulation
 - Synchronisation frequency and interactions have been reduced with a factor of 50
 - Test cases
 - Confirm the theory (ongoing)
 - Looks that there could be some potential optimisations
 - Simulation ahead of time
- Conclusions:
 - We have a way to define the separability of models (in terms of timing constraints)
 - Bad separability seem to point to bad testability, potential race conditions and integration problems with real equipment

Simulator distribution approach

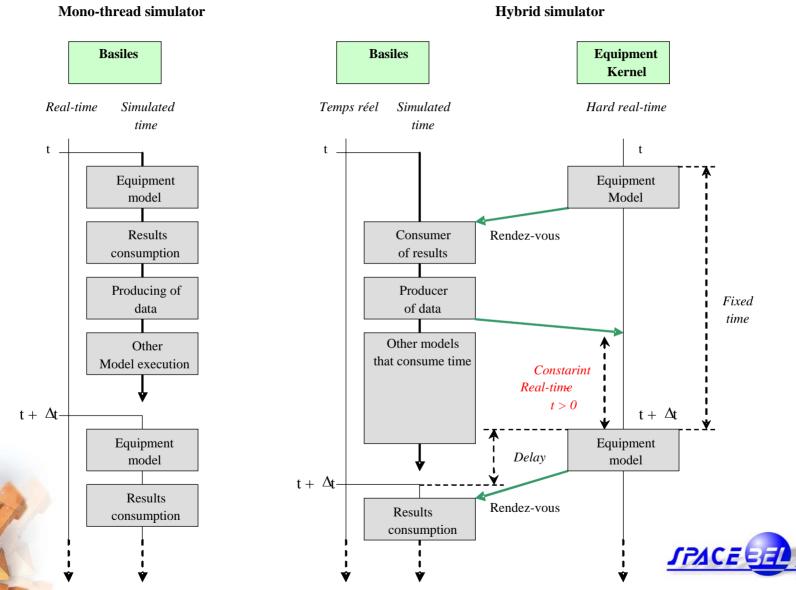
- Using HLA standard
 - Product CERTI HLA RTI, public domain from Onera, Toulouse
- Spacebel produced a small library that greatly simplifies
 - Communication of variables and events
 - Synchronisation
- External discrete event simulators integration with Basiles
 - Saber, Estec SMOS Payload simulator, Mirasim
 - Environment integration in one of two months
 - Model communication integration in days

Basiles Distribution Approach (1)

- Starting from normal mono thread simulator
 - Basic validation and qualification on such system (Many months of work)
- Basic approach based on Basiles's connection approach
 - All variables and activations (events) are connected through Tcl script commands at start up
 - Distribution consist in changing the connections
 - No model recompilation required to change distribution

Basiles Distribution Approach (2)

- Models are assigned to adequate federates or threads
- Models can be replaced by Hardware in the Loop models
- Productivity:
 - distributing a new simulator in days
 - changing model connections < 1 hour
 - Updating/replacing models almost immediate
- Connections of variables and activations get more type parameters:
 - Direct: no delay (cyclic systems)
 - Next time: next synchronisation or look-ahead time
 - @ specified time



Basiles Distribution Federate Types

- Standard Basiles anywhere on a network (standard HLA)
 - 100 to 500 Hz
- Standard Basiles in the same machine (Light weight Certi)
 - 1.000 to 5.000 Hz
- Parallel threads in the same process space
 - 10.000 to 100.000 Hz
- Hardware in the loop pseudo model

Basiles versus Hard Real-time

9 October 2008

Additional Basiles Distribution Activities

- Further instrumentation of Basiles kernel
 - to measure min, max, histograms of time consumption, limit reporting
 - to prepare for future soft real-time kernels
- Integrate a 1553 controller in Presto/SMOS to drive a real payload
- Prototype a run-time model dependency analyser
 - To identify model dependencies
 - To identify model parallel execution and time gain potential
 - Towards a potential automated distribution system

Various Other Related Activities (1)

- SMP2 industrialisation and DemoSim
 - Intensive and iterative cooperation
 - All players are responsible for a subsystem and generate a model to be used by another player
 - Work with Presto/Basiles, Eurosim and Simsat 4
 - Evaluate tools
 - Feedback to standardisation process
 - Proves heavy CNES involvement in SMP2
- Investigate the large scale aeronautics approach
 - Tens of computers and subsystem providers
 - Potential Arinc 653 (IMA) advantages and approaches

Various Other Related Activities (2)

- AGATA: autogeneration of Flight SW
 - Before hardware configuration is defined
 - Providing a "hardware interface" level infrastructure that communicates with the simulator models
- LEON processor emulator
 - LEON TSIM and Target Simulator characterised against hardware
 - New generation LEON Target Simulator in preparation:
 - Dynamic translation
 - Goal cycle precise for I/O emulation
 - Target > 180 MHz Leon III simulation
 - Representativity and checking variable in function of time and type of emulated code
 - Various cache modes: precise, statistical, best case, worst case
 - Detection of self-modifying code (corruption)

Wish List

- Bringing people of study simulators closer to operational simulators
- Investigate the potential of the SCICOS (SCIIab) design tools as universal tool
- Investigate improved validation and qualification systems

Wish List: Productivity Tools (1)

- When starting to build a new simulator:
 - 80 % of the models exist in some form or another
 - 95 % of parameters, data, connections, wiring (and implicit design) do exist
- Presto (Jason1 & 2, SMOS, Calypso, Corot): autogeneration
 - A couple of days to make the files that generate the simulator and its ICD

Wishlist: Productivity Tools (2)

- The day we have full reuse (100 %):
 - Development cost converges to 0 %
 - Validation and documentation converge to 100 %
 - How to add quickly a simulator design around the existing models and data
 - Exploit better modern tools (XTCE, XIF) to transport information
- We can produce the most sophisticated simulator, but are we unable to
 - Connect the various levels of documentation and the simulator configuration
 - The simulated values and the corresponding documentation
 - "Living documentation" could be autogenerated with the simulator

Graphical 3D Rendering

- Our job: space systems, not graphical 3D systems
- Celestia
 - Universe simulator and OpenGL 3D with huge celestial database
 - Public domain software +1 million downloads, Windows-Linux-Mac
 - Enthusiastic contributions from all over the world
 - Modular Lua scripting language
 - Evolving towards a real-time system
 - Can now be driven by simulators and operational systems
 - Separation of space mechanics from 3D Display

Celestia

- Spacebel created a small tool (CFM) to facilitate 3D image integration
- Productive environment
 - 0,5 days to 5 days to integrate new satellite
 - 1 to 4 weeks to integrate with new simulator family (Presto, Simsat) or operational system
 - 0,2 to 2 days to integrate with new simulator
 - 2 to 5 days to generate new mission movie
- Used in
 - Proteus family of satellites (Jason1 & 2, SMOS, Calypso, Corot)
 - Proba FF testbed (Simsat 4)
 - Concurrent engineering facility CNES
- Looking to start an European consortium to support Celestia and its evolutions
- Replacement of Topaz/Opale visualisation toolkit under development

Celestia Example: SMOS Deployment

We still have to learn a lot ...

Thank you

Time for questions and ...

a little SMOS movie (Produced in one hour)

9 October 2008

Formation Flying: What's Coming Up?