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INTRODUCTION 
 

Distributed Simulation (DS) has gained popularity for the advantages of increased computational capabilities, simulator 
reusability and distributed execution [1]. Factors affecting the effectiveness of the DS approach are the skills and the 
extra-effort that the development of a DS system requires with respect to the equivalent Local Simulation (LS) system. 
In the case of IEEE High Level Architecture (HLA) [2], the most prominent technology for DS, the extra-effort has 
been estimated to be up to 60% of the effort required for the development of the equivalent LS system. In addition, the 
coding of extra 3.5KLOC (Lines Of Code) per federate is generally required [3][4].  
 
In this paper, we present SimArch, a layered simulation architecture that considerably reduces the above extra-effort by 
enabling developers to transparently obtain the DS system from the equivalent LS one. SimArch defines five layers, 
each introducing a more abstract set of simulation services on top of the underlying layer, the bottom one being the 
distributed computing infrastructure. Several advantages can be obtained by adopting the SimArch layered approach [3]. 
These advantages concern the portability of simulation model over several simulation platforms and the availability of 
high-level simulation primitives, which use practically eliminates the DS development extra effort and avoids the 
coding of the additional 3.5KLOC per federate [3][4].  
 
The paper is organized as follows. High Level Architecture section provides a brief introduction on the respective 
standard. SimArch section presents an overview on the layered architecture. Example application section presents the 
development of a DS system to simulate a ground segment’s computer network for a Global Navigation Satellite 
System (GNSS).  
 

HIGH LEVEL ARCHITECTURE  
 

HLA is a standard that provides a general framework within which software developers can structure and describe 
simulation applications [2]. The standard promotes interoperability and reusability of simulation components in 
different contexts, and is based on the following concepts [5]: Federate, which is a simulation program and represents 
the unit of reuse in HLA; Federation, which is a distributed simulation execution composed of a set of federates; Run 
Time Infrastructure (RTI), which is the simulation oriented middleware coordinating the federates and consists of a RTI 
Local (run at federate sites) and of a RTI Executive (run on a central server). 
 
The standard is defined by five documents: 1516 HLA Rules, which govern the behaviour of both federation and 
federates [2]; 1516.1 Object Model Template, which defines the formats for documenting HLA simulations [6]; 1516.2 
Interface Specification, which defines both RTI - federate (RTIAmbassador) and federate - RTI (FederateAmbassador) 
interfaces [7]; 1516.3 Federate Execution and DEvelopment Process, which provides a reference process for the 
development of HLA simulation systems [8]; 1516.4 Verification, Validation and Accreditation (VV&A), which defines 
the VV&A practices for HLA federates developed following the FEDEP [9]. 
 
The major improvement that HLA brings in with respect to its predecessors is an API-oriented development of 
distributed simulation systems. Compared to Protocol-oriented techniques (e.g. DIS [10] or ALSP [11]), HLA raises 
developers from all the concerns related to the DS communication and synchronization, and thus obtaining considerable 
effort savings in the development process. Besides this improvement, however, HLA still suffers from two main 



drawbacks. The first is that the API is rather complex because it consists of a wide set of generic simulation services. 
Furthermore, the services concern only with the distributed environment and a considerable effort is always needed to 
develop the synchronization and communication logic between the local and the distributed environment [12]. The 
second drawback is that the standard leaves the communication protocol between the RTI Local and RTI Executive 
undefined. As consequence, federates cannot interoperate unless their RTI Local and Executive belong to the identical 
version released by the same vendor [13]. 
 
The overall consequence is that a considerable extra effort is necessary to develop a DS system when using HLA 
(compared to an equivalent LS one). According to experience gained from various experiments [3][12][14], this extra 
effort can be broadly outlined as follows:    

• Extra effort to acquire HLA knowledge and skills: 30% for an average experienced developers, and 60% for a 
beginner, with respect to conventional LS systems. 

• Extra coding effort to create HLA federates: about 3.5K extra LOC per federate. 
• Extra design effort to determine design choices: for example which federates are to develop, which can be 

reused, which time advancement modality and simulation paradigm need to be adopted, which data need to be 
exchanged and among which federates, and which communication modalities best suite the simulator. 

 
Using SimArch, developers can overcome such difficulties and are enabled to develop DS systems with no knowledge 
of HLA (or of any DS standard), with no extra LOCs per federate, with no HLA-related design choices.  
 

SIMARCH 
 

SimArch organises distributed simulation systems in several software layers, each introducing a more abstract set of 
simulation services on top of the underlying layer, with the bottom one being the distributed computing infrastructure. 
There are three main advantages for adopting this layering approach [3][4]. The first is that the simulation model is 
decoupled from the specific execution environment, and thus it can be reused across several simulation platforms. The 
second is that layers’ implementations can be easily modified or replaced to accommodate custom deployment 
requirements (i.e. local or distributed deployment, performance optimization for given simulation workload, etc.). 
Finally, the third advantage is that simulation developers deal only with high level simulation services, and therefore 
developers can focus on the model description rather than being concerned with technical issues of distributed simulator 
implementations. SimArch consists of five layers [3], each dealing with a specific distributed simulation issue. Fig. 1 
illustrates the architecture layers, which detailed description is given in [15].  
 

In SimArch, the top Layer 4 is the layer where the simulation model is 
defined through the invocation of the simulation language primitives. The 
primitives’ implementation, i.e., the components’ simulation logic and the 
model configuration services, are provided by Layer 3; while Layer 2 
deals with the simulation components synchronization and 
communication, transparently for local and distributed environments. The 
distributed version of this layer uses in turn Layer 1 to achieve global time 
synchronization and provides communication with the remote simulation 
components.  Finally, Layer 1 provides a DES (discrete-event simulation) 
abstraction on top of the distributed computing infrastructure 
conventionally identified by Layer 0. Such bottom layer is structured 
within SimArch but its implementations do not belong to SimArch. As a 
consequence SimArch does not define the service interfaces between 
Layers 1 and 0. In the case of a HLA-based implementation of Layer 1, 
such interfaces are subsets of the RTI-Ambassador and 
FederateAmbassador interfaces for the communication between Layers 1 
and 0 and between Layers 0 and 1, respectively. 
 
For the sake of conciseness SimArch’s services and data interfaces are not 
included in this paper. Interested readers may refer to 
[3][4][12][14][15][16] for details on the interfaces and implementation. 
 
 
 

EXAMPLE APPLICATION 
 

There are many complex systems that can be particularly convenient to simulate using a DS system. Generally, DS can 
be motivated by factors concerning needs for increase of simulator scalability, reusability and aggregability of available 
simulators, or exploitation of intrinsic simulator parallelism. More recently, the inherent distributed nature of the 
simulated systems has been raised as another possible motivation for the use of DS. The simulation of an inherently 
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distributed system may indeed take advantage of the distributed characteristics of a simulator. For example, a DS 
system can offer increased accuracy when incorporating communication using the actual network infrastructure 
between two sites instead of simulating it [17]. Similarly, a DS system can also exploit distributed input data streams 
from actual systems, to provide an increased accuracy of the simulated system. This can be the case motivating the use 
of DS for the simulation of a ground segment. In the simulation of a ground segment, a DS system could provide higher 
accuracy by using data streams generated by the space segment and received by antennas located within the ground 
facilities. These facilities are likely to be interconnected by communication network and geographically distributed over 
the Earth, and therefore a local simulator would not be suitable to use such data streams. An example case can be a 
computer network for the dissemination of TM/TC and Mission and Control Data between two facilities (a main facility 
and a back-up facility) that constitute the GNSS ground segment. Such a computer network can be heterogeneous and 
may consist of individual components, such as LANs of various types, gateways, several stages of the WAN for the 
intra-LAN communication, various types of hosts communicating by the LANs and the WAN, etc. It may also happen 
that the simulation systems of each one of those components is already available and maintained in different 
geographically remote sites. It could be thus convenient to reuse of all those disperse local simulation subsystems into a 
unique distributed simulation system. The traditional way of performing such a combination of remote simulation 
subsystems is by use of HLA. As stated above, jEQN may render this work extremely less difficult and yet 
economically efficient. 

Fig. 2 illustrates an example of such a system. The system can be composed of: 

(a) A set of LANs. In our scenario, we specifically consider only two LANs: a token ring (LAN1) that connects Host 
A, and an Ethernet (LAN2) that connects Host B; 

(b) A set of communicating hosts connected to the LANs. In our scenario, we consider only two hosts, Host A and 
Host B,  and two gateways, GW1 and GW2, which connect LAN1 and LAN2 to the WAN, respectively; 

(c) The general geographic communication backbone, generically denoted with the term WAN. 

We assume that the interaction between the client (Host A) and the server (Host B) is based on message exchanges 
carried out by packet flows over the various components of the system, and that WAN is a X.25 Packet Switching 
network. The packet flow involves several technologies (Token Ring, X.25, Ethernet, etc.) and thus several mechanisms 
are necessary to deal with heterogeneity, namely: 

(m1) protocol conversion, from the transport level protocol TCP, to the network level protocol IP, to the data-link 
level and physical level protocols (and vice versa), in either direction from Host A to Host B, with the IP to 
X.25  protocol conversion (and vice versa) at the gateway level, 

(m2) packet fragmentation and re-assembly at many protocol conversion interfaces, 

(m3) window-type flow control procedure operated at transport level by protocol TCP for a fixed window size of 
value C (for the sake of simplicity no varying window sizes are considered, nor the use of congestion-
avoidance algorithms). 

The performance evaluation of computer network systems generally relies on an Extended Queueing Networks (EQN) 
models of the system. An EQN model consists of a set of jobs flowing through a network of service centers and queues. 
A job represents a user of the system resources (e.g. network or host’s CPU). Each service center represents a system 
resource for which user might need to compete for its use. Each queue represents the scheduling mechanisms that need 
to take place when a job is occupying a service center. Approximately, in a computer network system, an IP packet can 
be modelled as user, a network connection (e.g. WAN) can be modeled as service center, and a First-Come-First-Serve 
queue can be introduced to represent delay because other network traffic.  

Once available a model for Fig. 2 system, the model can be used for many evaluations, such as Host A – Host B end-to-
end delay. However, the discussion of this model and of its applications is out of this paper scope. Further details about 
the model can be found in [18].  

In the following section, we illustrate how a DS system for Fig. 2 ground segment can be mechanically derived from the 
equivalent LS system. However, we do not consider the presence of the space segment and of antenna 1 and 2, and thus 
the incorporation of data streams from the space segment, as this aspect only constitutes the motivation for the use of 
DS for simulation of a ground segment and does not affect this paper methodology. 



 

Fig. 2 Overall architecture of a GNSS ground segment’s (main and back-up facilities) computer network 
 

Simulator Development 
 

Using SimArch and jEQN, we first developed the local version of the simulator [3] and then we derived the distributed 
one. The derivation process for the distributed simulator bases on a mechanical list of steps, which thus demonstrates 
how straightforward transforming a jEQN local simulation system into a distributed one is.  
 
Fig. 3 illustrates the system model high-level description in terms of jEQN entities, links, input and output ports. An 
entity represents a system component (either logical or physical), a link represents a connection (either logical or 
physical) between two or more system components, and input and output ports represent a system component’s sockets 
(either logical or physical) through which a link can be established. The entities defined in Fig. 3, and their 
interconnections, derive from Fig. 3 system (excluding the space segment and the antennas) and define the flow of the 
messages according to the model definition. For each entity, the simulator defines an output port per each point-to-point 
connection to another entity. Differently, each entity is provided with only an input port for all the incoming 
connections. This asymmetry is due to the fact that inside the software components no distinction is made upon the 
source of the incoming messages as these are processed only depending to the entity state and the associated semantic. 
However, when needed, the recipient entity can infer the message sender by accessing the respective data available 
within the message. 
 

In the considered local simulation system version, a jEQN simulation entity is introduced for each main system entities 
in Fig. 3. The software architecture thus includes four types of entities: Host, LAN (both Token Ring and Ethernet), 
Gateway and WAN. The model defines two Hosts, a Token Ring, an Ethernet, two Gateways and the WAN, which are 
logically connected in jEQN as shown in Fig. 3. The Hosts can send requests through the respective output ports. The 
port is connected to the entity representing the local area network, which simulates the operations in such network 
before forwarding the message to the Gateway and then to the WAN. Once a message reaches the recipient Host, the 
process starts over, in reverse order. From this simple description, it remains of immediate understanding the number of 
output ports each entity has. For instance, LAN 1 needs to communicate to the Gateway, when forwarding the Host’s 
request, and to the Host, when conveying the response. Analogous considerations hold for the other entities.  
 



In the software architecture of Fig. 3, the connections between Hosts, LANs, Gateways, Flow Control and WAN reflect 
the connections between the main components of the real system of Fig. 2.  

 

The software architecture for the DS system can be described in terms of the above defined local version with minor 
adjustments. In particular, the sections of the model that concern only with local items, either an entity or a connection, 
are declared by the same statements of the local simulation system. Differently, the declarations of the parts involving 
references to remote items are to be defined by use of the distributed versions of the entity and connection components. 
Determining which items are to be declared with a distributed version is very easy and can systematically be inferred by 
the model partitioning, which defines the entities running on each host and the connection between two or more 
submodels. A very intuitive procedure to carry out such task is to draw the model entities and their connections and then 
operate the partitioning by drawing a continuous line that separates the submodels. The connections crossing the 
partitioning line will connect a local entity with a remote entity, and therefore have to be declared by the distributed 
version of the connection. Concerning the entities, a proxy for a remote entity has to be included locally in the 
definition of the submodel for each remote entity connected to the remote end of the above defined remote connections.  
 
Following this procedure, assume we decide to partition the simulated model into three submodels as shown in Fig. 4. 
Specifically, Submodel 1, Submodel 2, and Submodel 3, where  Submodel 1 consists of the HostA and LAN1 entities; 
Submodel 2 consists of the GW1, WAN and GW2 entities; and, finally, Submodel 3 consists of the HostB and LAN2. 

 
The distributed simulation system will be then composed of three federates, each simulating a Fig. 4 submodel, in 
addition to the standard HLA Federation Manager and the RTI [5], which are known components of any HLA-like 
distributed simulation system and therefore not discussed further. 

 

As shown in the Fig. 4 distributed architecture, Federate 1 includes the definition of the local entities and local 
connections specified in the respective submodel. Fig. 5 shows how the general guideline applies to this Federate. The 
local entities, which are drawn with a continuous line, are Host A, LAN 1 and Flow Control, which regulates the packet 
transmission between host A and B. These entities are also locally connected and their connections are also shown with 
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continuous lines. The declaration of such entities and of their connections follows the same statements for the local 
simulation system, which can therefore be copied and pasted in the federate code. Federate 1 also needs to declare the 
remote entities that can receive messages from the local entities, e.g. Gateway 1. Gateway 1 declaration can be done 
through the following statement that is specific of the distributed version.  
 

Turning to Federate 2, as shown in Fig. 4, this federate consists of Gateway1, WAN and Gateway2 entities. In Fig. 6 
such entities are local to the federate and thus are drawn with a continuous line. Differently, the confining non local 
entities are drawn by a dashed-line. The declaration of the local entities as well as the declaration of their connections 
can be copied by the respective segment of the local simulation system. Differently, the declaration of the confining 
entities and their connections with the local entities can be done by the special statements that are specific for the 
distributed version.  

  

Finally, as shown in Fig. 4, Federate 3 consists of LAN2 and Host B entities. The coding of Federate 3 follows the same 
approach as for the other federates. The entities to be locally declared can be similarly inferred by the partitioning in 
Fig. 4. They are LAN2 and Host B, which are drawn with a continuous line in Fig. 7. Their declarations and the 
declaration of their connections can be copied from the respective segment of the local simulation system. Similarly, the 
remote entities and connections, for which a special distributed version is needed, are inferred from Fig. 4 and reported 
in Fig. 7 with a dashed line.  

 

Once the distributed simulation system is developed, it can be started by first activating the RTI software, then 
activating the Federation Manager [5] and finally, in order, Federate 1, Federate 2 and Federate 3. The RTI software and 
the Federation Manager have to be properly configured.  

 

Experimental Setup 
We tested SimArch in national and international DS experiments. In particular, we carried out experiment in 
intercontinental configuration between Rome and Atlanta, using Pitch pRTI 1516 and CORBA-HLA [13], an 
interoperable HLA implementation that builds on Pitch pRTI. The details of SimArch experiments based on pRTI can 
be found in [19]. Concerning SimArch experiments based on CORBA-HLA, the experimental set-up is shown in Fig. 8. 
Five hosts were allocated in Rome: two hosts running Federate 1 and 2, one host running the Federation Manager, and 
two hosts running the CORBA-HLA and Pitch pRTI. One host was allocated in Atlanta, running the remaining Federate 
3. The purpose of the experiment was not only to functionally test SimArch implementation, but also to validate the 
distributed SimArch execution of the model with respect to the local SimArch execution. The distributed execution 
produced numerical results that conform to the ones obtained from the local execution, considering reasonable error 
margins. Further details about the results of the experiments are available in [3] [20]. 
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CONCLUSIONS 
 

Building a DS system requires non negligible efforts and time, and specialized skills, in comparison to the development 
of a conventional local simulator. This extra effort has been estimated to be up to 60% of the effort required for the 
development of the equivalent LS system. In addition, the coding of extra 3.5KLOC per federate is generally required. 
In this paper, we have presented SimArch a layered architecture that transparently supports the local and distributed 
execution of simulation components. In this way, simulator developers can code DS systems as conventional LS 
systems, i.e. with no extra effort and no extra knowledge. Currently, SimArch implementation is based on IEEE HLA, 
but other standards and DS infrastructures can be transparently introduced. Similarly, jEQN, a simulation language for 
Extended Queueing Networks (EQN) models, is provided. However, other languages can also be developed and 
transparently integrated in the current implementation. We have also presented the details of an experimental setup that 



we used to validate SimArch distributed executions with SimArch local executions. Further references to this paper 
technologies are also provided for interested readers. In the context of other projects, we have provided SimArch with a 
language for the simulation of wireless systems [22] and we have also extended the architecture to support agent-based 
simulation [23][24][25]. 
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