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Abstract - The need for large-scale real-time simulations 
is growing in demand within many diverse industries.   This 
places ever-increasing performance requirements on the 
hardware platforms required to run the simulations. 
Possible solutions to this include the use of multiple core 
computers and a network of computers to distribute the 
simulator processing load across many cores and machines.  
 
This paper examines some recent examples of such 
simulations within the European Space sector, and how 
SIMSAT 4.3 simulation infrastructure has been extended to 
satisfy the requirements to run distributed real-time 
simulations. 
 
The underlying simulation environment used by the 
European Space Agency (ESA) and the European Space 
Operations Centre (ESOC) for spacecraft simulators since 
the early 1990’s is the SIMSAT real time infrastructure.  
SIMSAT originally ran under VMS, but since then it has 
been ported to many different Operating Systems, i.e. 
Windows NT/2000/XP and then most recently SuSE Linux 
Enterprise Server 9 and 11.  It provides the real-time 
environment for spacecraft simulators to verify the ground 
segment readiness prior to launch, including the validation 
of the mission control system, validation of spacecraft 
procedures and the training of the spacecraft operators.  
The requirement to develop simulations for large and 
complex space systems within the European Space Market, 
for example Galileo, places heavy demands on the 
simulation platform. This increasing performance demand 
has driven the development of a distributed version of the 
SIMSAT infrastructure. 
 
The paper introduces SIMSAT at a conceptual level, the 
current SIMSAT Linux 4.3 Software Architecture, and the 
benefits of its framework “plug-in” design which make it so 
versatile, flexible and extendable. This plug-in framework 
allows  fast and rapid development of new simulation 
components that plug-in to the SIMSAT framework, for 
example, to support the distribution and running of a 
simulator across a distributed network, or to selectively 
load various models and assemble different simulated 
components to run.   
 
The system, network performance, time synchronisation, 
and configuration requirements of a real-time distributed 
simulation system are identified. The paper demonstrates 
how these constraints were solved through the software 
architectural design principles applied.    
 

The results show that the SIMSAT 4.3 Infrastructure 
Software meets the system and performance requirements 
of running distributed models across a dedicated network. 
The new SIMSAT can be utilised across diverse industries 
to run large-scale distributed simulations. 
 
SIMSAT is an ESA product for which holds the full IPR 
(intellectual Property Right). 

 

I.  INTRODUCTION   
 

With the advances in technology within the European Space 
sector the demands for larger simulation systems have 
increased.  This places increased performance requirements on 
infrastructure software to ensure that the simulations maintain 
real-time and that configuration control of each element within 
the simulation is easily maintained.  The processing power of a 
single machine may not be enough for a large-scale 
simulations.  This has driven us to design a parallel distributed 
simulation system to distribute the processing load of each 
element in the simulation. 
 

The ESA Galileo project is a large and complex system to 
simulate requiring the simulation of many elements in parallel.  
Two examples of this are the Galileo Constellation Operational 
Simulator (CSIM) and the Assembly Integration and 
Verification Platform (AIVP).  Both of these projects have 
many elements that are simulated in parallel with high 
processing demands that far exceed the capabilities of a single 
machine.   ESOC operational simulators are also following the 
same trend, with the SWARM constellation simulator, and 
SENTINEL-1 requiring more than one spacecraft to be 
simulated. Due to this, the SIMSAT 4.3 infrastructure (ESA’s 
Real time Operations Simulations Infrastructure) has been 
extended to support the running of simulations across multiple 
cores, CPUs and also a network. 

 
The Galileo Constellation Operational Simulator simulates 

multiple spacecraft in parallel.  Its purpose is to simulate 
multiple spacecraft to verify the ground segment readiness 
prior to launch, including the validation of the mission control 
system, validation of spacecraft procedures and the training of 
the spacecraft operators. 
 

AIVP is the verification platform for the Galileo Ground 
Segment.  It simulates many different Ground Stations, for 
example, Galileo Sensor Station (GSS), Message Generation 
Facility (MGF), the Orbitography and Synchronisation 
Processing Facility (OSPF), as well as the Real-Time Network 
Emulator that simulates the network and passing of messages 



between all Ground Stations.  The purpose of the simulator is 
to test the Galileo Ground Segment as a whole and to replace 
the software models with the real stations and hardware when 
they become available to verify and validate the system. 

 
SWARM is ESOC's first constellation simulator, modelling 

three spacecraft, using SIMSAT 4.  The primary objective of 
SWARM, through its constellation of 3 satellites, is to provide 
a survey of the Earth’s geomagnetic field and provide the first 
global representation of the field’s variations over time. This 
project inherited the distributed components developed for the 
CSIM project on SIMSAT 3.  ESOC recognised that the 
demand for distributed simulations were increasing and 
decided to add generic distributed components to SIMSAT 4.3 
that would work for all existing and future constellation 
simulators. 

 
II.  PARALLEL/DISTRIBUTED SIMULATIONS 

 
Parallel/distributed simulation technology has been around 

since the early 1980s with initial advancements arising from 
the Defence Community to simulate military scenarios to train 
soldiers.  Since then it has made great advancements and is 
now widely used in the Gaming Industry and the Internet.  The 
technology enables a simulation program to be executed in 
parallel on distributed interconnected computers across a 
network.  These machines may be geographically distributed 
across a building or even the world.  There are primarily two 
main benefits to this.  

 
1. Reduced execution time – With multiple machines and 

thus multiple processors, the processing load is 
divided and shared amongst each processor to reduce 
the load of the system processing to ensure that real-
time is maintained. 

2. Geographical Distribution – The machines are 
connected to a network and therefore are not 
geographically constrained. 

 
Parallel/distributed simulation technology is made possible 

by the advancement of three essential technologies: 
 

1. Integrated Circuits – An inexpensive computer which 
allows building up a network economically feasible. 

2. High Speed networks – Whether connected to a Local 
Area Network (LAN) or the Internet enabling fast data 
transfer. 

3. Modelling and Simulation – Technology to construct 
models of actual real-world systems that when run on 
a normal computer can emulate and be representative 
of the real system.   

 
Due to these advancements in technology we were able to 

solve the problems associated with simulating these large-scale 
projects using a distributed SIMSAT system. 

 
III. S IMSAT  
 

SIMSAT (The Software Infrastructure for Modelling 
Satellites) is the real-time infrastructure software used by the 
European Space Agency (ESA) and the European Space 
Operations Centre (ESOC) to run simulations since the early 
1990s.  It was originally written to run on VMS, but over the 
years it has been ported to many different Operating Systems 
including Windows NT/2000/XP, SuSE Linux Enterprise 
Server (SLES) 9, and the latest being SLES 11.  Up until now 
it has only been used for simulations that were capable of 
running on single machines, for example, single spacecraft 
simulations containing Ground models to verify the ground 
segment readiness prior to launch, including the validation of 
the mission control systems, validation of spacecraft 
procedures and the training of the spacecraft operators. 
 
SIMSAT contains a Graphical User Interface (GUI) called the  
MMI (Man Machine Interface) to allow simulator runtime 
behaviour to be actively monitored and controlled. The MMI 
can display the status of the simulated object (i.e. a spacecraft) 
including all contained model parameters, services and 
variables. The simulation environment traps all exception 
conditions and displays error messages for all erroneous 
actions and anomalous behaviour. An on-line help facility is 
also provided as part of the MMI - to replace the SUM.  
 
The simulation runtime environment functionality is 
summarised below: 

• Graphical User Interface (GUI).  

• Scheduling of simulation models, commands and Java 
scripts. 

• Message logging. 

• Recording of simulation data over time. 
• Visualisation of model data. 

• Control of the simulator via commands and scripts.  

• Saving / restoring simulation states (Break pointing). 

 

 
Fig. 1. SIMSAT 4.3 MMI GUI on SLES 11 

 
The run-time Kernel is the heart of the simulation and is 
responsible for scheduling models, event logging, user 



commanding, visualisation of model data and the 
saving/restore of the simulation states.  Here is a brief 
description of the SIMSAT components; 

SimHost: The run-time process on the system that is the 
simulation. The SimHost always has one Kernel.  

Kernel: The core object that contains all components within a 
simulation and allows control over the creation and contents of 
simulations.  

Resolver: Exposes information of internal simulation objects 
to the outside world i.e. the MMI.  

Explorer : Exposes all simulation model objects, data and 
services to the simulation.  This is used in the MMI to display a 
hierarchical view of all objects in the simulation.  

Logger: Allows the storage of messages produced by the 
simulation system for immediate or delayed review.  

Storer: Allows the saving of simulation “states” to file on disk. 
This can then be reloaded at some later point to recreate the 
simulation as it existed when it was saved.  

Scheduler: The scheduler stores a list of model events that 
represent the activity that will occur in the simulation future on 
its Schedule. The Scheduler also contains a Time Keeper 
which controls and monitors the passage of time in the 
simulation.   

Data Server: Serves simulation data to the outside world i.e. 
MMI.   

Recorder: Records simulated data to file over time. 
simulation.   

Command Line Interface: Allows SIMSAT to be launched 
and commanded from the command line i.e. without the use of 
an MMI. 
 

 
Fig. 2. SIMSAT 4.3 Non Distributed Top Level Architecture 

 
One advantage of the SIMSAT 4.3 architecture, inherited 

from SIMSAT 3, is that all the  components are based on 
CORBA technology.  As such, these components are 

completely location independent in terms of their functionality 
and will continue to work in the remote case where they may 
be distributed across a network.   

 
Another advantage is that SIMSAT 4.3 works in terms of 

Daemons, not machines.  In order to start a simulation a 
Daemon must be running to act as a server to the client 
launching the simulation. In SIMSAT this client is the MMI, 
and the target Daemon spawns a new simulation host process 
(called SimHost). Since every machine on a local network can 
run one or many Daemons, and a Daemon can create one or 
many simulations, there is a great degree of flexibility when it 
comes to launching simulation executables on the same, or 
particular machines. 
 

The current SIMSAT Kernel and MMI framework supports a 
“plug-in” architecture which makes it so versatile, flexible and 
extendable. This plug-in framework allows the development of 
new SIMSAT components that plug-in to the existing SIMSAT 
framework without altering or affecting the existing SIMSAT 
code base.  By simply adding a file to the "components" 
directory of the SIMSAT installation, and entering the 
component information into the SIMSAT Kernel Architecture 
File, it can then be loaded into the simulation.  The existing 
code base does not need to be recompiled.  This allows us to 
develop specific components to support the running of 
SIMSAT across a distributed network, or specific components 
to meet the requirements of specific projects.   
 

IV.  DESIGN ISSUES AND SOLUTIONS 
 

Corba and Network Latency 
 

As mentioned above, SIMSAT components are based on 
CORBA technology.  Even though this enables us to run the 
components on  remote machines, there is a performance 
penalty to pay in terms of the amount of time taken to complete 
a single CORBA out of process call across a network. 

  
A single CORBA call requires around 1 microsecond when 

the calling and called objects are located in the same process, 
but this can increase to around 50 microseconds when they 
exist in different processes on the same machine. This latency 
jumps to around 100-1000 microseconds when they are located 
on different machines, though this figure is highly variable and 
subject to the network configuration and conditions.  This 
increase in the amount of time to complete one call leads to 
performance problems.  Due to the high number of CORBA 
calls between the Kernel components and models, this has 
driven the design of the new SIMSAT Kernel components to 
allow distribution of parts (i.e. individual Models) of a 
simulation to other remote machines.  

 
Distributing Kernel Components 
 

 To overcome the performance problems of running CORBA 
components on more cores, CPUs or remote machines and 
processes, some  SIMSAT kernel components were distributed.  
The Architecture has one centralised “Master Kernel”  per 



simulation which may contain many “Kernel Sites” that are 
installed on remote machines.  Each Kernel Site acts as a local 
service provider, but provides default services from the Master 
Kernel if they are not available on the site. 
 

 
   

Fig. 3. Distributed SIMSAT Top Level Architecture 
 
The Kernel, Storer,  and Scheduler components have been 

redesigned to support distribution.  Fig. 4 below shows the top 
level architecture of the distributed Kernel Master and Site 
components.   
 

 
Fig. 4 Distributed SIMSAT Kernel Architecture 

 
Note that SIMSAT 4.3 does not contain a distributed Logger 

as it is at present not foreseen as necessary.  Other constellation 
simulators i.e. CSIM and AIVP, do contain distributed Loggers 
in their SIMSAT 3 infrastructure because they are required to 
simulate a large number of Kernel Sites, which is foreseen to 
produce a higher number of log messages.  CSIM for example, 
will simulate 18 fully emulated spacecraft across a network.  

 
Distributing the Storer  
 
The total amount of time required to save and restore model 

data for a distributed simulation is greatly reduced by 
employing a parallel save/restore design using multiple threads.  
The design contains a Master Storer, located in the Master 

Kernel on the master machine, and a Site Storer located in the 
Kernel Site on the site machine.  The Master Storer receives 
the instruction from the MMI and hands off this instruction on 
separate threads to each Site Storer, which save/restores the 
model’s state to or from a local file.   
 

 
Fig. 5 Distributed SIMSAT Storer Architecture 

 
Distributing the Scheduler Component and Time Synchronisation 

 

The Scheduler component has the most amount of CORBA 
calls to make to other models within the simulation.  It is not 
unusual for the Scheduler to execute 500 to 1000 events per 
second just for one element/spacecraft in the simulation.  For 
this reason particular care was taken to reduce the number of 
Corba calls across the network in the design by having a 
Master Scheduler located in the Master Kernel on the master 
machine, and a Site Scheduler located in the Site Kernel on the 
site machine.  With this design all models located on each site 
machine registers their events onto the local Site Scheduler.  
The Site Scheduler has its own schedule and executes all the 
local events locally.  This eliminates all scheduled 
events/CORBA calls across the network.  But this creates a 
new problem.  How do we ensure that all Site Schedulers are 
synchronous with each other?     

 
This design required a concept of being able to synchronise 

time within the whole simulation across all site machines as  
prototyping results showed that Site Schedulers very quickly 
ran out of sync with each other (to milli second level) just after 
a couple of seconds of running simulation time.   

 
Two methods of time synchronisation were investigated and 

prototyped.   
 

1. Centralised, pull time service – Each Site Scheduler 
requests the current time form a centralised time 
service (passive server algorithm) 

2. Centralised, push time service – A central time 
service periodically sends new time values to the Site 
Schedulers 

 
The SIMSAT scheduler is a “Soft Real-Time Scheduler”.  

This means that the execution success of an event is more 



important than the event being executed at the precise time.  
Simulation time does not advance regularly like real-time 
because the scheduler advances simulation time forward when 
events are executed.  Because of this a Centralised Push Time 
service would require more implementation effort as a 
mechanism to update simulation time to all sites to compensate 
for the latency from sending the time to the first Site Scheduler 
to the last Site Scheduler in the simulation is needed.   
 

With a Centralised Pull Time service the Master Scheduler 
acted as the Time Keeper within the simulation i.e. one 
centralised controlled time.  Each Site Scheduler requests the  
elapsed time at configurable periods, to synchronise its local 
scheduler.  This reduces the number of network calls to a 
minimum.   Each Site Scheduler has its own simulation time 
which is used to provide local models of the site with 
simulation time when requested 

 
Every time the Master received a time synchronisation 

request, it stores and uses the Site Scheduler time to calculate 
the constellation simulation time.  Two methods were 
introduced into the Master Scheduler to calculate constellation 
simulation time.  One calculates constellation simulation time 
by using the slowest site, and the other mechanism uses the 
fastest site - which mechanism to use can be  set by the user. 

 
Because each site may have different events on the schedule  

a Centralised Pull Time method is better suited as each Site 
Scheduler would request time from the centralised time service 
at irregular intervals, and thus less effort is required in the 
implementation.     

 
The Master Scheduler also contains a schedule.  This is 

implemented to support the scheduling of Java scripts and 
commands which come from the MMI. It is not possible for 
Kernel Site Schedulers to add events to the Master Scheduler, 
as its simulation time is not used in the calculation of the 
constellation simulation time, as its events are not model 
driven. 
 

 
Fig. 6 Distributed SIMSAT Scheduler Architecture 

 
Configuration Control 
 

Even though the distributed aspects of a simulation are 

completely transparent to the user from the MMI, the 
management of configuration files for a distributed or 
constellation simulation across many computers can lead to 
real problems and confusion.  Different simulators have 
different requirements and runtime environments.  For 
example, the SWARM simulator, simulates 3 spacecraft on one 
computer.  It does this by distributing each site SimHost on a 
separate core/CPU of one machine.  Therefore a quad core 
machine is sufficient to run a constellation simulation, and no 
"real" distribution of the software across a network is required.  
Therefore only one set of configuration files on disk can be 
used for all 3 spacecraft instances.  Other constellation 
simulators on the other hand have to simulate many more 
spacecraft i.e. CSIM, and this creates file synchronisation 
problems. 

 
The approach taken on CSIM was to store all files in a 

centralized area on one machine, to avoid multiple copies of 
files spread over the network. Each site machine has a mounted 
drive to the centralized configurations area and can read and 
write to these folders.  Each site simulation can therefore read 
and write to these files when required.   
 
Shared Memory 
 

Shared memory and code execution from multiple threads 
are protected using mutexes.   This is an issue for the 
distributed components within the Master Kernel and any 
models that may communicate with each other. 
 
MMI 
 

The distribution of models is transparent to the users in the 
MMI.  MMI plug-ins were developed to support the options for 
saving/restoring system level and element/site level “states” as 
well as aiding the users in building configurations.  The 
SIMSAT 4.3 MMI Log Viewer can open multiple viewers and 
more filter options were added. This gives more flexibility to 
the users to see log messages from only one site, or one 
element within a site, or even log messages of only a particular 
type. 
 

V. RESULTS 
 

The aim of integrating the distributed components into 
SIMSAT 4.3 was to implement a generic solution that would 
work for current ESOC and ESA constellation distributed 
simulators, as well as ensuring that it would satisfy future 
requirements for distributed simulations.   Since the SWARM 
project inherited the distributed components from CSIM, 
taking these components was a good starting point as they were 
already ported from SIMSAT 3 to version of SIMSAT 4.0.3.  
The CSIM project did have specific distribution requirements 
because it runs in a "true" distributed environment across a 
network of computers, that was not required for SWARM, so 
special attention was taken to reintroduce some missing CSIM 
functionality. The end result is an implementation that works 
for both of these simulators. 



 
As part of the validation work to verify the success of a 

generic implementation in SIMSAT 4.3, both the SWARM and 
LEOP CSIM constellation simulators were ported to run on 
SIMSAT 4.3.  All SWARM system tests were successfully ran 
and passed on site at ESOC.  More effort was required to get 
the CSIM simulator ported to run on SIMSAT 4 because this 
simulator currently runs on SIMSAT 3, with its own 
Smp2Adapeter implementation. We were able to get CSIM 
running with the OBSW, without experiencing any real time 
slips.  Because we ere not validating the simulator, but the 
distributed SIMSAT, no more effort was taken to get the 
system test load and run.   

 
The SWARM simulator that simulates 3 spacecraft in 

parallel has been tested distributed.  Using the ESOC ERC32 
emulator, one spacecraft can be installed and run per computer, 
allowing two times real-time speed simulations. No real time 
slips were observed in the simulation.  The CPU load of each 
SimHost on each machine lies around 30% and between 15 to 
20% on the master machine. 

 
  The LEOP CSIM simulator uses more CPU, approximately 

70% for each spacecraft running on its own SimHost.  For this 
reason it could not be run faster than real time, but no real time 
slips were observed when running distributed.   
 

Note that measurements were made on using a computer 
with a 2.8 GHz Intel processor and performance measurements 
are hardware dependent. 
 

VI.  CONCLUSION 
 

SIMSAT 4.3 provides a powerful simulation infrastructure 
including features such as real-time access to all simulation 
models, hierarchal visualization of models, commanding of 
models, real-time data visualization and plots, real-time 
logging facility and scripting capabilities.  Its flexible plug-in 
design allows developers to develop extra pluggable 
components that can be added to the software without 
modifying its code base and thus not requiring a rebuild of the 
source code.  These plug-in components can be developed for 
specific project needs and can interact with the rest of the 
system through the provided interfaces. 
 

The SIMSAT 4.3 to support distribution is a powerful 
addition to the real-time infrastructure software that can be 
used to simulate large-scale simulations.  Based on the 
distribution of its internal components, the system distributes 
the processing of its elements to remote machines whilst 
maintaining synchronous time across the whole system.  To the 
end user the distribution of the system is transparent, easily 
controlled and monitored through SIMSAT’s MMI GUI. 

 
It is recommended that one core, or CPU, is left spare per 

machine when running constellation simulations.  This is 
because other applications on the computer require resources to 

run i.e. operating system, other applications etc, as well as 
Ground Models (TTC Streams).  Another observation made is 
that when an operational simulator uses more than 
approximately 85% processing power per CPU, or CPU core, 
then real time slips and latencies occur in the simulation and it 
also puts more stress on the constellation.   

 
The results from the Galileo Constellation Simulator and 
SWARM Simulator show that the distributed SIMSAT meets 
the demanding system performance requirements to run large-
scale distributed models across a dedicated network.  Using 
this distributed environment has clear benefits – not only in the 
space industry but across diverse industries where complex 
large scale distributed systems are required. 
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