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INTRODUCTION 
 
The Avionics Systems Test Bench (ATB) is an ESA/ESTEC internal development of an avionics system test bench 
aiming to support the demonstration and validation of upcoming space avionics related standards and technologies in a 
representative environment, supporting projects in their need of assessing particular technology related issues and to 
provide hands-on training facility for ESA staff. Within the context of ATB, space avionics encompasses data handling 
(processing and storage), telemetry and telecommand processing, AOCS and mission management. The ATB is 
available in 4 configurations, namely: Functional Engineering Simulator (FES), Functional Validation Bench (FVB), 
Software Verification Facility (SVF) and Real-time Test Bench (RTB). 
 
The Functional Engineering Simulator (FES) main purpose is the verification of the AOCS algorithms and the 
establishment of AOCS test scenarios for system tests at a later stage and, as such, it can be also a direct support to the 
OBSW development. The previous design was highly tailored for the Virtual Spacecraft Reference Facility (VSRF) 
earth observation reference mission, which resulted in a configuration which was difficult to modify, increase or adapt 
[1]. 
 
In the context of supporting missions like SGEO and the European Student Moon Orbiter (ESMO), functionality-wise 
and quality-wise improvements were needed. As the result of the Functional Engineering Simulator Enhancement 
(FESE) activity carried out by GMV and a follow-up activity by ESA, a generic and modular simulator infrastructure 
based on Matlab/Simulink® R2008b was created. 
 
The main objectives for this development were to obtain a consistent architecture and interface definition as well as a 
centralized and easy-to-control database for keeping control over the parameters, interface definitions and signal 
logging. The intermediate results of the ongoing "Space Simulation Reference Architecture" (SSRA) activity were used 
as guidelines for the new design to ensure maximum consistency. Following the architectural improvements, an 
improved infrastructure is implemented, allowing for easy instantiation of a FES for a new mission, automated 
execution of simulation runs and results reporting. Also an interface to an open 3D visualization system was 
implemented to facilitate the visual analysis of the simulation results. 
 
The paper describes in more detail the above mentioned enhancements, the trade-off analysis and the results of the 
enhancement activity and is organized as follows: Chapter 2 gives an overview of the simulator and space element 
equipment architectures and design decisions; Chapter 3 details the developments, enhancements and new features of 
the infrastructure; Chapter 4 describes the final results and future use for the developed infrastructure. 
 
SIMULATOR ARCHITECTURE 
 
In order for the FES architecture to cope with a number of different types of missions (in particular a geostationary, a 
navigation and a planetary exploration reference mission) with no or minor adjustments, a generic architecture was 
foreseen.  



 
The developed architecture was divided, at top-level, in three main components, namely Ground Segment, Space 
Segment and Universe, as shown in Fig. 1. The Universe block contains all the calculations relative to time and celestial 
elements positions, velocities and other physical outputs and its values are available to the whole simulator via the 
global Goto block. The Ground segment represents the Earth ground and control stations, whereas the Space segment 
contains all the elements residing in space (e.g. spacecrafts, landers, rovers etc..). 
 
The top-level space elements architecture was divided in environment, equations-of-motion and equipment, as 
illustrated in Fig. 2. This separation is expected to guarantee a strong decoupling between the environment subsystems, 
spacecraft motion and equipment, thus allowing for the easy replacement of one subsystem model without significantly 
changing the remaining simulator. The architecture of each space element is based on the idea of easy replacement 
between models with different levels of detail; therefore, all the subsystem models’ inputs and outputs are represented 
by only three types of buses: 1) physical, 2) communication and 3) power. Type 1) contains all the physically related 
values, e.g. position, speed, torques; 2) is composed by all the value that are transmitted or received by using some type 
of communication bus, e.g. measured orientation, commanded speed, status data; 3)  contains all the values related to 
the power bus, e.g. power consumed, power available or voltage. Using these abstractions all the interfaces can be 
represented and the model can be replaced with minimum effects on the overall simulator. 
 
 

 

Fig. 1 Simulator top-level architecture 

 
 

 

Fig. 2 Spacecraft architecture 

 
 



 
Space Element Equipment 
 
Given the proposed architecture and modularity level, a new set of dynamics, kinematics, environmental, sensors and 
actuators models was developed. Analyzing the intermediate results of the SSRA activity a generic equipment model, as 
depicted in Fig. 3, was defined. It can also be observed that not only the nominal behaviour of the elements is modelled, 
but also fault situations that closely mimic real hardware failures. 
 
For implementing the models subsystem two possibilities exist: library blocks or model reference blocks subsystems 
[2]. Some of the main features of each of these types of blocks are shown in Table 1. 
 
Even though model reference blocks have some advantages when building systems with many instances of the same 
elements, such as a spacecraft simulator, some problems were encountered. The main reason for these problems was the 
appearance of algebraic loops which the system could not solve. The analysis of potential causes and consequences of 
algebraic loops is out of the scope of this paper, and a more detailed explanation about it can be found in [3]. 
Nonetheless, the existence of algebraic loops led to unpredictable behaviours from the solver and inconsistent 
simulation results. For this reason all the subsystems were implemented using library blocks. 
 
When creating the models all the constants are defined as variables, which are mapped to parameters in a mask. This 
parameterization permits easy behavioural adjustments, thus allowing an easy re-use of the subsystems' models both 
between different simulation runs and simulator instantiations. 
 
To prevent errors due to wrong interface a strict interface control is implemented using Simulink Bus objects. To each 
input and output is attributed an object that guarantees that the simulation will only run when the signals on these ports 
have an identical structure to the one defined in the bus object. This is very important for all the models, in particular 
for the onboard computer, whose interface is very large and therefore hard to control if an automated method is not 
used. 

 
 

  

Fig. 3 Space element equipment architecture 

 

Table 1 Library and model reference block features 

Library blocks Model reference blocks 
Duplicated on every instance 
Executes together with the rest of the system 
Similar to a macro in C 

Single instance 
Executes as stand-alone unit 
Similar to function in C 

 
 
 



Depending on the type and use of the Functional Engineering Simulator, equipment and environment models might 
need different degrees of fidelity. To address this situation, the following fidelity levels are assumed:  

- Simple: The simple model aims at being a continuous implementation that contains only the most essential 
functionality. The usage is mainly for AOCS/GNC engineers to design and develop the typical attitude 
and orbit control algorithms. 

- Basic: This type of model contains first order features, including non-linear behaviours. This model will 
be used in early project phases, for example to support feasibility studies and preliminary design analysis. 

-  Advanced: These models provide the highest accuracy and similarity to the real spacecraft hardware. The 
objective of these models is to support detailed design analysis, onboard software development and 
verification and validation. These models should contain all the needed communication interfaces. 

 
To guide the design and implementation of the simulation model, a coding standard was also defined. This should 
minimize the risk of compatibility and code-generation problems and at the same time lead to homogenous and 
maintainable simulation models. 
 
FES INFRASTRUCTURE 
 
Following the previously presented architecture and modelling guidelines, a FES infrastructure was developed to 
automate the database usage, failure injection, plotting and reporting mechanisms. This infrastructure is composed 
mainly by Matlab scripts, together with the use of an Excel spreadsheet used as database for defining parameters and 
bus objects, as well as controlling the simulation signal logging.  
 
Database 
 
To decouple the simulator functionality from the data and to guide the design of new models, all the models' parameters 
and interface definitions, as well as the logged signals, are kept in a database to provide a consistent and traceable 
baseline for each simulation campaign. The database also includes metadata, e.g. descriptions, units and reference 
frames, both to the signals and the parameters in the simulator. This database is currently implemented using an Excel 
spreadsheet from which .m files are created. Fig. 4 shows an example of a parameter definition (right side) using the 
database (left side). 
 
Failure Injection  
 
As stated in the previous chapter, for testing FDIR algorithms and performing some failure situation analysis each 
spacecraft subsystem was modelled to include failure conditions included (Fig. 3). The enabling of the failure 
conditions is done by using a Matlab script that can trigger the specific fault, either on time or on specific events in the 
simulator. The so-called scenario script is integrated in the top-level simulator architecture, as shown in Fig. 1, which 
permits the testing of nominal cases and different failure situations without making any changes to the overall model or 
parameters. 
 
The disadvantage of this method is that the failures have to be modelled together with the subsystems and the inclusion 
of new failures can lead to major changes in the subsystem model. 

 

Fig. 4 Database parameter definition 

 
 



 
Unit Test Framework 
 
To facilitate the verification and validation of each of the individual subsystem and environment models a standard unit 
test framework was implemented. This framework stimulates the model under test with user-defined values, created by 
using Simulink Signal Builder. The actual outputs are then compared with the actual results and a pass/fail value is 
returned. 
 
Fig. 5 and Fig. 6 show an example of the unit test framework and the usage of the signal builder block, respectively. 
 
The use of the Signal Builder block, allows for easy change of inputs signals and creation of various signal groups 
which allows the execution of many different test without effectively changing the test harness. A model coverage test 
and a coding standard verification using Simulink Model Advisor were also included in the unit test framework. 
 
Plotting and Reporting 
 
The publication and sharing of results is also facilitated by including a plotting and auto-reporting facility. The plotting 
facility provides functions to create the most common plots in a spacecraft simulator and provides an open framework 
to be extended to define new plots, depending on users needs. In this way all the original Matlab plotting functionalities 
are still available. Fig. 7 shows an example of a plotted signal. 

 
 

 

Fig. 5 Unit test example 

 
 

 

Fig. 6 Signal builder usage in unit test 

 



 

Fig. 7 Plot example 

 
Note that the plotted figure includes information relative to units and reference frames, automatically generated from 
the database. This automated process keeps the consistency between the information in the database and the information 
that is plotted. 
 
The result sharing functionality that automatically generates a simulation results report was implemented. This function 
currently updates a Microsoft Word document with the output figures and results, parameters, simulation date and 
version, configuration details and other simulation information. In this way, simulation reports are always kept 
consistent and up-to-date and results can be analyzed and shared without the need of re-running the whole simulation or 
re-installing the infrastructure. 
 
Documentation 
 
Another strong focus of the FES Enhancements activity was on the quality and accessibility of the documentation. For 
each of the implemented subsystem modules a set of system requirements, software requirements and detail designed 
documents were created. A direct link between model and requirements was created, allowing the requirements 
document to be easily accessed from the model and vice-versa. 
 
The simulation facility provides a set of Matlab scripts which automatically build up the subsystem modules on-line 
help in HTML format according to a user defined template. This help can be browsed by the user and contains 
information of requirements, interface and detailed design for each library model extracted directly from the Word 
baseline documentation where bookmarks define the information to be reported in the help for each module.  
 
The user manual is integrated in the Matlab help mechanism and each model’s specific help document can be also 
accessed during design time using the integrated Matlab Help button. This way documentation can be easily consulted, 
thus easying the process of understanding the implemented features and selecting the appropriate models. 
 
Visualization 
 
To allow for visualization of the results using OpenIGS during simulation time, a visualization block in C was 
implemented. This block implements a buffer that collects the needed simulation data and sends it by TCP/IP to the 
visualization application. The buffer implementation is also responsible for sending the data for the correct time that has 
to be rendered. The overall architecture is illustrated in Fig. 8. 
 

 

Fig. 8 Visualization system architecture 



 

Fig. 9 Online visualization example 

 
To allow for visualization of the results using OpenIGS during simulation time, a visualization block in C was 
implemented. This architecture has also the advantage of permitting any other visualization system that can receive the 
same type of messages to be used instead of OpenIGS. Fig. 9 shows an example of the online visualization system. 
 
CONCLUSION 
 
The results of both the FESE activity and the in-house improvements to the infrastructure have resulted in a highly 
modular environment for creation and execution of Functional Engineering Simulators. Although the modelling process 
has now some increased overhead mainly due to the interface definition and unit testing, the obtained models are much 
more reliable and re-usable. The proposed architecture is also proven to be easily adaptable, both when changing 
between different models' fidelity level and when testing different failure scenarios. 
 
The new FES infrastructure is now considered stable enough for supporting the verification and validation of projects, 
even though some minor, project specific improvements are foreseen. 
 
REFERENCES 
 
[1] TEC-SWM, "ATB Functional Engineering Simulator Enhancements Statement of Work", 2008 
[2]  J. Friedman, Power Tips For Using Simulink in a Large Project, The Mathworks, 2008 
[3]    The Mathworks, "Matlab User Manual – Referencing a Model", 2008 


