
Real Time Distributed Simulations Using SIMSAT 4.3

Joshua Whitty
Terma GmbH, Europaplatz 5, 64293 Darmstadt, Germany

jowh@terma.com

Abstract - The need for large-scale real-time simulations
is growing in demand within many diverse industries. This
places ever-increasing performance requirements on the
hardware platforms required to run the simulations.
Possible solutions to this include the use of multiple core
computers and a network of computers to distribute the
simulator processing load across many cores and machines.

This paper examines some recent examples of such
simulations within the European Space sector, and how
SIMSAT 4.3 simulation infrastructure has been extended to
satisfy the requirements to run distributed real-time
simulations.

The underlying simulation environment used by the
European Space Agency (ESA) and the European Space
Operations Centre (ESOC) for spacecraft simulators since
the early 1990’s is the SIMSAT real time infrastructure.
SIMSAT originally ran under VMS, but since then it has
been ported to many different Operating Systems, i.e.
Windows NT/2000/XP and then most recently SuSE Linux
Enterprise Server 9 and 11. It provides the real-time
environment for spacecraft simulators to verify the ground
segment readiness prior to launch, including the validation
of the mission control system, validation of spacecraft
procedures and the training of the spacecraft operators.
The requirement to develop simulations for large and
complex space systems within the European Space Market,
for example Galileo, places heavy demands on the
simulation platform. This increasing performance demand
has driven the development of a distributed version of the
SIMSAT infrastructure.

The paper introduces SIMSAT at a conceptual level, the
current SIMSAT Linux 4.3 Software Architecture, and the
benefits of its framework “plug-in” design which make it so
versatile, flexible and extendable. This plug-in framework
allows fast and rapid development of new simulation
components that plug-in to the SIMSAT framework, for
example, to support the distribution and running of a
simulator across a distributed network, or to selectively
load various models and assemble different simulated
components to run.

The system, network performance, time synchronisation,
and configuration requirements of a real-time distributed
simulation system are identified. The paper demonstrates
how these constraints were solved through the software
architectural design principles applied.

The results show that the SIMSAT 4.3 Infrastructure
Software meets the system and performance requirements
of running distributed models across a dedicated network.
The new SIMSAT can be utilised across diverse industries
to run large-scale distributed simulations.

SIMSAT is an ESA product for which holds the full IPR
(intellectual Property Right).

I. INTRODUCTION

With the advances in technology within the European Space
sector the demands for larger simulation systems have
increased. This places increased performance requirements on
infrastructure software to ensure that the simulations maintain
real-time and that configuration control of each element within
the simulation is easily maintained. The processing power of a
single machine may not be enough for a large-scale
simulations. This has driven us to design a parallel distributed
simulation system to distribute the processing load of each
element in the simulation.

The ESA Galileo project is a large and complex system to
simulate requiring the simulation of many elements in parallel.
Two examples of this are the Galileo Constellation Operational
Simulator (CSIM) and the Assembly Integration and
Verification Platform (AIVP). Both of these projects have
many elements that are simulated in parallel with high
processing demands that far exceed the capabilities of a single
machine. ESOC operational simulators are also following the
same trend, with the SWARM constellation simulator, and
SENTINEL-1 requiring more than one spacecraft to be
simulated. Due to this, the SIMSAT 4.3 infrastructure (ESA’s
Real time Operations Simulations Infrastructure) has been
extended to support the running of simulations across multiple
cores, CPUs and also a network.

The Galileo Constellation Operational Simulator simulates

multiple spacecraft in parallel. Its purpose is to simulate
multiple spacecraft to verify the ground segment readiness
prior to launch, including the validation of the mission control
system, validation of spacecraft procedures and the training of
the spacecraft operators.

AIVP is the verification platform for the Galileo Ground
Segment. It simulates many different Ground Stations, for
example, Galileo Sensor Station (GSS), Message Generation
Facility (MGF), the Orbitography and Synchronisation
Processing Facility (OSPF), as well as the Real-Time Network
Emulator that simulates the network and passing of messages

between all Ground Stations. The purpose of the simulator is
to test the Galileo Ground Segment as a whole and to replace
the software models with the real stations and hardware when
they become available to verify and validate the system.

SWARM is ESOC's first constellation simulator, modelling

three spacecraft, using SIMSAT 4. The primary objective of
SWARM, through its constellation of 3 satellites, is to provide
a survey of the Earth’s geomagnetic field and provide the first
global representation of the field’s variations over time. This
project inherited the distributed components developed for the
CSIM project on SIMSAT 3. ESOC recognised that the
demand for distributed simulations were increasing and
decided to add generic distributed components to SIMSAT 4.3
that would work for all existing and future constellation
simulators.

II. PARALLEL/DISTRIBUTED SIMULATIONS

Parallel/distributed simulation technology has been around

since the early 1980s with initial advancements arising from
the Defence Community to simulate military scenarios to train
soldiers. Since then it has made great advancements and is
now widely used in the Gaming Industry and the Internet. The
technology enables a simulation program to be executed in
parallel on distributed interconnected computers across a
network. These machines may be geographically distributed
across a building or even the world. There are primarily two
main benefits to this.

1. Reduced execution time – With multiple machines and

thus multiple processors, the processing load is
divided and shared amongst each processor to reduce
the load of the system processing to ensure that real-
time is maintained.

2. Geographical Distribution – The machines are
connected to a network and therefore are not
geographically constrained.

Parallel/distributed simulation technology is made possible

by the advancement of three essential technologies:

1. Integrated Circuits – An inexpensive computer which
allows building up a network economically feasible.

2. High Speed networks – Whether connected to a Local
Area Network (LAN) or the Internet enabling fast data
transfer.

3. Modelling and Simulation – Technology to construct
models of actual real-world systems that when run on
a normal computer can emulate and be representative
of the real system.

Due to these advancements in technology we were able to

solve the problems associated with simulating these large-scale
projects using a distributed SIMSAT system.

III. S IMSAT

SIMSAT (The Software Infrastructure for Modelling
Satellites) is the real-time infrastructure software used by the
European Space Agency (ESA) and the European Space
Operations Centre (ESOC) to run simulations since the early
1990s. It was originally written to run on VMS, but over the
years it has been ported to many different Operating Systems
including Windows NT/2000/XP, SuSE Linux Enterprise
Server (SLES) 9, and the latest being SLES 11. Up until now
it has only been used for simulations that were capable of
running on single machines, for example, single spacecraft
simulations containing Ground models to verify the ground
segment readiness prior to launch, including the validation of
the mission control systems, validation of spacecraft
procedures and the training of the spacecraft operators.

SIMSAT contains a Graphical User Interface (GUI) called the
MMI (Man Machine Interface) to allow simulator runtime
behaviour to be actively monitored and controlled. The MMI
can display the status of the simulated object (i.e. a spacecraft)
including all contained model parameters, services and
variables. The simulation environment traps all exception
conditions and displays error messages for all erroneous
actions and anomalous behaviour. An on-line help facility is
also provided as part of the MMI - to replace the SUM.

The simulation runtime environment functionality is
summarised below:

• Graphical User Interface (GUI).

• Scheduling of simulation models, commands and Java
scripts.

• Message logging.

• Recording of simulation data over time.
• Visualisation of model data.

• Control of the simulator via commands and scripts.

• Saving / restoring simulation states (Break pointing).

Fig. 1. SIMSAT 4.3 MMI GUI on SLES 11

The run-time Kernel is the heart of the simulation and is
responsible for scheduling models, event logging, user

commanding, visualisation of model data and the
saving/restore of the simulation states. Here is a brief
description of the SIMSAT components;

SimHost: The run-time process on the system that is the
simulation. The SimHost always has one Kernel.

Kernel: The core object that contains all components within a
simulation and allows control over the creation and contents of
simulations.

Resolver: Exposes information of internal simulation objects
to the outside world i.e. the MMI.

Explorer : Exposes all simulation model objects, data and
services to the simulation. This is used in the MMI to display a
hierarchical view of all objects in the simulation.

Logger: Allows the storage of messages produced by the
simulation system for immediate or delayed review.

Storer: Allows the saving of simulation “states” to file on disk.
This can then be reloaded at some later point to recreate the
simulation as it existed when it was saved.

Scheduler: The scheduler stores a list of model events that
represent the activity that will occur in the simulation future on
its Schedule. The Scheduler also contains a Time Keeper
which controls and monitors the passage of time in the
simulation.

Data Server: Serves simulation data to the outside world i.e.
MMI.

Recorder: Records simulated data to file over time.
simulation.

Command Line Interface: Allows SIMSAT to be launched
and commanded from the command line i.e. without the use of
an MMI.

Fig. 2. SIMSAT 4.3 Non Distributed Top Level Architecture

One advantage of the SIMSAT 4.3 architecture, inherited

from SIMSAT 3, is that all the components are based on
CORBA technology. As such, these components are

completely location independent in terms of their functionality
and will continue to work in the remote case where they may
be distributed across a network.

Another advantage is that SIMSAT 4.3 works in terms of

Daemons, not machines. In order to start a simulation a
Daemon must be running to act as a server to the client
launching the simulation. In SIMSAT this client is the MMI,
and the target Daemon spawns a new simulation host process
(called SimHost). Since every machine on a local network can
run one or many Daemons, and a Daemon can create one or
many simulations, there is a great degree of flexibility when it
comes to launching simulation executables on the same, or
particular machines.

The current SIMSAT Kernel and MMI framework supports a
“plug-in” architecture which makes it so versatile, flexible and
extendable. This plug-in framework allows the development of
new SIMSAT components that plug-in to the existing SIMSAT
framework without altering or affecting the existing SIMSAT
code base. By simply adding a file to the "components"
directory of the SIMSAT installation, and entering the
component information into the SIMSAT Kernel Architecture
File, it can then be loaded into the simulation. The existing
code base does not need to be recompiled. This allows us to
develop specific components to support the running of
SIMSAT across a distributed network, or specific components
to meet the requirements of specific projects.

IV. DESIGN ISSUES AND SOLUTIONS

Corba and Network Latency

As mentioned above, SIMSAT components are based on
CORBA technology. Even though this enables us to run the
components on remote machines, there is a performance
penalty to pay in terms of the amount of time taken to complete
a single CORBA out of process call across a network.

A single CORBA call requires around 1 microsecond when

the calling and called objects are located in the same process,
but this can increase to around 50 microseconds when they
exist in different processes on the same machine. This latency
jumps to around 100-1000 microseconds when they are located
on different machines, though this figure is highly variable and
subject to the network configuration and conditions. This
increase in the amount of time to complete one call leads to
performance problems. Due to the high number of CORBA
calls between the Kernel components and models, this has
driven the design of the new SIMSAT Kernel components to
allow distribution of parts (i.e. individual Models) of a
simulation to other remote machines.

Distributing Kernel Components

 To overcome the performance problems of running CORBA
components on more cores, CPUs or remote machines and
processes, some SIMSAT kernel components were distributed.
The Architecture has one centralised “Master Kernel” per

simulation which may contain many “Kernel Sites” that are
installed on remote machines. Each Kernel Site acts as a local
service provider, but provides default services from the Master
Kernel if they are not available on the site.

Fig. 3. Distributed SIMSAT Top Level Architecture

The Kernel, Storer, and Scheduler components have been

redesigned to support distribution. Fig. 4 below shows the top
level architecture of the distributed Kernel Master and Site
components.

Fig. 4 Distributed SIMSAT Kernel Architecture

Note that SIMSAT 4.3 does not contain a distributed Logger

as it is at present not foreseen as necessary. Other constellation
simulators i.e. CSIM and AIVP, do contain distributed Loggers
in their SIMSAT 3 infrastructure because they are required to
simulate a large number of Kernel Sites, which is foreseen to
produce a higher number of log messages. CSIM for example,
will simulate 18 fully emulated spacecraft across a network.

Distributing the Storer

The total amount of time required to save and restore model

data for a distributed simulation is greatly reduced by
employing a parallel save/restore design using multiple threads.
The design contains a Master Storer, located in the Master

Kernel on the master machine, and a Site Storer located in the
Kernel Site on the site machine. The Master Storer receives
the instruction from the MMI and hands off this instruction on
separate threads to each Site Storer, which save/restores the
model’s state to or from a local file.

Fig. 5 Distributed SIMSAT Storer Architecture

Distributing the Scheduler Component and Time Synchronisation

The Scheduler component has the most amount of CORBA
calls to make to other models within the simulation. It is not
unusual for the Scheduler to execute 500 to 1000 events per
second just for one element/spacecraft in the simulation. For
this reason particular care was taken to reduce the number of
Corba calls across the network in the design by having a
Master Scheduler located in the Master Kernel on the master
machine, and a Site Scheduler located in the Site Kernel on the
site machine. With this design all models located on each site
machine registers their events onto the local Site Scheduler.
The Site Scheduler has its own schedule and executes all the
local events locally. This eliminates all scheduled
events/CORBA calls across the network. But this creates a
new problem. How do we ensure that all Site Schedulers are
synchronous with each other?

This design required a concept of being able to synchronise

time within the whole simulation across all site machines as
prototyping results showed that Site Schedulers very quickly
ran out of sync with each other (to milli second level) just after
a couple of seconds of running simulation time.

Two methods of time synchronisation were investigated and

prototyped.

1. Centralised, pull time service – Each Site Scheduler
requests the current time form a centralised time
service (passive server algorithm)

2. Centralised, push time service – A central time
service periodically sends new time values to the Site
Schedulers

The SIMSAT scheduler is a “Soft Real-Time Scheduler”.

This means that the execution success of an event is more

important than the event being executed at the precise time.
Simulation time does not advance regularly like real-time
because the scheduler advances simulation time forward when
events are executed. Because of this a Centralised Push Time
service would require more implementation effort as a
mechanism to update simulation time to all sites to compensate
for the latency from sending the time to the first Site Scheduler
to the last Site Scheduler in the simulation is needed.

With a Centralised Pull Time service the Master Scheduler
acted as the Time Keeper within the simulation i.e. one
centralised controlled time. Each Site Scheduler requests the
elapsed time at configurable periods, to synchronise its local
scheduler. This reduces the number of network calls to a
minimum. Each Site Scheduler has its own simulation time
which is used to provide local models of the site with
simulation time when requested

Every time the Master received a time synchronisation

request, it stores and uses the Site Scheduler time to calculate
the constellation simulation time. Two methods were
introduced into the Master Scheduler to calculate constellation
simulation time. One calculates constellation simulation time
by using the slowest site, and the other mechanism uses the
fastest site - which mechanism to use can be set by the user.

Because each site may have different events on the schedule

a Centralised Pull Time method is better suited as each Site
Scheduler would request time from the centralised time service
at irregular intervals, and thus less effort is required in the
implementation.

The Master Scheduler also contains a schedule. This is

implemented to support the scheduling of Java scripts and
commands which come from the MMI. It is not possible for
Kernel Site Schedulers to add events to the Master Scheduler,
as its simulation time is not used in the calculation of the
constellation simulation time, as its events are not model
driven.

Fig. 6 Distributed SIMSAT Scheduler Architecture

Configuration Control

Even though the distributed aspects of a simulation are

completely transparent to the user from the MMI, the
management of configuration files for a distributed or
constellation simulation across many computers can lead to
real problems and confusion. Different simulators have
different requirements and runtime environments. For
example, the SWARM simulator, simulates 3 spacecraft on one
computer. It does this by distributing each site SimHost on a
separate core/CPU of one machine. Therefore a quad core
machine is sufficient to run a constellation simulation, and no
"real" distribution of the software across a network is required.
Therefore only one set of configuration files on disk can be
used for all 3 spacecraft instances. Other constellation
simulators on the other hand have to simulate many more
spacecraft i.e. CSIM, and this creates file synchronisation
problems.

The approach taken on CSIM was to store all files in a

centralized area on one machine, to avoid multiple copies of
files spread over the network. Each site machine has a mounted
drive to the centralized configurations area and can read and
write to these folders. Each site simulation can therefore read
and write to these files when required.

Shared Memory

Shared memory and code execution from multiple threads
are protected using mutexes. This is an issue for the
distributed components within the Master Kernel and any
models that may communicate with each other.

MMI

The distribution of models is transparent to the users in the
MMI. MMI plug-ins were developed to support the options for
saving/restoring system level and element/site level “states” as
well as aiding the users in building configurations. The
SIMSAT 4.3 MMI Log Viewer can open multiple viewers and
more filter options were added. This gives more flexibility to
the users to see log messages from only one site, or one
element within a site, or even log messages of only a particular
type.

V. RESULTS

The aim of integrating the distributed components into
SIMSAT 4.3 was to implement a generic solution that would
work for current ESOC and ESA constellation distributed
simulators, as well as ensuring that it would satisfy future
requirements for distributed simulations. Since the SWARM
project inherited the distributed components from CSIM,
taking these components was a good starting point as they were
already ported from SIMSAT 3 to version of SIMSAT 4.0.3.
The CSIM project did have specific distribution requirements
because it runs in a "true" distributed environment across a
network of computers, that was not required for SWARM, so
special attention was taken to reintroduce some missing CSIM
functionality. The end result is an implementation that works
for both of these simulators.

As part of the validation work to verify the success of a

generic implementation in SIMSAT 4.3, both the SWARM and
LEOP CSIM constellation simulators were ported to run on
SIMSAT 4.3. All SWARM system tests were successfully ran
and passed on site at ESOC. More effort was required to get
the CSIM simulator ported to run on SIMSAT 4 because this
simulator currently runs on SIMSAT 3, with its own
Smp2Adapeter implementation. We were able to get CSIM
running with the OBSW, without experiencing any real time
slips. Because we ere not validating the simulator, but the
distributed SIMSAT, no more effort was taken to get the
system test load and run.

The SWARM simulator that simulates 3 spacecraft in

parallel has been tested distributed. Using the ESOC ERC32
emulator, one spacecraft can be installed and run per computer,
allowing two times real-time speed simulations. No real time
slips were observed in the simulation. The CPU load of each
SimHost on each machine lies around 30% and between 15 to
20% on the master machine.

 The LEOP CSIM simulator uses more CPU, approximately

70% for each spacecraft running on its own SimHost. For this
reason it could not be run faster than real time, but no real time
slips were observed when running distributed.

Note that measurements were made on using a computer
with a 2.8 GHz Intel processor and performance measurements
are hardware dependent.

VI. CONCLUSION

SIMSAT 4.3 provides a powerful simulation infrastructure
including features such as real-time access to all simulation
models, hierarchal visualization of models, commanding of
models, real-time data visualization and plots, real-time
logging facility and scripting capabilities. Its flexible plug-in
design allows developers to develop extra pluggable
components that can be added to the software without
modifying its code base and thus not requiring a rebuild of the
source code. These plug-in components can be developed for
specific project needs and can interact with the rest of the
system through the provided interfaces.

The SIMSAT 4.3 to support distribution is a powerful
addition to the real-time infrastructure software that can be
used to simulate large-scale simulations. Based on the
distribution of its internal components, the system distributes
the processing of its elements to remote machines whilst
maintaining synchronous time across the whole system. To the
end user the distribution of the system is transparent, easily
controlled and monitored through SIMSAT’s MMI GUI.

It is recommended that one core, or CPU, is left spare per

machine when running constellation simulations. This is
because other applications on the computer require resources to

run i.e. operating system, other applications etc, as well as
Ground Models (TTC Streams). Another observation made is
that when an operational simulator uses more than
approximately 85% processing power per CPU, or CPU core,
then real time slips and latencies occur in the simulation and it
also puts more stress on the constellation.

The results from the Galileo Constellation Simulator and
SWARM Simulator show that the distributed SIMSAT meets
the demanding system performance requirements to run large-
scale distributed models across a dedicated network. Using
this distributed environment has clear benefits – not only in the
space industry but across diverse industries where complex
large scale distributed systems are required.

REFERENCES
[1] J. Whitty, T. Baud, Fully Emulated Constellation, ESA, GAL-TN-SSL-

CSIM-I-0002, Issue 1 Revision 0, 13.09.2006.
[2] J. Whitty, T. Baud, S. Straw, Galileo Constellation Simulator

Architectural Design Volume 0, ESA, GAL-SDD-SSL-CSIM-A_0001
SDD Issue 1, Revision 0, 21.03.2007.

[3] Richard M. Fujimoto, Parallel and Distributed Simulation Systems, ISBN
0-471-18383-0.

[4] Galileo GMS AIVP – System Level Software Design Document, GAL-
DD-VEG-AIVP-R_020078 Issue 1C, 19.01.2007

