
EGSE architecture
and

the new generation of software technologies

M.Poletti (1), E. Schito.(1), E. Martinelli (1), D.Antonelli (2)

(1)Thales Alenia Space Italia
S.S. Padana Superiore, 290

20090 Vimodrone (MI) - Italy
mauro.poletti@thalesaleniaspace.com

elia.schito@thalesaleniaspace.com
egidio.martinelli@thalesaleniaspace.com

(2)Intecs SpA

Via Archimede, 10
20129 Milano - Italy

Dario.antonelli @intecs.it

INTRODUCTION

The aim of this paper is to explain the reason why we are thinking to a new EGSE architecture and the way this system
can improve the efficiency in every phase of-board systems integration and validation.
As everybody know, a primary goal during satellite developing is to save time (and money) and, looking at the nominal
workflow for satellite production, the large amount of test campaigns that are spread on the whole development cycle is
one of the greatest time consuming activity. The main reason of this statement is due to the fact that every validation or
integration process needs its own EGSE tools, different skills to conduct the test and a different approach to define the
pass/fail criteria. In order to improve the global efficiency of the EGSE itself, we started the definition of new EGSE
architecture that inherits most of the progress made in last years by software technology.

The Basic Architecture concept

This analysis starts from simple considerations: in the last 15 years the basic EGSE architecture has never changed:
EGSE has taken advantages from the PC HW performances growth (Moore law), but the same cannot be said about
software technologies. Focus has been made on functions to allow TM/TC processing to cope ECSS standards and with
specific modifications to answer to dedicated needs of the EGSE operators in a suitable and effective manner. But the
communication among the core modules are usually hard coded and cannot be easily changed. So, the common EGSE
modules cannot be considered like generic services providers. They are highly configurable systems but not “open”
systems.

The Basic MMI Concept

A simple metaphor could be used to better explain how a test engineer uses EGSE Test Conductor Console: the
interaction between a computer user and the operating system is a “communication” exercise whose language (the
Computer Desktop) is imposed by the manufacturers. The same applies in the EGSE environment: several core EGSEs
are on the market and when they are made available to the test engineers, be sure that the most polite comment from
them will be “This is working, but I would like to see also …”.The fig. 1 clearly explain this concept.

Fig. 1 TAS-I ECHO, TAS-F OCOE-5, ESA S2K MMIs

A NEW STARTING POINT

There is a cornerstone in every EGSE architecture which can be identified as “Common Core”. This component
implements the fundamental functions that belongs to satellite EGSE and Control: Telemetry monitoring, Telecommand
sending, Procedure Execution, Data Archiving, and so on. What is different within the various EGSEs are the way the
results are presented, the Test Report are produced and the different tools used for Data Retrieval and Post Processing
Analysis.

Within this context if the EGSE User is satisfied by the Common Core functionality, he still have many wishes about
the way to “communicate” with the EGSE.

The WWW as Model

We will use the World Wide Web as a wide known model to rethink how to describe EGSE component. The WEB is,
from the user point of view, the software domain that manifest the highest growth in terms of functionality, contents and
new technologies. So, taking into consideration how the information is produced and consumed in Internet we have
analyzed the Client/Server model of the WEB versus the Test Conductor Console/Common Core model of the EGSE.

The WEB Client Server Model

The client server model of the WEB can be categorized into three parts:

• User Interface
• Business or Application Logic
• Data Management

Traditional application

Traditional web application development has distributed the implementation of the user interface across the network,
with much of the user interface logic and code executed on the server (thin client, fat server).

Fig. 2 Traditional WEB application

This has several key problems:

• Poor distribution of processing – With a large number of clients, doing all the processing on the server is
inefficient.

• Difficult programming model – Programming a user interface across client/server is difficult. When every
interaction with a user must involves a request/response, user interface design with this model is complicated
and error prone.

Service Oriented Application (UI Separation)

The evolution, primarily due to the Ajax movement, has been related to moving the user interface code to the client.
The new browser platforms and the availability of HTTP client capabilities, have allowed much more comprehensive
client side user interface implementations. However, with these new found capabilities, it is important to understand
how to build client/server applications.

Fig. 3 Service Oriented Application

So how do we decide what code should run on the client and what should run on the server? Quite simply, user interface
code is best run on the client side, while application/business logic and data management is best run on the server side.

Taking a valuable lesson from Object Oriented programming to guide this model we create objects that encapsulate
most of their behavior and have a minimal interface area. Designing for a modular reusable remote interface is one of
the primarily goal of a Service Oriented Architecture (SOA); data are communicated with a defined API, rather than
incoherent chunks of user interface.

The advantages of a clean client/server model where user interface logic and code is delegated to the client (browser)
can be summarized as:

• Scalability – It is quite easy to observe the significant scalability advantage of client side processing. The more
clients use an application, the more client machines that are available, whereas the server processing
capabilities remain constant (until you buy more servers).

• Organized programming model – The user interface is properly segmented from application business logic.
• Client side state management – Maintaining transient session state information on the client reduces the

memory load on the server. This also allows clients to leverage more RESTful interaction which can further
improve scalability and caching opportunities.

• Offline applications – If much of the code for an application is already built to run on the client, the creation of
an offline version of the application will certainly be easier.

• Interoperability – By using structured data with minimal APIs for interaction, it is much easier to connect
additional consumers and producers to interact with existing systems.

Passing from model to architecture, the software paradigm that facilitate this client/server implementation is the Model
View Controller (MVC); an architectural pattern widely used in graphic interface development.

THE MODEL VIEW CONTROLLER

The basis of the MVC are the following:

• The Model represents the application data
• The View renders a presentation of model data

• The Controller handles and routes requests made by the client

Fig. 4 Model View Controller Iteration diagram

The Model

The model is used to manage the information and notify observers when that information changes. The model is the
domain-specific representation of the data upon which the application operates. Domain logic adds meaning to raw data
(for example, calculating parameters). When a model changes its state, it notifies its associated views so they can be
refreshed.

Many applications, including EGSEs, use a persistent storage mechanism such as a database to store data. MVC does
not specifically mention the data access layer because it is understood to be underneath or encapsulated by the model.

The View

The view renders the model into a form suitable for interaction, typically a user interface element. Multiple views can
exist for a single model for different purposes. A viewport typically has a one to one correspondence with a display
surface and knows how to render to it.

The Controller

The controller receives input and starts a response by making calls on model objects. A controller accepts input from
the user and instructs the model and viewport to perform actions based on that input.

An MVC application may be a collection of model/view/controller triplets, each of them is responsible for a different
UI element.

Summarizing, the separation between Model, View and Controller can lead to the development of the different
functions by different subjects. If the Model export data through standard API (REST, SOAP, JSON) allows external
developers to implement different and flexile views. Who is in charge of developing the View-Controller, interrogates
the server, load raw data and arrange (or compute) them in innovative way. If more subjects develop different views
using the same data, the final user can choose the more suitable, usable and convenient interface within the reference
context.

How SOA and MVC fits with EGSE

Now, the big question is: how all these theory fits with EGSE? If we represent an EGSE using the previous
Client/Server Model we have the Common Core (the Server) connected to Test Conductor Console (the Clients) and,
using the topics previously explained, we can easily state that if we should have a Common Core based on Service
Oriented Architecture (SOA) we could easily use an MVC pattern to obtain:

• Interoperability – By using structured objects with minimal APIs for interaction, it is much easier to connect
different modules with dedicated data processing. Moreover this architecture will allow a “Module
Competition” business schema perfect for SME.

• Offline applications and reporting – If much of the code for an application is already built to run on the client,
it is easier to create different offline view of the data as well as dedicated reports.

• Scalability – It is quite easy to observe the significant scalability advantage of client side processing. As soon
as that the Satellite integration evolves from equipment to subsystem and system level, the more clients will
use an application, the more client machines will be available, whereas the server processing objects will grow
up accordingly.

The New Architecture Proof of Concept

An excellent test for a good client/server model is how easy is it to create a new user interface for the same application
so we tried to prove this statement concentrating our effort on the View part of the MVC pattern and leaving unchanged
the communication API, even if the EGSE Common Core is not (yet) based on SOA. The next figure explain the model
Test Conductor Console/Common Core used in our exercise.

Fig. 5 EGSE Client/Server Model

Since most of the innovative part of the technology is relevant to the WEB, we have done this programme in
cooperation with the Information Technology department - Milano University. The goal is to obtain a Proof of Concept
of a rapid prototyping to Man Machine Interface generation, taking the maximum profit of HTLM5 standards, dynamic
languages (Ruby), and web frameworks (Ruby on Rails ®) and JavaScript library (jQuery).

Fig. 6 Development process based on user iteration.

The basis is to implement a highly interactive process between the developer and the user in order to jointly define the
MMI, and rapidly generate it using the technology defined above. Two example (limited by the actual development
status) are showed below: both are off-line data presentation. The first one is a TLM frame analyzer and a Packet TLM
decommutator, the second is a parameter trend analysis display. Both programs use the EGSE archive files as data
source. The examples are showed in Fig 7 and 8.

Fig. 7 Telemetry Frame analysis and Packet decommutation

Fig. 8 Parameter Plot (trend analysis and detailed view)

Actually the computer browser is used for the data presentation, but we are also investigation the possibility to create
final desktop application using dedicated Ruby framework like Bowline.

Conclusions

We have showed, through the “Prof of Concept”, that software architectures used in totally different context can be
successfully used within EGSE to improve user experience. This increases our belief that Model View Controller,
together with a Service Oriented Architecture will constitute the basis for really new EGSE generation

Reference

Without Wikipedia © The Free Encyclopedia this article never would have been written

