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Abstract - The need for large-scale real-time simulations
is growing in demand within many diverse industries This
places ever-increasing performance requirements oithe
hardware platforms required to run the simulations.
Possible solutions to this include the use of muttie core
computers and a network of computers to distributethe
simulator processing load across many cores and nisioes.

This paper examines some
simulations within the European Space sector, and dw
SIMSAT 4.3 simulation infrastructure has been exteded to
satisfy the requirements to run distributed real-time
simulations.

The underlying simulation environment used by the
European Space Agency (ESA) and the European Spac
Operations Centre (ESOC) for spacecraft simulatorssince
the early 1990’s is the SIMSAT real time infrastrudure.
SIMSAT originally ran under VMS, but since then it has
been ported to many different Operating Systems, &.
Windows NT/2000/XP and then most recently SuSE Liru
Enterprise Server 9 and 11. It provides the realine
environment for spacecraft simulators to verify theground
segment readiness prior to launch, including the Jalation
of the mission control system, validation of spaceaft
procedures and the training of the spacecraft opetars.
The requirement to develop simulations for large ad
complex space systems within the European Space Mat,

The results show that the SIMSAT 4.3 Infrastructure
Software meets the system and performance requiremss
of running distributed models across a dedicated neork.
The new SIMSAT can be utilised across diverse indtries
to run large-scale distributed simulations.

SIMSAT is an ESA product for which holds the full IPR
(intellectual Property Right).

recent examples of such

|. INTRODUCTION

With the advances in technology within the Europ&aace
sector the demands for larger simulation systemse ha
increased. This places increased performancersggents on
infrastructure software to ensure that the simoietimaintain
eal-time and that configuration control of eachnednt within
he simulation is easily maintained. The procesgiower of a
single machine may not be enough for a large-scale
simulations. This has driven us to design a palrdiktributed
simulation system to distribute the processing laddeach
element in the simulation.

The ESA Galileo project is a large and complex esysto
simulate requiring the simulation of many elementparallel.
Two examples of this are the Galileo Constellatiiperational
Simulator (CSIM) and the Assembly Integration and
Verification Platform (AIVP). Both of these propschave
many elements that are simulated in parallel witlghh

for example Galileo, places heavy demands on theProcessing demands that far exceed the capabitifiessingle

simulation platform. This increasing performance denand
has driven the development of a distributed versiorof the
SIMSAT infrastructure.

The paper introduces SIMSAT at a conceptual levelthe
current SIMSAT Linux 4.3 Software Architecture, and the
benefits of its framework “plug-in” design which make it so
versatile, flexible and extendable. This plug-in famework
allows fast and rapid development of new simulatio
components that plug-in to the SIMSAT framework, fa
example, to support the distribution and running of a
simulator across a distributed network, or to seletively
load various models and assemble different simulate
components to run.

The system, network performance, time synchronisatn,
and configuration requirements of a real-time distibuted
simulation system are identified. The paper demonsites
how these constraints were solved through the softwe
architectural design principles applied.

machine. ESOC operational simulators are aldoviihg the
same trend, with the SWARM constellation simulatand
SENTINEL-1 requiring more than one spacecraft to
simulated. Due to this, the SIMSAT 4.3 infrastruet(ESA’s
Real time Operations Simulations Infrastructures Heeen
extended to support the running of simulations s€multiple
cores, CPUs and also a network.

be

The Galileo Constellation Operational Simulator dimtes
multiple spacecraft in parallel. Its purpose is simnulate
multiple spacecraft to verify the ground segmerddieess
prior to launch, including the validation of thession control
system, validation of spacecraft procedures andr#iring of
the spacecraft operators.

AIVP is the verification platform for the Galileor@und
Segment. It simulates many different Ground Stestiofor
example, Galileo Sensor Station (GSS), Message ragme
Facilty (MGF), the Orbitography and Synchronisatio
Processing Facility (OSPF), as well as the RealeTihetwork
Emulator that simulates the network and passinghe$sages



between all Ground Stations. The purpose of theulsitor is
to test the Galileo Ground Segment as a whole anéfilace
the software models with the real stations and eard when
they become available to verify and validate thetesy.

SWARM is ESOC's first constellation simulator, mbide
three spacecraft, using SIMSAT 4. The primary cotdje of
SWARM, through its constellation of 3 satellites,td provide
a survey of the Earth’s geomagnetic field and ptewhe first
global representation of the field’'s variations otiene. This
project inherited the distributed components dgwetbfor the
CSIM project on SIMSAT 3.
demand for distributed simulations were increasiagd
decided to add generic distributed components kST 4.3
that would work for all existing and future coniébn
simulators.

Il. PARALLEL/DISTRIBUTED SIMULATIONS

Parallel/distributed simulation technology has besound
since the early 1980s with initial advancementsiiagi from
the Defence Community to simulate military sceratio train
soldiers. Since then it has made great advancenamt is
now widely used in the Gaming Industry and therime The
technology enables a simulation program to be drecin
parallel on distributed interconnected computersosc a
network. These machines may be geographicallyiliged
across a building or even the world. There arenarily two
main benefits to this.

1. Reduced execution time — With multiple machines and
thus multiple processors, the processing load
divided and shared amongst each processor to red

the load of the system processing to ensure tladt re

time is maintained.

Geographical Distribution — The machines are
connected to a network and therefore are not
geographically constrained.

Parallel/distributed simulation technology is mautessible
by the advancement of three essential technologies:

1. Integrated Circuits — An inexpensive computer which
allows building up a network economically feasible.

2. High Speed networks — Whether connected to a Loca
Area Network (LAN) or the Internet enabling fastala '
transfer.

3. Modelling and Smulation — Technology to construct

models of actual real-world systems that when nun

a normal computer can emulate and be representa :

of the real system.
Due to these advancements in technology we wer tabl
solve the problems associated with simulating thegge-scale
projects using a distributed SIMSAT system.

Il. SIMSAT

SIMSAT (The Software Infrastructure for Modelling
Satellites)is the real-time infrastructure software used by th
European Space Agency (ESA) and the European Space
Operations Centre (ESOC) to run simulations simee darly
1990s. It was originally written to run on VMS, thaver the
years it has been ported to many different Opegafipstems
including Windows NT/2000/XP, SuSE Linux Enterprise
Server (SLES) 9, and the latest being SLES 11.ukip now
it has only been used for simulations that wereabbg of
running on single machines, for example, singlecepaaft
simulations containing Ground models to verify tund

ESOC recognised that th&gment readiness prior to launch, including thedation of

the mission control systems, validation of spadécra
procedures and the training of the spacecraft ¢pexa

SIMSAT contains a Graphical User Interface (GUIjezhthe
MMI (Man Machine Interface) to allow simulator rime
behaviour to be actively monitored and controll&€de MMI
can display the status of the simulated object &.spacecraft)
including all contained model parameters, servicasd
variables. The simulation environment traps all eption
conditions and displays error messages for all newas
actions and anomalous behaviour. An on-line heglifia is
also provided as part of the MMI - to replace th&Vs
environment is

The simulation runtime

summarised below:

functionality

Graphical User Interface (GUI).

~ Scheduling of simulation models, commands and Java
IS scripts.

uce Message logging.

Recording of simulation data over time

Visualisation of model data.

Control of the simulator via commands and scripts.
Saving / restoring simulation states (Break pojtin

. Simulation Tree 52
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Fig. 1. SIMSAT 4.3 MMI GUI on SLESvll

The run-time Kernel is the heart of the simulatiand is
responsible for scheduling models, event loggingeru



commanding, visualisation of model data and tlempletely location independent in terms of thaindtionality
saving/restore of the simulation states. Here idrief and will continue to work in the remote case whigrey may
description of the SIMSAT components; be distributed across a network.

SimHost The run-time process on the system that is theAnother advantage is that SIMSAT 4.3 works in terofis
simulation. The SimHost always has one Kernel. Daemons, not machines. In order to start a sinomaa
Daemon must be running to act as a server to thentcl
Kernel: The core object that contains all componentsiwith launching the simulation. In SIMSAT this clienttise MMI,
simulation and allows control over the creation andtents of and the target Daemon spawns a new simulation grosess
simulations. (called SimHost). Since every machine on a localvagk can
run one or many Daemons, and a Daemon can creat®ron
Resolver Exposes information of internal simulation obgectmany simulations, there is a great degree of fiéilwhen it
to the outside world i.e. the MMI. comes to launching simulation executables on thmeseor
particular machines.
Explorer: Exposes all simulation model objects, data and
services to the simulation. This is used in the MdAdisplay a  The current SIMSAT Kernel and MMI framework supysoat
hierarchical view of all objects in the simulation. “plug-in” architecture which makes it so versatillexible and
extendable. This plug-in framework allows the depehent of
Logger: Allows the storage of messages produced by thew SIMSAT components that plug-in to the existBilyISAT
simulation system for immediate or delayed review. framework without altering or affecting the exigtiSIMSAT
code base. By simply adding a file to the "compasie
Storer: Allows the saving of simulation “states” to fite disk. directory of the SIMSAT installation, and enterinipe
This can then be reloaded at some later point ¢cceade the component information into the SIMSAT Kernel Aragture
simulation as it existed when it was saved. File, it can then be loaded into the simulationheTexisting
code base does not need to be recompiled. Thiwslus to
Scheduler The scheduler stores a list of model events tidgvelop specific components to suppdfte running of
represent the activity that will occur in the siation future on SIMSAT across a distributed network, or specifiecnponents
its Schedule. The Scheduler also containgime Keeper to meetthe requirements of specific projects.

which controls and monitors the passage of timetha
simulation. IV. DESIGN ISSUES AND SOLUTIONS

. . . . Corba and Network Latency
Data Server. Serves simulation data to the outside world i.e.

MMI. As mentioned above, SIMSAT components are based on
CORBA technology. Even though this enables usuto the

Recorder: Records simulated data to file over timecomponents on remote machines, there is a perfarna

simulation. penalty to pay in terms of the amount of time tatenomplete

a single CORBA out of process call across a network
Command Line Interface: Allows SIMSAT to be launched g P

and commanded from the command line i.e. withoatube of A single CORBA call requires around 1 microsecoritem

an MMI. the calling and called objects are located in tumes process,
but this can increase to around 50 microsecondsnvthey

| it | exist in different processes on the same machihis fatency
? jumps to around 100-1000 microseconds when thejoaeted

SimHost on different machines, though this figure is highériable and

| scheduer | | Ketnel ] [ Command Line interface | subject to the network configuration and conditiond his
: — — : increase in the amount of time to complete one lealtls to

[ Logget | S | e | performance problems. Due to the high number oR8A
T | Recordar ] calls between the Kernel components and models, Hhi
. . driven the design of the new SIMSAT Kernel compdaen

[ serwtrost | [ swFzpsaper | | i || allow distribution of parts (i.e. individual Modglsof a

¥ simulation to other remote machines.

| SMPZISMI Models |

Distributing Kernel Components
Fig. 2. SIMSAT 4.3 Non Distributed Top Level Arobiture

To overcome the performance problems of runningRB@

One advantage of the SIMSAT 4.3 architecture, itdstr components on more cores, CPUs or remote machings a
from SIMSAT 3, is that all the components are base processes, some SIMSAT kernel components wenebdittd.
CORBA technology. As such, these components akbe Architecture has one centralised “Master Kérngder



simulation which may contain many “Kernel Sitesathare Kernel on the master machine, and a Site Storatédcin the
installed on remote machines. Each Kernel Site asta local Kernel Site on the site machine. The Master Stogeeives
service provider, but provides default servicesfitie Master the instruction from the MMI and hands off thistmugtion on
Kernel if they are not available on the site.
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Fig. 3. Distributed SIMSAT Top Level Architecture

The Kernel, Storer,

and Scheduler components baen

redesigned to support distribution. Fig. 4 beldwss the top
level architecture of the distributed Kernel Mastard Site

components.
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Fig. 4 Distributed SIMSAT Kernel Architecture

Note that SIMSAT 4.3 does not contain a distributedger
as it is at present not foreseen as necessaryer Cuonstellation
simulators i.e. CSIM and AIVP, do contain distriédit_oggers
in their SIMSAT 3 infrastructure because they aquired to

simulate a large number of Kernel Sites, whichoie$een to

produce a higher number of log messages. CSIiMxXample,
will simulate 18 fully emulated spacecraft acrosetwork.

Distributing the Storer

The total amount of time required to save and restoodel
data for a distributed simulation is greatly redlcéy
employing a parallel save/restore design usingipielthreads.
The design contains a Master Storer, located inMiaster This means that the execution success of an egentore

separate threads to each Site Storer, which sat@fes the
model’s state to or from a local file.
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Fig. 5 Distributed SIMSAT Storer Architecture

Distributing the Scheduler Component and Time Synchronisation

The Scheduler component has the most amount of GORB
calls to make to other models within the simulatidih is not
unusual for the Scheduler to execute 500 to 10@htsvper
second just for one element/spacecraft in the sitimd. For
this reason particular care was taken to reducentimber of
Corba calls across the network in the design byingawa
Master Scheduler located in the Master Kernel anrtaster
machine, and a Site Scheduler located in the Sitedd on the
site machine. With this design all models locatadeach site
machine registers their events onto the local Sitbeduler.
The Site Scheduler has its own schedule and exealit¢he
local events locally. This eliminates all schedule
events/CORBA calls across the network. But thisatgs a
new problem. How do we ensure that all Site Scleediare
synchronous with each other?

This design required a concept of being able talssonise
time within the whole simulation across all site aniaes as
prototyping results showed that Site Schedulery egiickly
ran out of sync with each other (to milli secondel¢ just after
a couple of seconds of running simulation time.

Two methods of time synchronisation were investidaind
prototyped.

1. Centralised, pull time service — Each Site Scheduler
requests the current time form a centralised time
service (passive server algorithm)

2. Centralised, push time service — A central time
service periodically sends new time values to fite S
Schedulers

The SIMSAT scheduler is a “Soft Real-Time Scheduler



important than the event being executed at theiggetime.
Simulation time does not advance regularly likel-tiae
because the scheduler advances simulation timeafdrwhen
events are executed. Because of this a Centrafisstl Time
service would require more implementation effort as
mechanism to update simulation time to all sitescmpensate
for the latency from sending the time to the fiBge Scheduler
to the last Site Scheduler in the simulation isdeee

With a Centralised Pull Time service the Master egicher
acted as the Time Keeper within the simulation bee
centralised controlled time. Each Site Schedubguests the
elapsed time at configurable periods, to syncheoiitis local
scheduler. This reduces the number of networks call a
minimum. Each Site Scheduler has its own simutatime
which is used to provide local models of the sitéghw
simulation time when requested

completely transparent to the user from the MMIlg th
management of configuration files for a distributexnt
constellation simulation across many computers leal to
real problems and confusion. Different simulatdrave
different requirements and runtime environments. or F
example, the SWARM simulator, simulates 3 spaceorabne
computer. It does this by distributing each sitmt$ost on a
separate core/CPU of one machine. Therefore a qoasl
machine is sufficient to run a constellation sintiola, and no
“real" distribution of the software across a netwisrrequired.
Therefore only one set of configuration files oskdcan be
used for all 3 spacecraft instances. Other cdatta
simulators on the other hand have to simulate maaye
spacecraft i.e. CSIM, and this creates file synuisation
problems.

The approach taken on CSIM was to store all filesai
centralized area on one machine, to avoid multgupies of

Every time the Master received a time Synchromsatiﬁles Spread over the network. Each site machirseahaounted

request, it stores and uses the Site Schedulerttncalculate
the constellation simulation time.
introduced into the Master Scheduler to calculatestellation
simulation time. One calculates constellation $ation time
by using the slowest site, and the other mechanises the
fastest site - which mechanism to use can be ysttebuser.

Because each site may have different events osctiedule
a Centralised Pull Time method is better suiteceash Site
Scheduler would request time from the centralis®eé service
at irregular intervals, and thus less effort isuiegd in the
implementation.

The Master Scheduler also contains a schedule.s iBhi
implemented to support the scheduling of Java wcrgmd
commands which come from the MMI. It is not possilidr
Kernel Site Schedulers to add events to the M&taeduler,
as its simulation time is not used in the calcolatof the
constellation simulation time, as its events aré mmdel
driven.

Master Kemnel

Master
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Site Machine
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Fig. 6 Distributed SIMSAT Scheduler Architecture

Configuration Control

Even though the distributed aspects of a simulatoa

drive to the centralized configurations area and kezad and

Two methods avepvrite to these folders. Each site simulation dzerdfore read

and write to these files when required.

Shared Memory

Shared memory and code execution from multipleatiise
are protected using mutexes. This is an issue tlier
distributed components within the Master Kernel aauy
models that may communicate with each other.

MMI

The distribution of models is transparent to thersisn the
MMI. MMI plug-ins were developed to support thetiops for
saving/restoring system level and element/sitel lestates” as
well as aiding the users in building configurationsThe
SIMSAT 4.3 MMI Log Viewer can open multiple vieweasd
more filter options were added. This gives mor«iffiity to
the users to see log messages from only one sit@ne
element within a site, or even log messages of arggrticular

type.
V. RESULTS

The aim of integrating the distributed componentso i
SIMSAT 4.3 was to implement a generic solution tvauld
work for current ESOC and ESA constellation disttéul
simulators, as well as ensuring that it would $gatisiture
requirements for distributed simulations. Since SWARM
project inherited the distributed components fron$INg,
taking these components was a good starting psitiiey were
already ported from SIMSAT 3 to version of SIMSATO&.
The CSIM project did have specific distribution ueements
because it runs in a "true" distributed environmaatoss a
network of computers, that was not required for SRWA so
special attention was taken to reintroduce somaingsCSIM
functionality. The end result is an implementatibat works
for both of these simulators.



As part of the validation work to verify the sucsesf a
generic implementation in SIMSAT 4.3, both the SWWMRNd
LEOP CSIM constellation simulators were ported to on
SIMSAT 4.3. All SWARM system tests were succesgftdn
and passed on site at ESOC. More effort was redun get
the CSIM simulator ported to run on SIMSAT 4 beeatlsis

run i.e. operating system, other applications ag,well as
Ground Models (TTC Streams). Another observati@denis
that when an operational simulator uses more
approximately 85% processing power per CPU, or CBie,
then real time slips and latencies occur in theuktion and it
also puts more stress on the constellation.

than

simulator Current|y runs on SIMSAT 3, with its OwnThe results from the Galileo Constellation Simulatnd
SmpZAdapeter imp'ementation_ We were able to gem\/CSSWARM Simulator show that the distributed SIMSAT et®

running with the OBSW, without experiencing anylréme
slips. Because we ere not validating the simujabort the
distributed SIMSAT, no more effort was taken to dbé
system test load and run.

The SWARM simulator that simulates 3 spacecraft
parallel has been tested distributed. Using th@ EERC32
emulator, one spacecraft can be installed and eac@mputer,
allowing two times real-time speed simulations. féal time
slips were observed in the simulation. The CPUWl loheach
SimHost on each machine lies around 30% and betd/Bdn
20% on the master machine.

The LEOP CSIM simulator uses more CPU, approximnjat
70% for each spacecraft running on its own SimHdsir this
reason it could not be run faster than real tinu,no real time
slips were observed when running distributed.

)

the demanding system performance requirementsntdarge-
scale distributed models across a dedicated netwdsking
this distributed environment has clear benefitot-amly in the
space industry but across diverse industries wiceraplex
large scale distributed systems are required.

in
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with a 2.8 GHz Intel processor and performance oreasents
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VI. CONCLUSION

SIMSAT 4.3 provides a powerful simulation infrastture
including features such as real-time access tcsigiulation
models, hierarchal visualization of models, comniagdof
models, real-time data visualization and plots, |-tiese
logging facility and scripting capabilities. IteXible plug-in
design allows developers

to develop extra pluggable

components that can be added to the software withou

modifying its code base and thus not requiringtauild of the
source code. These plug-in components can be ajmatifor
specific project needs and can interact with thet f the
system through the provided interfaces.

The SIMSAT 4.3 to support distribution is a powérfu

addition to the real-time infrastructure softwalrattcan be
used to simulate large-scale simulations. Based ttan
distribution of its internal components, the systdistributes
the processing of its elements to remote machinbgstw
maintaining synchronous time across the whole gyst€o the
end user the distribution of the system is trarspiareasily
controlled and monitored through SIMSAT’s MMI GUI.

It is recommended that one core, or CPU, is leftrasmper
machine when running constellation simulations. isTls
because other applications on the computer reges@urces to



