
EGSE Health Monitoring as Plug-in for SCOS-2000

Gian Piero Izzo

(1)
, Vincenzo Martucci

(2)
 , Giulio Troso

(3)
 , Enrico Angioli

(4)

(1)

Vitrociset spa

Via Tiburtina 1020, Rome (Italy)

Email:gianpieroizzo@alia-space.com

 (2)

Vitrociset spa

Via Tiburtina 1020, Rome (Italy)

Email:v.martucci@vitrociset.it

 (3)

Vitrociset spa

Via Tiburtina 1020, Rome (Italy)

Email:g.troso@vitrociset.it

 (4)

Vitrociset spa

Via Tiburtina 1020, Rome (Italy)

Email:e.angioli@vitrociset.it

INTRODUCTION

A typical EGSE is based on a distributed system architecture that can reach a high degree of complexity. In this context,

it becomes of crucial importance for the operator to have at any moment a clear view of the health status of the EGSE

used resources and equipment connected.

The basic idea is to endow the EGSE with an integrated monitoring system capable to collect key information from the

subsystems, process them and make available to the operator as a valuable support in the definition and validation of the

test environment setup and in the execution of test campaign with the Unit Under Test (UUT). The monitoring system

shall also provide a benchmark to evaluate and optimize the use of EGSE resource, with a consequent performance

improvement.

This paper describes a quite innovative approach adopted to develop such monitoring system as a plug-in for SCOS-

2000. This solution is hereafter called the Health Monitoring System (HM).

HEALTH MONITORING

The Health Monitoring is the component in charge of handling and reporting the system information during the test

execution phase:

• Monitoring Operating System data in EGSE subsystems

• Broadcasting notifications from monitored machines.

The Health Monitoring (HM) subsystem has been conceived as Central Checkout System (CCS) component and

logically structured in a Client-Server application, potentially extensible in a topological graph on the entire EGSE

system.

Component Role

The role of HM component is to monitor EGSE subsystems and to grab snapshots of the status of the entire system.

The HM module is a “system watcher” in charge of handling and reporting at least the following information:

• Monitoring OS resources in EGSE subsystems, like: disk usage, memory and CPU load

• Status of processes running in the subsystem;

• Monitoring of point-to-point connections between different hosts

• Status of the time synchronization process

The driving factor is to model all the monitored entities as TM parameters defined in the SCOS-2000 MIB, contained in

ad-hoc defined TM packets.

This will allow the HM component to show all the monitor information over an SCOS-2000 display.

Core Architecture

The definition of the core architecture of the HM subsystem takes into account the following approach:

• Enables EGSE System to be managed without a heavy resource investment.

• Provides a scalable management architecture.

• Integrates existing management solutions.

Due to the exposed specifications, the HM architecture takes advantage from the JMX Mbean Technology in Java

Programming Language.

JMX technology provides the tools for building distributed, modular and dynamic solutions for managing and

monitoring devices, applications, and service-driven networks. By design, this standard is suitable for adapting legacy

systems, implementing new management and monitoring solutions, and plugging into those of the future.

Compliant to the JMX Architecture the HM module can be divided in three levels (see Fig. 1):

• Instrumentation Level

• Agent Level

• Manager Level

Fig. 1. A JMX Approach to Monitoring

The Instrumentation Level provides the software components (Mbean Plugins) to manage many different kinds of

resources. A managed resource can be an application, a service, a device or a low level component in the operating

system.

The instrumentation of a resource allows it to be manageable through the agent level described as follow.

With a plug-in development approach, instrumentation software component are designed to be flexible, simple, and

easy to implement.

In addition, the instrumentation level also specifies a notification mechanism. This allows resource component to

generate and propagate notification events to components of the other levels.

In each point it is possible to build dedicated notification handler to improve performance and reduce data flow over the

network.

The Agent Level provides the software component (Mbean Server) for implementing agents. Management agents

directly control the resources and make them available to remote monitor. Agents are located on the same machine as

the resources they control.

This level builds upon and makes use of the instrumentation level to define a standardized agent to manage manageable

resources. The agent consists of a server and a set of services for handling resources. In addition, an agent will need at

least one communications adaptor or connector. The server implementation and the agent services are mandatory in the

overall architecture.

The agent can be embedded in the machine that hosts the manageable resources when a Java Virtual Machine (JVM) is

available in that machine. Likewise, the agent can be instantiated into a mediation/concentrator element when the

managed resource only offers a proprietary (non-Java) environment

Agents do not require knowledge of the remote management applications that use them.

The Manager Level provides the interfaces for implementing managers. This level defines management interfaces and

components that can operate on agents or hierarchies of agents. These components can:

• Provide an interface for management applications to interact transparently with an agent and its manageable

resources through a connector

• Expose a management view of the agents

• Collect and distribute notification broadcasting from agent and instrumentation level.

The following Fig. 2 gives an overview of the whole HM main architecture.

Fig. 2. HM Main Architecture

_ cd HM Main Architecture

management level

agent level

instrumentation level

Plugin Plugin

PluginHelper

Plugin Loader

Sub Agent

Handler

Interpreter

Management
Client

RMI Connector
Notification
SubSystem

HandleInterface

 Client application called HM Agent (including JMX agent and instrumentation levels) can be deployed as services on

each EGSE’s subsystem and is aimed to collect monitoring data to be sent to the to the Server application called HM

Manager.

HM Manager application has to be installed on one EGSE machine acting as a central collector of all the information

coming from the distributed clients.

The HM Manager normally is deployed as a server application launched within the standard SCOS-2000 startup

process.

It can be launched optionally showing a GUI which allows the operator to see the real flow of information coming from

Agents and directed to SCOS-2000 as shown in the picture below:

Fig. 3. HM Manager GUI

Interfaces with SCOS-2000

The HM module has been designed to be scalable over the EGSE subsystems. The manager level and the

instrumentation one have been integrated in the main system with extensible interfaces to provide loosely coupled

software components.

One of the objectives of the HM component is to show all the monitor information over an SCOS-2000 display. To

provide this functionality the component uses some interfaces based on CORBA protocol to manage the injection of

TM parameters inside SCOS-2000.

HM manager takes care to insert all retrieved information into a configurable set of telemetry packets and to inject them

regularly inside the SCOS-2000 Telemetry Flow for processing, archiving and displaying.

The HM manager is currently injecting all this parameters in the SCOS-2000 Telemetry Chain using the provided EXIF

interface as shown in Fig. 4 (a porting to the new SMF module is foreseen).

Fig. 4. SCOS-2000 Interface

_ cd Client Interfaces

Health Monitor Management

Client Interfaces
(Handler/Interpreter)

S2K Server

EXIF
Server
(TM Inj)

EXIF (CORBA)

Health Monitor Notification
SubSystem

The mapping of the EGSE status to TM parameters allows their visibility at display and procedure level. Such a feature

guarantees the possibility to develop dedicated watchdogs on system variables and react in case of anomalies.

The following picture shows a SCOS-2000 MIMIC Display showing an overview of the VEGA EGSE status using a set

of TM Parameters coming from the HM module:

Fig. 5. Example of SCOS-2000 Mimic Display showing HM parameters

This picture below shoes another example of MIMIC Display offering more details on specific parts of the VEGA

EGSE and their associated HM TM parameters:

Fig. 6. Example of SCOS-2000 Mimic Display showing HM parameters

Component Configuration

An XML based Configuration Management module for HM has been designed to provide easy configuration for all

subsystems needed to be monitored. Each agent mounts the related plugins at start-up from this xml file. Such operation

will be automatically performed without user action.

The following Fig. 7 shows an example of XML configuration file for the HM Agent installed on a VEGA EGSE client.

The structure is organized in containers, each one containing a set of managed objects defined by their ClassType and

Name attributes.

Fig. 7. HM Agent XML Configuration File

On top of the agent configuration, an XML file shall be provided to the HM manager which will contain the association

between monitored objects (through their Id attribute) and SCOS-2000 TM Parameter names (as defined in MIB).

The following Fig. 8 shows an example of configuration coming from the HM Manager installed on the VEGA EGSE

server.

<system Id="1" Name="linux" Host_ip="10.10.11.94" Host_port="9999">

 <agent Id="1" Name="agent" Host_domain="linux">

 <SE Type="mocontainer" ClassType="Sampler" Id="1" Name="resourcesampler" Attr=”4000”>

 <SE Type="managedobject" ClassType="disk" Id="1553_1" Name="sdb6" >

 </SE>

 <SE Type="managedobject" ClassType="system" Id="1553_2" Name="mem_free" >

 </SE>

 <SE Type="managedobject" ClassType="system" Id="1553_4" Name="cpu" >

 </SE>

 <SE Type="managedobject" ClassType="process" Id="1553_5" Name="Spawn.jar" >

 </SE>

 </SE>

 <SE Type="mocontainer" ClassType="TCPMonitor" Id="2" Name="tcpmonitor" Attr="4000">

 <SE Type="managedobject" ClassType="connection" Id="1553_6" Name="10.10.11.2:7777" >

 </SE>

 </SE>

 <SE Type="mocontainer" ClassType="Sampler" Id="3" Name="ntpsampler">

 <SE Type="managedobject" ClassType="ntp" Id="1553_7" Name="10.10.35.231:123" >

 </SE>

 </SE>

 </agent>

</system>

Fig. 8. HM Manager Configuration for VEGA EGSE

CONCLUSIONS

At the time of writing, the HM is successfully used and implemented on the EGSE system for VEGA Launcher,

providing the health status (cpu usage, disk usage, major connections) of three servers and three clients, plus the

connection status and the content of status words coming from various SCOEs.

Thanks to its scalable and configurable architecture HM module can be easily adopted on every SCOS-2000 based

Mission Control System (MCS) and EGSE installation without any specific software customization and with a minimal

deployment activity covering the XML file configuration and the correspondent SCOS-2000 MIB population of HM

parameters.

Moreover the plug-in oriented architecture allows a simple way to define new types of managed resources (e.g. specific

scripts defined by the user) which can be immediately added and used by the HM Agents.

HOST Resource Id TM Param HOST Resource Id TM Param

CL1 disk cl1_1 HM_32_01 PAR disk par_1 HM_32_04

mem free cl1_2 HM_16_01 mem free par_2 HM_16_07

mem total cl1_3 HM_16_02 mem total par_3 HM_16_08

cpu cl1_4 HM_FL_01 cpu par_4 HM_FL_07

DESKgeneralDesktop cl1_5 HM_1_01 EGSERouter par_5 HM_1_25

TKMAtaskManager cl1_6 HM_1_02 TKMAtaskManager par_6 HM_1_26

VegaTPE cl1_7 HM_1_03 tcp to EGSE par_7 HM_1_27

tcp cl1_8 HM_1_04 tcp to EGSE par_8 HM_1_28

ntp cl1_9 HM_FL_02 ntp par_9 HM_FL_08

CL2 disk cl2_1 HM_32_02 MCK disk mck_1 HM_32_05

mem free cl2_2 HM_16_03 mem free mck_2 HM_16_09

mem total cl2_3 HM_16_04 mem total mck_3 HM_16_10

cpu cl2_4 HM_FL_03 cpu mck_4 HM_FL_09

DESKgeneralDesktop cl2_5 HM_1_09 BEHVlimitChecker mck_5 HM_1_33

TKMAtaskManager cl2_6 HM_1_10 TKMAtaskManager mck_6 HM_1_34

VegaTPE cl2_7 HM_1_11 CMDRreleaser mck_7 HM_1_35

tcp cl2_8 HM_1_12 ntp mck_8 HM_FL_10

ntp cl2_9 HM_FL_04

CL3 disk cl3_1 HM_32_03 CMD disk cmd_1 HM_32_06

mem free cl3_2 HM_16_05 mem free cmd_2 HM_16_11

mem total cl3_3 HM_16_06 mem total cmd_3 HM_16_12

cpu cl3_4 HM_FL_05 cpu cmd_4 HM_FL_11

DESKgeneralDesktop cl3_5 HM_1_17 dispatcher cmd_5 HM_1_41

TKMAtaskManager cl3_6 HM_1_18 cmd to wiring cmd_6 HM_1_42

VegaTPE cl3_7 HM_1_19 cmd to 1553 cmd_7 HM_1_43

tcp cl3_8 HM_1_20 ntp cmd_8 HM_FL_12

ntp cl3_9 HM_FL_06

	EGSE Health Monitoring as Plug-in for SCOS-2000
	Introduction
	Health Monitoring
	Component Role
	Core Architecture
	Interfaces with SCOS-2000
	Component Configuration

	Conclusions

