
OpenIGS 2:
A Non-intrusive Middleware Framework for the Integration of Application and Simulation

Components.

C. Skluzacek(1), P. van der Plas(2)

(1)DutchSpace / Cesium Software
Postbus 59614

1040LC Amsterdam, The Netherlands
cesiumsw@gmail.com

c.skluzacek@dutchspace.nl

(2)ESA/ESTEC
Keplerlaan 1

2200 AG Noordwijk, The Netherlands
peter.van.der.plas@esa.int

INTRODUCTION

OpenIGS 2 is the continuation of the OpenIGS project started in 2002, which itself grew out of a number of projects
related to the integration of Image Generation Systems with real-time simulation systems such as EuroSim and SimSat.
The original Image Generation Software (IGS) developed in 1999 was intended to provide realistic 3D visualization for
the European Robotic Arm (ERA) Mission Planning and Training Equipment (MPTE) which used EuroSim as its
simulation platform running on Silicon Graphics Onyx computers. It was quickly realized however that this sort of
visualization functionality would be useful on a number of other projects which used different hardware and software
platforms. The original IGS system however was very monolithic and did not lend itself easily for porting to other
platforms.

After a number of iterations, the OpenIGS project was started with the intention of providing an open architecture to
address some of the issues of the previous generations. Among the most important of these issues were:

• Flexibility: application developers should be able to pick and choose what software components they wanted to
use as well as which implementation of the component. Among other things, this was to avoid vendor “lock
in”. A prime example of this was the use of SGI Performer and Paradigm Vega in the original IGS which have
since become defunct.

• Reusability: software components developed for one project should be, if designed generically enough,
reusable in other contexts and projects. This is a basic tenet of software design and implies decoupling from
other software components. OpenIGS promotes this even further.

While conceptually the OpenIGS architecture was effective, it did have shortcomings in its application interface as well
as some performance issues. It also suffered from a lack of a formal support and maintenance path resulting in an ad
hoc development environment.

One of the primary goals of OpenIGS2 is to create a sustainable and maintainable environment for users of OpenIGS. In
addition to this goal, the architecture has been completely overhauled to take advantage of some of the new techniques
and technologies in software development, to provide some more built in functionality, and to make the system more
usable and flexible for developers and users, as well as to improve performance.

The OpenIGS2 activity is run as an ESA contract in the GSTP-4 programme, with DutchSpace as the prime and Cesium
Software and Task24 as subcontractors. DutchSpace is responsible for the project management, testing and validation
activities. Cesium Software is providing the design and implementation of the software system. Task 24 is developing
the editor and is responsible for setting up the support, maintenance and delivery infrastructure which will be hosted at
DutchSpace. This paper provides a high-level description of just the software architecture as well as some small
examples for how to use the OpenIGS system.

MOTIVATION

Although the original primary goal for the OpenIGS system to provide 3D visualization capability for real-time
simulators such as EuroSim is still valid, there are a number of technologies and tools available today which also
provide visualization capabilities. The difficulty however usually comes when integrating these tools into an existing
environment. This is especially true in the space industry where specialized or one-off applications are not uncommon.
Inevitably, some combination of writing specialized “glue” code, scripts, and data filters must be employed as adaptor

mailto:peter.van.der.plas@esa.int
mailto:c.skluzacek@dutchspace.nl
mailto:cesiumsw@gmail.com

interfaces in order to get these tools to work with a system. Also inevitable is that this glue code is so specialized as to
be non-reusable and difficult to maintain, especially as new releases come out, and interfaces or technologies change.
While a certain amount of such development is unavoidable, the OpenIGS system can help mitigate and isolate these
circumstances.

In this sense, the OpenIGS system functions as a middleware framework to encourage the independent development of
reusable functionality while isolating and minimizing the amount of application specific elements. Ultimately, an
application becomes simply a collection of independent functional modules which cooperate and interact with each
other with OpenIGS acting as the catalyst. Even if there is a piece of application specific functionality, it is encouraged
to develop these as an independent module primarily to avoid dependence on other components but also because it may
become useful to someone else in the future.

The concept of middleware is also not new. There are also a number of technologies available that function as
middleware, most notably: CORBA, COM, RPC, SOAP, etc. They all have their pros and cons, in the case of OpenIGS,
the pros and cons could be considered:

Pros:

Non-intrusiveness: Unlike most other middleware, developing or using a software component with OpenIGS does not
require any changes to the software component itself, nor does it require any special tools other than a standard
compiler to develop this software. All interfaces with the component and the OpenIGS framework are developed
external to the software component. A consequence of this is that in many cases, existing software components can be
used with the system and developers of new software components need not have any specific knowledge of the
OpenIGS system1.

Lightweight: The OpenIGS Kernel library is fairly small, although it can attribute its compactness to the heavy use of
C++ templated code. It consists of roughly 40 classes and

Patterns use: many common software design idioms and patterns are employed, supported, and encouraged for use.
With user components, the Observer, Composite, Factory methods are encouraged and internally, the Strategy and
Memento design patterns are used.

Cons:

Platform availability: At the moment only a C++ interface will be available. Experiments have been made for a Java
binding although there has been no official request for this.

CONCEPTS

In object-oriented design (OOD), software applications consist essentially of a number of objects of different types that
communicate and interact with each other. The mode of communication may come in several forms, but the most
common is one object directly calling a method on another object passing any necessary information in the form of
parameter data. Although this is pretty straightforward, it does require that the calling object have explicit knowledge of
the called object. In other words, the objects are tightly coupled.

To achieve flexibility and reusability, heterogeneous software components need to be able to communicate with each
other without explicit knowledge of one another. In other words, objects need to remain decoupled. Therefore, one of
the primary functions of the OpenIGS system is the shielding of functional software components from anything that
may promote coupling between two (unrelated) software components. The sources for tight coupling can occur at any
of the levels involved with the communication between two objects, namely:

Type/Object: in order for communication to occur, one object must know the type of object receiving/sending the
communication and also the specific instance of that type.

Method: Once an object instance is obtained, the appropriate method must be selected.

Signature/Parameter: Once an object's method is identified, it must be known what the signature of that method is,
which involves knowing the type, order and valid values of each of the parameters of the method.
 OpenIGS employs the following techniques to relieve these sources of coupling:

1In practice however, this is not always the case and some adaptor interfaces may need to be developed. In addition, not
all programming constructs are supported but the most common ones are.

Linking: also known as: “Observer Pattern”, “Signals/Slots”, “Delegates”, “Callbacks”, etc. This technique is fairly
established and allows a software runtime object to send information to any other object when some event occurs,
without the need for explicit knowledge of the receiving objects. A number of libraries provide such functionality, most
notably: Qt's Signal/Slot framework and Boost's signal classes. While the Qt framework is arguably one of the more
popular and has been around for quite awhile, it has quite a few shortcomings. The Boost signals family of classes is
very generic and avoids almost all of Qt's Signal/Slot issues.

Binding: In traditional Observer/Signal/Slot implementations, the function signature of an Observer object must exactly
match the function signature of the Source object. This in itself however is a source of coupling because the Observer
object must in a sense “know” in detail what the Source object is communicating, otherwise they cannot be connected.
Binding provides a greater deal of flexibility by allowing parameters to be rearranged, a value to be transformed or
explicitly assigned to a parameter, or a parameter to be completely ignored altogether. The Boost.bind library is an
excellent implementation of parameter binding and has been proposed for C++0x.

Conversion: Binding is just part of the story. While binding allows signature parameters to be manipulated, their types
still need to be identical. This is also a form of coupling. A typical example might be a Graphical User Interface (GUI)
Textfield configured to set a numerical parameter in a simulation. The output from the Signal from the TextField object
is a string, but the simulation expects numerically typed data. OpenIGS provides an automatic conversion process to
ensure that despite disparities in signature parameter types, two objects can still be linked.

In effect, the Binding and Conversion capabilities allows two objects to be linked together whose signatures are
conceptually compatible. In the case of the GUI Textfield and the simulator parameter, the data is conceptually
numeric, whether it comes as a string type or as a numeric type should be irrelevant.

Dynamic Loading: also known as “plug-in” is a process of loading functionality at runtime. OpenIGS not only enables
the dynamic loading and creating of new objects at runtime, but also the definition of new types at runtime. This
together with the Linking/Binding/Conversion concepts contributes greatly to flexibility and reusability. An ultimate
example of this would be to substitute a completely different implementation of a GUI library or a 3D graphics library
should another one be desired (due possibly to license issues or an old implementation become defunct), without
affecting any of the other systems components.

HIGH LEVEL ORGANIZATION

The OpenIGS is divided into several subsystems and entities whose organization and interactions shown in Figure 1.

Kernel: provides the infrastructure to support the concepts described in the previous section

Functional Classes: provide the actual functionality needed by an application. These can be existing classes that are
completely independent of and external to OpenIGS.

Modules: uses the facilities provided by the Kernel to act as a thin wrapper providing interface information about the
Functional Classes to the rest of the OpenIGS system.

Configuration Files: define the behavior of an OpenIGS-based application. The Editor generates/modifies
configuration files which in turn are loaded by the Kernel at runtime to define the Application.

Editor: provides an intuitive user interface to allow developers to create and correctly write configuration files quickly.

Application: a collection of Modules configured by xml files which provide specific large-scale functionality.

Figure 1: High Level Organization
OpenIGS

Config
Files

Editor

Application

Kernel

Modules Functional
Classes

KERNEL ARCHITECTURE

The Kernel provides the infrastructure and services for an OpenIGS Application. Its primary responsibilities are to
maintain the various Module types and instances and to manage the communication between instances at runtime. It
also dynamically loads the application's configuration files at start-up. The Kernel itself provides only minimal
application level functionality. The primary components of the Kernel are: Reflection, Linking, Binding, Conversion,
the Database and External Communication.

Reflection

The Reflection facility provides information about data types used in an application. All types that are to be used within
an OpenIGS Application must be registered with the Reflection component. OpenIGS uses this information to
determine what types of communication a component supports and to validate the information being passed to and from
the component. It also defines a unique human-readable identifier with each type which can also be used when reading
and writing to external data formats.

The main type that is reflected by the Reflection facility is the class definition. Classes are data structures which may
contain data and operations on that data and is what is referred to as a software component. The Reflection facility
maintains information about the static class hierarchy, i.e. the direct base classes of the class, as well as any pertinent
methods available in the class. In addition, it also supports information about signals available in the class. Signals are a
generic implementation of the Observer pattern and are means for a component to send information to other
components without explicit knowledge of them. However, since Signals are not directly supported by the
implementation language (C++), they must be provided by another software library. OpenIGS supports the boost::signal
implementation although other signal libraries can be supported by providing an appropriate adaptor interface.2

Other data types supported by the Reflection facility are: the built-in numeric types (bool, integer and floating point),
enumerated types, strings (std::string and std::wstring), smart pointers3. These types are used primarily to provide
information about the parameters passed during a class method invocation.

Besides scalar types, the Reflection facility supports the concept of Containers which are types that maintain a
collection of instances of another type. OpenIGS uses the Container concept to support the Composite pattern by
allowing components to specify child objects. Composite structures are a common pattern employed for instance in 3D
graphics scenegraph and 2D user interface toolkits to construct a hierarchy of objects with parent-child relationships.
The Reflection facility provides support for the STL sequential container types (deque, list, multiset, set, and vector)
and other container types can be supported by providing the appropriate adaptor interface.

To simplify communication between components, the Reflection facility also uses the concept of Properties. A Property
is a related group of methods and signals of a class type that pertain to one particular aspect of that class. The methods
and signals maintained relate to retrieving the value, setting the value, and signalling when the value is changed. One or
all of these may be specified in the Property. The Property associates a single identifier with these related methods and
signals so when the component is used, the appropriate method or signal is selected depending on the context.

As stated earlier, the Reflection information for a particular component is provided completely external from the
component. The Reflection API is intended to make the specification of reflection information for a component as
simple and intuitive as possible. Listing 1 shows an example of the declaration of a simple class. Listing 2 provides the
corresponding declaration and definition for the reflection information for the simple class.

2 Libsigc++ comes to mind. The Qt signal/slot mechanism is not possible due to its use of non-standard syntax and the
special moc compiler. OpenIGS does provide wrappers around the Qt signals to convert them to boost::signals.
3 Namely, boost::shared_ptr, which is a candidate for C++0x. Other smart pointers can be supported by providing the
appropriate adaptor interface.

namespace demo {
class BaseClass; // defined elsewhere

class DEMO_API SomeClass : public BaseClass {
public:
 SomeClass();
 int getValue() const;
 void setValue(int newVal);
 boost::signal<void (int)> valueChanged;
};
} // namespace demo

Listing 1: Class Example Declaration.

By using direct pointers to the class method, type information can be automatically extracted using template
specialization techniques. But this also serves other purposes, namely that the objects with a Reflection definition can
be maintained and executed anonymously. It also provides the opportunity for optimization as will be discussed later as
well as compile-time error checking to ensure that the arguments are appropriate.

Database and Modules

The Database is the repository for all the classes registered in an application and all instances of those classes. Using a
dynamic loading mechanism, new classes can be loaded and registered at runtime. From here, class information for
each of the loaded classes can be obtained using the Reflection ClassInfo API. Using Factory methods, new instances of
a class can be created after it is registered.

After a new instance of a class is constructed, a Module interface to the instance can be retrieved from the Database
using the class name specified in the ClassInfo object and the name of the instance. A Module object is simply a thin
wrapper around the actual class instance object and provides methods for retrieving the ClassInfo information. The
ClassInfo can then be used to actually execute operations on the underlying object by simply using the Operation's
name. In this manner, Module objects can be passed around the system and methods called on the underlying object
without actually having to know the specific type of the underlying object as is shown in Listing 3.

As can be seen in Listing 3, there is no explicit knowledge of the SomeClass type as declared in Listing 1. This
capability is essential in order to be able to dynamically load new Module classes without recompiling the whole
system. This is also essential for configuring Links which is the subject of the next section.

CLASSINFO(demo::SomeClass, - the class type
 “demo”, “SomeClass”, DEMO_API, - namespace, name, and linkage (for Windows DLLs)
 demo::BaseClass); - a list of direct base classes

template<>
igs::ClassInfo const &
classInfo<demo::SomeClass>()
{
 static ClassInfo info = ClassInfo().init<demo::SomeClass>() - initialize with base

 class information
 .addProperty(
 Property("Value", Property::Persistent, - name and flags
 Operation("getValue", &demo::SomeClass::getValue), - getter Operation
 Operation("setValue", &demo::SomeClass::setValue, - setter Operation
 Parameter("value", - Parameter name
 0, - default value
 Parameter::In - Parameter mode
)

),
 makeSignal(“valueChanged”, &demo::SomeClass::valueChanged, - Signal
 Parameter(“value”, 0, Parameter::Out) - Signal Parameter
)
)
)
 ;
 return info;
}

Listing 2: Class Reflection Information Declaration and Definition.

igs::Database database; // previously populated with classes
igs::ModulePtr someModule = database.getInstance("demo", "SomeClass", "someName");

igs::ClassInfo someClassInfo = someModule->getClassInfo();
igs::Operation setValueOp = someClassInfo.getOperation("setValue");
setValueOp(5); // calls SomeClass::setValue(5)

// alternatively, can execute the operation on the Module itself
// using the operator[] syntax:
(*someModule)["setValue"]("5"); // automatically converts to int before passed to setValue.

Listing 3: Retrieving Module instance and Executing an Operation.

Links

The Link component of the Kernel sets up communication between two objects using information from the Reflection
API. Specifically, using the ClassInfo information discussed above, Linking associates an Operation or Signal from a
source object to an Operation or Signal on one or more target objects. When a Link is executed, the Parameter values
from the source's Signal or Operation are transferred to the target's Operation and the target's Operation is executed.

Binding

When linking the Signals and Operations of two components together, it is often the case that the signatures (type and
order of parameters) of the transmitting and receiving Signal and Operations do not always match exactly. This is where
Binding and Conversion come in to play.

Binding enables the reordering, mapping and transformation of Parameters coming from the source object to the target
object. Using the Parameter names, a mapping from the source Parameter to the target Parameter can be made to change
the order. In addition, the following operations can be be applied to the Parameter value as it is transferred from the
source to the target:

• The value can be modified/transformed. This is useful for example in cases where the source provides values
in radians and the target expects them in degrees. The appropriate scaling factor can be applied before it
reaches the target.

• The value can be set to a specific value.
• The default value as defined by the target object can be used for the value.
• The current value as defined by the target object can be used for the value. In this case, a method must be

specified from the target object to retrieve this value.

As a possibility for future work, dimensional and unit analysis could also be incorporated into the binding process.
Dimensional and unit compatibility is another contributor of coupling between components. For example, if a simulator
provides length data in meters, and a visualization system expects it in feet, the appropriate conversion factor needs to
be applied. The Binding facility could be used to automatically apply the appropriate factor so different components
would not need to explicitly synchronize their units. This would also allow uses of different scales among
heterogeneous components and also ensure that correct dimensions are being used.

Conversion

Similar to the way type information is stripped from the interface of a Module, in order for data to be passed around
from a source to a target object, the type information for Parameter values need to be stripped so it can pass through the
system without any dependencies on its actual type. This is not to say that the type information is lost however, just
that it isn't immediately accessible. The Kernel uses a type-neutral Value class to hide the type information of data and
only expose it when necessary. The Value class is based on the Boost.Any class but provides some additional
enhancements.

The main additional enhancement that the OpenIGS Value class provides over Boost.Any is the ability to automatically
convert the type of a Value. This eases the dependence of the actual type of the data being passed between two
components and puts the focus more on what is being represented by the data. The source object can then transmit its
data in whatever format it deems appropriate and the target can receive in its expected format, just as long the concepts
are compatible then they can communicate directly. For example, numeric data can be represented by an actual numeric
type (i.e. int32or float) or come in string form (i.e std::string). The Conversion facility automatically converts between
the two. The other two types of concepts are enumerated data, which can exist as either an enum type or in string form,
and class data, where the Conversion facility can automatically convert between two related class types for example the
base and subclasses in a class hierarchy.

External Communication

Using the information provided by the Reflection facility about a particular class type, the state of a class instance can
be sent to an external source (i.e. writing to a file) by using the retrieval method of the class' Properties. Conversely, the
state of a class instance can be restored altered by using the set method of the class' Properties. This is the mechanism
by which the Memento pattern is implemented.

The Parser class of the OpenIGS Kernel is responsible for translating between the internal Reflection data structure and
an external format. OpenIGS provides a translation to and from XML files and other formats can be supported by
providing a different Parser implementation. The IO class provides the actual data transmission mechanism for
transferring information to/from an external source. OpenIGS provides IO module implementations for file-based IO as
well as network-based IO using the TCP/IP and UDP protocols.

The primarily use of the External Communication facility by the Kernel is to “bootstrap” the application by reading
information from configuration files. The configuration files contain information about what Modules to load, how to
configure them, and for setting up Links between Module instances.

Other common uses of the External Communication facilities would be:

• use a network module (TCP or UDP) as the IO object to allow sending and receiving application configuration
data at runtime from a remote application thereby providing RPC type functionality.

• Use the File based IO and a Link configuration to write data to a file for recording/playback/logging facilities.
• Set up an IO object to read data from a telemetry link combined with a custom parser to translate the

information into a visualization application.

MODULES AND APPLICATIONS

Using the infrastructure provided by the OpenIGS architecture, combined with the ability to link Modules together,
complex and varied application behaviour can be developed. In essence, the Modules used and how they interact with
each other define an application. Using the configuration mechanism, complete applications can be created from just a
set of configuration files. Consequently, the OpenIGS distribution provides a simple generic driver program that loads
the configuration files thereby making it possible to create completely new applications without any programming.

Along with the basic infrastructure provided by the Kernel, the OpenIGS distribution includes Module classes needed
for creating basic 3D visualization applications as well as distributed applications.

• 3D Graphics based on OpenSceneGraph
• 2D Graphical User Interface (GUI) based on Qt
• EuroSim external simulation access interface Module
• Network IO Modules using TCP and UDP protocols
• Space-industry related Modules

These Modules can be used to create a variety of applications. Using the Network and Graphics Modules in particular, a
variety of types of applications (Figure 2) can be developed that fall under the following general categories:

Standalone: The complete application exists in a single process on a single machine

Data Server/Visual Client: A server application contains purely data resources. Other visual clients, which contain no
data resources can connect to the data server and display the data. Using a distributed link, 3D objects in the visual
client are updated when changes occur in data resource of the data server. This situation may be useful when a single
dedicated machine with a fast processor and a software license for the simulation is connected to another machine that
has enhanced graphics capabilities and does not have access to the software license.

Distributed Visualisation: A network of applications connected together can share the data processing and visualisation
responsibilities. Some may have data resources, some may have visualisation capabilities, and some may have both.
This represents the most general application configuration.

Figure 2: Example Application Configurations

Data
Resource

Pure Data Server

Network
Server

3D
Graphics

3D Visual Client

Network
Client

(b)

link

(a)

Data
Resource

3D
Graphics

2D GUI

Standalone Application

(c)

Network
Client

3D Visual Client

3D
Graphics

Data
Resource

Pure Data Server

Network
Server

Data
Resource

3D
Graphics

Network
Server

Visualisation Server

2D GUI

Network
Server

3D
Graphics

Data
Resource

Visualisation Server/Client

Network
Client

Despite the variety of types of applications in the previous example, the only thing that distinguishes the standalone
application from a data server type application is the presence of a few lines in a configuration file. Thus in principle
any standalone application can become a data server, client, or include graphics simply by including and configuring the
appropriate modules.

To expedite the development of applications, a custom XML Editor is being developed by Task24. Using the Reflection
API, the editor can ensure that not only is the syntax for the configuration files is correct, but also that they contain
well-formed and valid elements. In addition, sample template configuration files for typical usage scenarios will be
provided. These can then be tailored for a specific situation.

PERFORMANCE

As is most often the case in software, especially in real time simulation software, performance is an issue. It is also
often the case that there must also be a tradeoff between performance and generality. Performance then becomes more
prevalent because OpenIGS is designed to be a general framework. Despite this trend towards generality and flexibility,
there is also opportunity for performance optimization.

Because most of the business part of an OpenIGS application is provided by external functional software components,
the primary potential source for performance bottlenecks caused by the OpenIGS Kernel occur during a Link execution,
namely the Binding and Conversion facilities. We can consider two main use cases for a Link:

• high frequency data update, i.e. from a simulator variable to a visualization object
• low frequency or single shot updates, i.e. from a GUI component to some target object.

Performance is most critical particularly in the high frequency use case. In such a situation, we do not want any bind or
conversion operations to be occurring. This implies then that the source and target Signal/Operation signatures must be
identical. If this is indeed the case, then no intermediate processing needs to occur whatsoever. Since the Reflection API
stores pointers to actual class methods and signals, these can be linked together directly resulting in almost zero
overhead. But this is of course at the loss of generality, the source and target signatures must be identical in parameter
type, count, and order in order to make the direct link.

In the low frequency situation, Links are not executed very often and it really doesn't matter if they perform within one
millisecond or 100 milliseconds for example. In this case, flexibility is a priority, A GUI component should not have to
provide a signal interface for every type of data and a target object should be able to receive data in its expected form.

Other situations can be imagined that lie somewhere in between these two extremes. The OpenIGS architecture can
automatically identify the appropriate optimization for each of these extreme situations and situations in between.
During the Link configuration, it can be recognized if there is a conversion step necessary and if binding information
has been provided. If not, then a direct link can be set up. If a conversion is necessary, the conversion function can be
looked up and cached ahead of time. The Binding procedure can also be cached in a similar way. In the case where
performance is priority but binding or conversion is also necessary, adaptor functions and classes can be created to
bypass the binding and conversion steps at the cost of having to explicitly write extra code.

CONCLUSION

OpenIGS 2 builds upon the concepts introduced by OpenIGS 1 through its redesigned implementation and the addition
of new functionality. The components for Reflection, Linking, Binding, Conversion, Dynamic Loading, and External
Communication provide for a highly flexible, loosely coupled, application development environment. The direct
support for Signals and Composite structures automate commonly used Design Patterns. This generic infrastructure,
together with the provided functional modules, editor, and template configurations provide the tools to address typical
visual simulation requirements in the space industry with the flexibility to incorporate new requirements. The
architecture also provides room for automatic optimisation to trade-off between performance and flexibility.

AVAILABILITY

The development of OpenIGS 2 is nearing the CDR milestone and the expected initial release will be available in Q4 of
2010. For more information about OpenIGS and about obtaining the software, please send an email to one of the
contacts in the title.

	INTRODUCTION
	Motivation
	Concepts
	High Level Organization
	Kernel Architecture
	Reflection
	Database and Modules
	Links
	Binding
	Conversion
	External Communication

	Modules and applications
	Performance
	conclusion
	Availability

