
SWARMSIM – The first fully SMP2 based Simulator for ESOC

11th Int. WS on Simulation & EGSE facilities for Space Programmes
SESP 2010

28-30 September

at ESTEC, Noordwijk, the Netherlands

Peter Fritzen(1), Daniele Segneri(1), Max Pignède(2)

(1)VEGA
Europaplatz 5, D-64293 Darmstadt, Germany

Email: Peter.Fritzen@VEGA.de, Daniele.Segneri@VEGA.de

(2)ESOC/ESA
Robert-Bosch-Straße 5, D-64293 Darmstadt, Germany

Email: Max.Pignede@esa.int

INTRODUCTION

ESOC has started the deployment of a new generation of operational simulators in the context of the Swarm mission, a
constellation of three satellites planned to be launched in 2012. Compared to previous simulators developed by ESA, it
is unique in a number of ways:

 It natively implements the Simulation Model Portability 2 (SMP2) Standard;
 It is the first simulator based on the ESOC Spacecraft Simulator Reference Architecture (REFA);
 It has been produced using a model driven development process using the EGOS Modelling Framework

(EGOS-MF).

This paper illustrates the three above aspects and demonstrates that SMP2 can be used successfully in the context of
operational simulators for ESOC. Further, the paper clearly proves how the Reference Architecture applied in
simulators reduces development effort & cost. The paper is concluded with lessons learned and some proposals for
future improvements.

OVERVIEW

In October 2005, Issue 1.2 of SMP2 was released. For an application in ESOC simulators, the SIMSAT simulation
infrastructure was enhanced to support SMP2 (in addition to SMI, also called SMP1). Then, the ESOC Generic Models
were ported from SMI to SMP2. These models are reused across operational simulators for thermal and electrical
modelling, environment and dynamics, and for TM/TC encoding and decoding. Before starting with the development of
an operational simulator, an SMP2 based reference architecture for spacecraft simulators was designed (making use of
the Generic Models). Finally, the Swarm Simulator was developed using all these technologies provided by ESOC.

1.0 1.1 1.2

2004 2005 2006 2007 2008 2009 2010

Porting

SMP2

SIMSAT

Generic Models Porting

W. Maintenance

Warranty Maintenance

Spacecraft Simulator Reference Architecture Development W. Maintenance

10/04 04/05 10/05

05/07 07/08 06/09

03/08 03/09 07/09

10/05 08/08 11/08

Swarm Operational Simulator (D1) Development Warranty

10/08 09/09

Figure 1. Migration of the ESOC Infrastructure from SMP1 (SMI) to SMP2

mailto:Peter.Fritzen@VEGA.de�
mailto:Daniele.Segneri@VEGA.de�
mailto:Max.Pignede@esa.int�

THE SIMULATION MODEL PORTABILITY 2 (SMP2) STANDARD

The SMP2 standard has been developed to enforce a component based, object oriented development approach, and to
facilitate the use of modern programming language (namely C++). While the Simulation Model Interface (SMI) of
SMP1 is a C API (which mainly focused on the interfaces between the “Simulation Environment” and the “Simulation”,
see Figure 2 below), SMP2 strictly requires object orientation, and only provides a C++ mapping. The three types of
components that make up an SMP2 simulation are the simulation environment itself, the simulation services and the
models within the Simulation. These components shall only talk to each other via well-defined SMP2 interfaces.

Simulation

Model 1 Model 2 Model N

Simulation Environment

Native Simulation Environment

Simulation Services

Scheduler Time KeeperLogger Event Manager

…

Figure 2. Communication of SMP2 Components via well-defined Interfaces

In the Swarm Simulator, most models are native SMP2 models, i.e. they have been designed and implemented starting
from a complete design in an SMP2 Catalogue. This approach is different from a porting of existing models as e.g. done
for the Generic Models. Some statistics about the SMP2 models used in the various subsystems are shown in Table 1.

Table 1. Number of SMP2 classes and models per subsystem, divided into different model types

Wrapper Classes Native
Models C++ F77 ADA

Generic Models 110 18 34 0
 Common math library 23
 Environment 34
 Dynamics 11
 Encoding/Decoding 76
 Thermal Network 8
 Electrical Network 10
Swarm Simulator 144 3 0 1
 Generic 15
 Data Handling 36 1
 Data Links 4
 Attitude Orbit Control 20
 Reaction Control 11
 Radio Frequency Control 8
 Electrical Power 26
 Thermal Control 5
 Space Ground Interface 2
 Payloads 12
 Utilities 7 1

It can be seen that the Generic Models (which have been ported from SMP1 to SMP2 earlier) have a significant share
of models which are wrappers of existing models written in another programming language (mainly C++) whereas for
the Swarm Simulator, only the Emulator model of the Data Handling System has been developed as a wrapper around
existing Ada code. Further, the Space Ground Interface talks to an existing, CORBA based interface to the ESOC
Ground Models. Hence in total, the simulator can be considered truly SMP2 based.

THE SPACECRAFT SIMULATOR REFERENCE ARCHITECTURE (REFA)

The objective of the Spacecraft Simulator Reference Architecture (REFA) is to identify and integrate, using SMP2, a
reference spacecraft simulator architecture which can be used as the basis for future operational simulators. This is
essential to achieve shorter (and therefore more cost-efficient) spacecraft simulator development cycles by means of
extensive reuse by relying on a common architecture. This relies on the specification of interfaces between the various
spacecraft subsystems and on the identification of models which can be developed in a generic fashion, thus providing
the start of the actual development of an operational simulator.

REFA Utilities

REFA Subsystems

Generic Units Failures MessagesEventsParameters

AOCSPayloads

Radio Frequency Reaction Control

Data Handling

Data LinksThermal Control

Electrical Power

Simulation Model Portability 2 (SMP2) Component Model

Logger Scheduler Time Keeper Resolver Event Manager

Simulation Model Portability 2 (SMP2) Component Model

Logger Scheduler Time Keeper Resolver Event Manager

REFA Services

Parameter MapperSimulation Monitor Configuration Service

Generic Models

Environment Electrics En/DecodingThermalDynamics

Figure 3. Logical Model of Reference Architecture based on SMP2 and Generic Models

In the Swarm Simulator, all models are derived from models defined by REFA. As a minimum, models reuse generic
concepts for logging, tracing, failures, events and TM/TC parameters. This ensures consistency of such mechanisms
across all subsystems of the simulator. Most models are derived from subsystem specific models and implement
interfaces defined by the Reference Architecture. In a few cases, these REFA interfaces have been extended for mission
specific needs. Only in few other cases, Swarm specific interfaces had to be defined.

Table 2. Number of SMP2 models and interfaces per subsystem, divided into their base model/interface

Interfaces Models
New Derived New Derived

Swarm Simulator 34 13 42 106
 Generic 2 4 15
 Data Handling 24 3 18 19
 Data Links 4
 Attitude Orbit Control 3 1 7 13
 Reaction Control 11
 Radio Frequency Control 1 8
 Electrical Power 3 5 8 18
 Thermal Control 2 3
 Space Ground Interface 2
 Payloads 1 12
 Utilities 7 1

It can be seen that for most subsystems the Swarm Simulator defines few interfaces for inter-model communication,
because most of the communication is via existing REFA-defined interfaces. The only exception from this rule is the
Data Handling System (this is due to the obvious specific nature of the on-board hardware, typically different across
satellites). Equally, the majority of models used in the simulator are derived from an existing REFA base model. Swarm
specific models are mainly in the Data Handling System and the Utilities.

THE EGOS MODELLING FRAMEWORK (EGOS-MF)

The SMP2 standard has been developed with a model driven development process in mind. The Simulation Model
Definition Language (SMDL) allows implementation of a process where models are fully designed in UML and
skeleton source code can be generated from this design. Such a process has been implemented by ESOC in the EGOS
Modelling Framework and the SIMSAT Model Integration Environment (MIE), which are currently merged into the
Universal Modelling Framework (UMF). This process not only generates skeleton source code for the model operations
defined in the design, it as well auto-generates SMP2 compliant C++ code for e.g. publication and dynamic invocation.
Further, from the same source, documentation can be generated, which is hence guaranteed to be fully consistent with
the source code.

UML
Model

SRS
Requirements

Import
Tool

SMP2
Catalogue

Catalogue
Generation

Tool

XML
Schema

Schema
Generation

Tool

ICD
Document
Generation

Tool

SDD

Model
Validation

Tool

EGOSMF
Profile

EGOSMF
Template

REFA
UML

Legend
Swarm Artefact

CFI Artefact

EGOS-MF ArtefactEGOS-MF Tool

MagicDraw
UML Tool

3rd Party Tool

Data Flow

GENM
UML

SUM

Figure 4. Model Driven Software Development with a centralised UML Model

In the Swarm Simulator, the existing process has been tailored to project specific needs: The C++ code templates have
been updated to generate code compliant with the BSSC Coding Standards and the document templates have been
updated to comply with the applicable ECSS standard. While the high-level summary of the design is written by hand,
detailed design documentation, interface control documents and reference sections of the user manual are generated
from the UML design. This has not only significantly reduced time and effort to write and update documentation, it as
well improved the quality, completeness and consistency of the relevant documents.

EXAMPLE MODEL: GPS RECEIVER INTERFACE TO DATA HANDLING SYSTEM

As an example, we demonstrate the design and implementation of the GPS Receiver interface (from the Attitude and
Orbit Control System) to the Data Handling System of Swarm.

Architectural Design

First, a Swarm specific interface for a UART connection has been defined as an extension to the existing Bus
Transaction interface of the Reference Architecture.

Figure 5. Definition of a Swarm specific UART interface extending an existing REFA interface

The GPS to DHS Interface model is then defined as a specific DHS Interface model (which is a REFA defined base
model). As such, it inherits the interfaces to receive packets, and to transmit them to a packet decoder. For Swarm,
specific interfaces to the UART have been added, as well as some fields for the internal model state (see in the
“GpsDhsInterface” model below). For the implementation, all methods defined by the (REFA and Swarm) interface
need to be implemented by this model, even those that are inherited from the REFA base model: the reason is that
REFA provides a reference architecture, but no reference implementation.

Figure 6. Design of the GPS Receiver interface to the Data Handling System

With the EGOS-MF Catalogue Generation Tool (see Figure 4 above), the information is translated into an SMP2
Catalogue. This is then translated into C++ code files GpsDhsInterface.h and (skeleton)
GpsDhsInterface.cpp using the SIMSAT MIE Code Generator. The implementation of the operations has to be
done manually.

// --OPENING ELEMENT--GpsDhsInterface::ResetRts--
 /// Resets the Request To Send.
 /// @param boardId the identifier of the board sending the signal.
 void GpsDhsInterface::ResetRts(const ::Smp::UInt8 boardId)
 {
 // MARKER: OPERATION BODY: START
 // INSERT HERE OPERATION BODY
 // MARKER: OPERATION BODY: END
 }
// --CLOSING ELEMENT--GpsDhsInterface::ResetRts--

Figure 7. Example of skeleton code generated from UML design

In a second implementation file, named GpsDhsInterfaceSmp.cpp, SMP2 specific code for state transitions,
publication and dynamic invocation is generated, taking the description from the UML model into account. For most
models (including the GpsDhsInterface model), no manual modifications to this code are required.

// --OPENING ELEMENT--::Swarm::Aocs::GpsDhsInterface/GpsDhsInterfaceSmp.cpp::Publish--
 /// Publish fields, operations and properties of the model.
 /// @param receiver Publication receiver.
 void GpsDhsInterface::Publish(::Smp::IPublication* receiver) throw (
::Smp::IModel::InvalidModelState)
 {
 // Call base class implementation first
 ::Swarm::Generic::Electronics::DhsInterface::Publish(receiver);

 // Publish field discardedTmCounter
 receiver->PublishField("discardedTmCounter", "This counter is incremented
each time a TM packet is discarded due to a full TM buffer.", &discardedTmCounter,
::Generic::Types::Uuid_UInt32Parameter, true, true, false, false);

 // Publish field rtsStatus
 receiver->PublishField("rtsStatus", "The status of the RTS.", &rtsStatus,
true, true, false, false);
...

Figure 8. Part of the auto-generated Publish() operation of the model

Using the EGOS-MF Document Generation Tool, the design can be turned into a WORD document including detailed
design documentation. An example is shown in Figure 9 below. Of course, the level of detail of this document is only as
good as the description entered into the UML design. Therefore, such an automated documentation process cannot
guarantee a high quality – it can only ensure consistency between design, documentation in source code (which is
generated from the same UML) and documentation in design documentation.

Figure 9. Detailed Design Documentation generated from UML using EGOS-MF

LESSONS LEARNED

Overall, it can be concluded that the application of the SMP2 standard did not have any negative side-effects.

Performance

During the development of SMP2, the use of C++, object orientation and interface based design was seen as a possible
performance risk. The Swarm Simulator (which makes heavy use of SMP2 interfaces and events) has demonstrated that
this is not the case: Although Swarm is the first mission using the SMP2 implementation of SIMSAT, simulator load
time as well as the time it takes to store or restore a breakpoint is at least comparable to existing SMP1 based
simulators. As for other operational simulators running the on-board software in a software emulator, run-time
performance is dominated by the emulation of the processor, not by the individual simulator models.

Development

Due to the application of new technologies, development of the Swarm simulator started slowly. The effort needed to
train the team members on the use of UML, EGOS-MF, SIMSAT MIE and SMP2 was considerably higher than initially
assumed. However, during the lifetime of the project this was compensated by a more efficient development phase, and
especially by a highly automated delivery process. Using an automated build & test environment together with auto-
generation of large parts of the documentation, a delivery can be made almost immediately, and with little overhead.
Therefore, such a process is especially well suited for an incremental development approach (as applied for the Swarm
Simulator), or even for an Agile development.

FUTURE IMPROVEMENT

The application of SMP2, Generic Models, REFA and EGOS-MF for the development of an operational simulator has
proven to be a cost-effective approach. Despite the positive experiences, some further improvements of the ESOC
simulation infrastructure are proposed here, which would increase acceptance of the process both by developers and by
end-users of the simulator.

SMP2 Improvements

Most of the shortcomings of the SMP2 standard will be resolved in the proposed ECSS SMP standard. During the
Swarm Simulator development, the following limitations were noticed:

 The SMP2 Metamodel does not provide support for the modelling of Simulation Services. Therefore, no
proper support from a Code Generator is available for the services included in Generic Models and Reference
Architecture.

 The SMP2 Component Model does not allow controlling the visibility of operations (while this is possible for
model fields). Therefore, the SIMSAT Code Generator generates code for publication and dynamic invocation
for each public operation. It is not possible to limit the operations that shall be exposed to end-users (e.g. for
use in JavaScript during run-time).

Generic Models Improvements

The latest Generic Models have been developed by porting the SMP1 based models to SMP2. This has been done
before the development of the Reference Architecture has started. This comprises the following limitations:

 Rather than defining common mechanisms e.g. for logging and tracing, the existing (inconsistent) mechanisms
of the old Generic Models were maintained and only ported to SMP2. As an example, the Generic Models now
contain a Generic Tracing Service – but they do not use it.

 Various generic mechanisms introduced by REFA (especially forcing and failing) are not supported for the
Generic Models (which provide custom implementations of forcing and failing). This jeopardises the objective
to achieve consistency across all models of a simulator.

Reference Architecture Improvements

Given that Swarm was the first mission applying the Reference Architecture, the concept can be considered successful.
However, further improvements are possible to further reduce development time, cost and effort of simulators:

 To date, REFA is an architecture, where only some base classes provide an implementation. Subsystem
specific models come without any implementation. Therefore, where sensible, REFA could be enhanced by a
reference implementation of models – at least as a starting point for future missions. As long-term perspective,
a library of models could be built up from the individual missions based on REFA.

 While it is expected that each mission will have to define mission specific models and interfaces, it should be
analysed which of the interfaces and models introduced by Swarm are actually specific to this mission. Where
possible, these types should be brought into the Reference Architecture. Examples include a generic Switch
interface and model, which was missed in the Reference Architecture, or some of the Utility models
implemented for Swarm for testing of TC Injection and TM Reception.

Acknowledgements

Nuno Sebastiao and Vemund Reggestad, ESOC Engineering Department, European Space Agency, for the founding
and definition of REFA.
Peter Ellsiepen, VEGA, for the creation and implementation of EGOS-MF for the European Space Agency.

References

[1] SMP 2.0 Handbook, EGOS-SIM-GEN-TN-0099, issue 1.2, 28/10/2005
[2] SMP 2.0 Metamodel, EGOS-SIM-GEN-TN-0100, issue 1.2, 28/10/2005
[3] SMP 2.0 Component Model, EGOS-SIM-GEN-TN-0101, issue 1.2, 28/10/2005
[4] SMP 2.0 C++ Mapping, EGOS-SIM-GEN-TN-0102, issue 1.2, 28/10/2005
[5] Generic Models, EGOS-SIM-GENM-SRN-1002, issue 1.4, 25/06/2009
[6] Spacecraft Simulator Reference Architecture, EGOS-SIM-REFA-SRN-1001, issue 1.3, 30/10/2009
[7] SIMSAT, EGOS-SIM-SIM-SRN-1001, issue 2.10, 28/11/2008

	INTRODUCTION
	OVERVIEW
	THE SIMULATION MODEL PORTABILITY 2 (SMP2) STANDARD
	THE SPACECRAFT SIMULATOR REFERENCE ARCHITECTURE (REFA)
	THE EGOS MODELLING FRAMEWORK (EGOS-MF)
	EXAMPLE MODEL: GPS RECEIVER INTERFACE TO DATA HANDLING SYSTEM
	Architectural Design

	LESSONS LEARNED
	Performance
	Development

	FUTURE IMPROVEMENT
	SMP2 Improvements
	Generic Models Improvements
	Reference Architecture Improvements
	Acknowledgements
	References

