Flexible Hardwar e In the Loop Configuration in Spacecraft Test Benches

M. Neef$?, M. Hayé?

®Dutch Space B.V.
P.O.Box 32070, 2303 DB Leiden, The Netherlands
Email: m.neefs@dutchspace.nl

@Dutch Space B.V.
P.O.Box 32070, 2303 DB Leiden, The Netherlands
Email: m.haye@dutchspace.nl

INTRODUCTION

In recent ESA science programs new developmentoappes have been adopted in order to optimize spte
integration and validation efficiency. A cohereat sf test facilities is developed supporting tlifedent phases in the
verification program. The spacecraft simulator si@portant common component present in all tesfigarations.

The use of a single simulator throughout the ptofeaximizes reuse of test experience and simplifed&ation of

system performances. Characteristics measuredstnbench configurations can easily be compared exgbected

results derived from earlier simulations. Howevepldyment of a single simulator in a range of testfigurations is

not trivial. A flexible solution can only be achied by careful design of the simulator and its exdemterfaces from
the very start of the program. This paper describespproach chosen in the Real Time Simulatorfaionics SCOE

as developed by Dutch Space for the Gaia program. paper will focus on the mechanisms used to gordi the

EuroSim [1] based test system for the differentddaare In the Loop (HIL) configurations used in tRaia AVM and

PFM verification campaigns.

GAIA TEST BENCH OVERVIEW

The Gaia mission will provide scientists a verygse three-dimensional map of the stars in ourxyalln order to
reach its goals the Gaia instrument and the Gaiange must meet stringent accuracy requiremenke actual
performances of the Gaia spacecraft are validagddguhigh fidelity simulators and front end equiptn¢hat are
integrated in various test benches. Fig. 1 showswvamview of the main test benches used in the @aielopment
program.

~ -=
e Sa - N

,‘éTS Numerical Bench\\ ,’hTS Hybrid Bench (+\\

( (+ CCSs) “. ‘ other EGSE k.
I [ components) ’

Y
Operation
Simulated AIT Verification Facility

Spacecraft PFM
AIT

Avionics Model
Bench

Software
Verification Facility

Functional

Validation Bench

Fig. 1. Test bench overview



The Gaia test benches as shown in of Fig. 1 are:

* Functional Verification Bench (FVB). This pure nureal facility is used to test the (initial) AOCS
algorithms.

» Software Validation Facility (SVF). This pure nurioad facility is used to test and debug the Cerhaftware
(Csw).

e Operation Validation Facility (OVF). This pure nurival facility is used for the development of test
procedures for Spacecraft Operations.

e Simulated AIT (SimAIT). This pure numerical facjlits used for the development of test procedures fo
Spacecraft PFM AIT.

« Avionics Model Bench (AVM). This facility is usedif the integration and test of the Gaia Avionics.

e Spacecraft PFM AIT. This facility is used for thrgdgration and test of the Gaia spacecraft.

The RTS is a component in all these benches, exoefgthe FVB. However, many FVB models will be redsand
integrated in the RTS, enabling a direct comparigsimulation done on the FVB and the RTS.

The five benches that include the RTS can be dividéeo two main configuration types: a so-calledneuical bench
configuration and a so-called hybrid bench configian. A numerical bench configuration is a purenetcal (i.e.,

software) configuration. In this configuration 8IC units are simulated including the on-board catep(CDMU); the

CSW is executed by an instruction set emulator. Aiyi#id bench configuration is a mixture (hybrid)simulated and
“real” S/C units. In this configuration the CDMU tdavare is always present (i.e., not simulated) #medother S/C
units can be either present or simulated. The sitouland the SCOE in the benches are controlledubymated test
sequences running on the Central Checkout Syste€dC&:. A top level overview of the hybrid and nurnatibenches
is shown in Fig. 2.

— CCSs - > CCS SCOEs
y
EGSE
Model
CDMU
S/C Model Model S/C Model EGSE IIF
RTS Core Emulator RTS Core
L Interface ERC32 L[, [Interface
Applications Emulator Applications
RTS MMI RTS MMI
RTS numerical bench RTS hybrid bench

Fig. 2 Numerical and hybrid benches

In hybrid bench configurations the simulator modetshange data with real S/C equipment using var®GOE. In
numerical bench configurations all S/C unit arewated and no SCOE interfaces are needed. The reahbench
SImAIT includes simulation models of the releva@@E used in hybrid configurations.



HIL CONFIGURATIONS

As described in the previous section the Gaia Rj%arts different combinations of real and simuaspacecraft
equipment in the hybrid benches. In the simpledt etinfiguration only the on board computer is raatl all other
spacecraft units and their environments are siradlaburing spacecraft integration real units awedgally integrated
on the bench, replacing their simulated countespéamitially electrical integration is performeditér the units open and
closed loop performances are verified. In closexp ltests the sensors are supplied with appropstateuli. Actuator
commanding and status is acquired to allow the lsitouto compute orbit and attitude propagatione Tdtal number
of possible test configurations is quite large edly when considering the unit redundancy usethanGaia design.
Changing a single spacecraft unit from simulatedetd, requires changing various system configonasiettings. The
simulation model and its electrical interfaces dated towards the spacecraft (such as MIL-1553aesp generation)
must be disabled. If the unit involved is a senaanther piece of software computing stimuli magcdactivation. As a
consequence electrical interfaces involved in #weser stimuli generation must be enabled. In soardigurations
power supply to the real unit must be activatedgishe PCDU simulation functions present in the EGRurthermore
simulation models depending on the specific sthtbeounit must now retrieve data from the real imterfaces instead
of copying the information from the simulated unk.similar set of configuration settings must béesdd when
changing a spacecraft actuator model from simul&texkal. To further complicate the matter addilolimitations
apply when setting up the bench configuration duéunctional or interface constraints in flight Hasare or EGSE
equipment. In the developed Gaia RTS several méxinahave been devised in order to offer the reduilexibility
while maintaining a single simulator with a commsat of simulator models used in all configurations.

MODEL DATA AND DATA EXCHANGES

The Gaia simulator contains of a collection of msdsach with their own input and output parametésspart of the
EuroSim simulator development, the model interfizscestablished. This means that for each modedtafivariables
and functions is to be provided which must be lstb the simulation kernel. After compilation, aléntified variables
become part of the EuroSim run-time variable detabdhe identified functions will become accessibie the

EuroSim scheduler. GUI tooling is available to spethis interface. The EuroSim run-time databast ttontains all
EuroSim accessible variables and functions is ddlie data dictionary. The accessible functionscatied entrypoints.
The mechanisms to come to an interface betweenSturand the models however are not enough to canant
integrated simulator. What is still missing is astructure to exchange data between models.

An essential consideration is to ensure that théahitself does not have knowledge about the orégid destination of
its input, respectively, output values. If a singleulator is to be used in all configurations ttea flows between
models must be configurable at test bench initiilan time. Only at simulator startup a configusatparameter will
determine if a model gets its command parameters the real CDMU via the Avionics SCOE or from an8lated

CDMU running in a numerical bench configurationeTdata exchanges should not be hard coded in thelrapin the

integrated simulator executable.

The EuroSim environment offers building blocks toplement the data exchange infrastructure. It setaon the
presumption that data flows between models areladnda simulation variables. The infrastructuréased on the so-
called “Model Description” facility in combinatiomwith the “Variable Exchange” facility. The model steiption
facility is used to identify for a model entrypqifity means of a “model description file”, what tinput and output
variables are. During the simulator build proc&s,0Sim will generate a so-called datapool, thait@ios copies of all
the specified input and output variables (see Bign the next page). In addition, EuroSim will gexte, for each
model entrypoint defined in the model descriptibe, fan entrypoint to copy input variable valuesnfrthe datapool to
the model and an entrypoint to copy output variaalees from the model to the datapool. Hencefavhwill refer to
the original model variables as “local” model vates, as opposed to the “datapool” model variablege that both
these variable types are part of the data dictioriEine local variables are exposed to EuroSim leyniodel developer
as explained before. The datapool variables arergéed and exposed to EuroSim by the model devedopiooling
automatically.



ModelX Model Y

inputs outputs inputs outputs
AB CD EF GH
datapool
|aB | |[cD | leEF | [oH |
inter-model
exchange

Fig. 3. Datapool and parameter exchange

The inter model exchange facility is built on toptbe datapool concept. In a variable exchange tfile mapping
between model inputs and outputs is establisheddfining groups of data exchanges between varidhkde the
datapool. E.g., a group “get_model_Y_inputs” canckeated which defines for model Y input variabiiesn which
other variables they are derived. For each defexathange group, EuroSim will create an entrypdiat performs the
copy of the data. The creation of the exchangeypoints is done dynamically at the start of a satioh session.
Hence, data exchanges can be changed without diktogecompile the simulator. Note that the patamexchange is
performed on the datapool variables and not oriltoal” model variables.

Using the model description and variable excharagdiies, a typical sequence for executing angrdéon step
becomes:
1. Execute the variable exchange entrypoint (“get_rhotlenputs”). This updates the inputs to model Ytfie
datapool, E'F’, with output parameters from othexdals. In this case C'D’ from ModelX.
2. Execute the function that copies the model Y inftam the datapool to the model Y local variablesthis
example, copy E'F’ to EF.
3. Execute an integration step of model Y.
4. Execute the function that copies the model Y owtfitdm the model Y local variables to the datapbothe
example copy GH to G’'H'.

To distinguish between the various data copy astitke following terminology is used. An exchangehie generic
name for copying of data between two variables.i€opetween datapool and local model variablegsefegred to as
intra-model exchanges; copies between datapool menas defined in the parameter exchange filetedegred to as
inter-model exchanges. At first glance, the dathpoocept may seem overly complicated. Why notatiyecopy data
between the “local” model variables. There are teasons for the intermediate step via the datapool.

The first reason is that the used scheme enaldetter schedulability of the models. Let us asstimé models X and
Y are two time consuming models. Because model & u&riable input from model X the two models canm®

executed simultaneously on a multiprocessor/mukticoomputer, because only after model X has fimishe is

guaranteed that its output variables are consi¢tegt, a normalized quaternion). As long as modisl executing there
is the risk that it is just updating its output iedtes while model Y is copying them. With the getal concept, the
time consuming models X and Y can be executed smebusly, only the short duration data exchange® o be
scheduled mutually exclusive. The second reasaihds the design can be easily combined with a gereror

injection facility for model variables.

RESPONDER MODELS

Within the simulator the responder models are nmotielt implement the interfaces between simulgb@decraft units
and spacecraft hardware interfaces. Again the medgon for the responder models is to hide theah¢dll test

configuration of other units from the simulated tanihemselves. As an example the MIL-1553 respomdedel

provides the unit models access to the MIL1553rfates present in Gaia. Any model simulating a RTilee MIL-

1553 bus receives its commands via this respondstem For the numerical bench, the command dath beil
generated by another model, the simulated Bus Gitettrof the CDMU. In case of the hybrid bench iti@ta is



received via the MIL-1553 interface function pafttlee Avionics SCOE. For the unit model itself tisscompletely
transparent. The model does not need to be awdhe ééct that the CDMU is real or simulated at all

Another advantage provided by the use of the redgromodels is the possibility to determine the tignof actual S/C
interface updates independently of the executiah@fimulation models. For instance updating thke-0653 RT data
may only be allowed in certain predetermined majoror cycles on the Gaia MIL-1553 AVM bus. Howetkese 64
HZ cycles are in principle not synchronized to $iraulation time in the simulator itself. The resgenmodel allows to
specify updating of S/C interfaces relative to A&M bus cycles.

So hiding these interface details in a single $e¢sponder models has the advantage that:
* Equipment models do not need to know interfaceilddtetween numerical and hybrid bench, so thastmee
model can be used for both configurations.
» Data exchanges over the external interface carclvedsled independently from equipment simulatidnis T
allows flexibility when designing these data exap@protocols.

Based on the required S/C interface types, thevigtlg responder models are implemented in the B&i&:
e MIL-1553 responder model.
Implements the interfaces with the two spacecrdft-1653-STD-B buses.
e SpaceWire responder model.
Implements the interfaces with the four space@pticeWire links.
e PacketWire responder model.
Implements the interfaces with the eight spaceé&tafketWire links.
« Discrete I/0 responder model.
Implements the so-called discrete spacecraft etes such analogs SHP etc.

Apart from implementing the external spacecrafeiifaices, the MIL-1553, SpaceWire, and PacketWispaader
models have two additional functionalities:

» Record the busl/link traffic to file and give the RTser run-time access to “any message” on thdirdus/

e Optionally simulate autonomously the interfaceseblasn simple scenarios configured by the user.

MODEL MODES

Another mechanism used to support flexible simulatmfiguration are the so called “model modeséaclt model can
run in three modes: disabled, simulated or HIL.abBled means that the entire equipment model issce¢duled,
including any data exchanges. Simulated meansthigaequipment model is completely simulated invgafe. HIL

means that the real equipment is in the loop. Ratdhanges are automatically selected accordingetortode of the
equipment model. The model mode is configured #talization time and does not change at run-tirAeset of

configuration variables define for each equipmehiits mode is. This set of parameters is useehtble/disable
parameter exchanges between models, whether omadél entry points are to be scheduled etc. In thasereal
equipment is in the loop, the simulation modeltadttequipment is disabled and the HIL model is &thbrhe HIL

model is responsible for the stimulation and maiitp of the real equipment. Only the required geAwdonics SCOE
interfaces is enabled when a specific unit is gurd to be in HIL mode, all other electrical ifidéee are
automatically disabled.

An example will be used to illustrate this approaadil to highlight the complexity that is hiddennfréhe end user by
the use of model modes and responder models. Tiee A¥@onics includes two Fine Sun Sensor (FSS) thatduce

voltages depending the orientation of the sendative to the sun. These voltages are acquiredebBMU via a

separate Electrical Interface Unit or EIU. The E#ltonnected to the CDMU via a SpaceWire link. Bibih EIU and

the FSS may be real or simulated. In case the §3&al (HIL mode) it can be stimulated via a testrector on the
unit.

Fig. 4 on the next page provides the relevant coatlins of simulated and real equipment in the Ifwypone of the
fine sun sensors and the EIU unit.



When both units are simulated, the FSS1 modekrats the S/C attitude and sun vector from the discemodel and
calculates its voltage outputs. These voltage dsitare used as inputs by the EIU model. The ElUehtigen puts the
voltage in a SpaceWire packet and forwards it é08paceWire responder model. The SpaceWire resporaiie! will
exchange real SpaceWire packets with the CDMUhéa&tvionics SCOE.

FSS1_mode = simulated

EIU_mode = simulated FSS discrete

FSSL-HIL 1O resp.
model

q, sun
DYN volts volts
q, sun

\ SpaceWire
FSS1 = \Olts—} EIU - - responder
model

volts

EIU discrete
1/O resp.

EIU-HIL volts el

FSS1_mode = simulated
EIU_mode = HIL FSS discrete
FSS1-HIL volts stim 1/O resp.
model

q, sun
DYN volts volts
q, sun

\‘ SpaceWire
FSS1 volts EIU responder
model

EIU discrete
1/0 resp.
[—voltsP model

FSS1_mode = HIL
EIU_mode = HIL FSS discrete
FSS1-HIL  p=volts stim 1/0 resp.
/ model
g, sun

DYN / volts volts
q, sun
SpaceWire
FSS1 volts EIU packets responder
model
volts

EIU discrete
1/O resp.
model

Fig. 4 Modd modes at work. Grey lines and boxes indicate disabled model sexchanges

When the FSS1 unit is simulated and the real ElUipggent is present, the FSS1 model and the ElU4ddel is
activated. This model retrieves the S/C attitudd aan vector from the dynamics model and calculégesoltage
outputs. These voltages are copied to the EIU-Hideh which will send them via the EIU discrete If€ponder
model to the Avionics SCOE for stimulation of thiJEunit. When both the real FSS1 unit and the Edél equipment
are present, the FSS1-HIL model is activated. Tislel retrieves the S/C attitude and sun vectanftioe dynamics
model and calculates the voltage outputs. Thedages are copied to the FSS discrete 1/0 respanddel that drives
the Avionics SCOE.



CONCLUSION

Considering the described complexity it is cleat e simulation and test infrastructure shoulgpsut the operator in
the definition of the HIL configuration used in pesific test session. Leaving the configuration anoal task would
lead to large risks on human errors with potentialirious consequences. In Gaia a flexible cordiom mechanism
has been developed that allows HIL configuratiorchginging one single parameter per unit. The méstmdefines

different model modes for unit simulation modelgnBmic entry point activation and configurable daxahanges are
used to implement the required flexibility in thenslator configuration. The described HIL mechanisas been build
on top of existing functions available in the Euro$eal time simulator environment. However the agpts behind the
mechanism are generally applicable for any read iimulator used in spacecraft test benches.

References
[1] EuroSim,http://www.eurosim.nl




