Performance I mprovementsin the ESOC Emulator

Jose E. Marchesi

Terma GmbH, Europaplatz 5, 64293 Darmstadt, Germany
jco@terma.com

jemarch@gnu.org

Abstract— While the ESOC Emulator is the best performing ERC32 emulator currently available, we can
identify several reasons why performance improvements would be of benefit to ESOC and other users. This
paper explores some possibilities on improving the performance of the ESOC Emulator, and other
improvementsthat could be useful in the future.

INTRODUCTION

We can identify at least three reasons why perfaceamprovements would be of benefit to the usérthe ESOC
emulator:

e Current and future missions at ESOC are requiriggdr and more demanding Emulation power in terfns o
more powerful processors, and more processorsnte¢e i.e. Constellation simulators.

e There is an increasing demand in operational sitorddo emulate more software running on processoher
than writing functional models, for example Massnwey and Payload sub systems, as well as parallel
emulation of AOCS and Basic OBSW.

« A Leon emulator could be based in the current E&dilator, expanding the current code base to ciheer
SPARC v8 instruction set.

The first part of this paper briefly introduces B80OC emulator, a fascinating piece of software ltlaa been used for
years to emulate the Operational Simulators at ESf@ that is full of potential. A brief introdimt of the effort to
increase its performance: the relocation of the Btouto a real 64-bit RISC hardware platform — S®Av9. And
finally, the handling of mapped-memory input-outpperations and its impact on the performance e@stmulations is
discussed.

Please note that in diagrams featuring Ada packagizshed line denotes the instantiation of somergepackage by
some other package. The direction of the relatignshould be evident.

OVERVIEW OF THE ESOC EMULATOR

The ESOC Emulatofalso known as SM_EMU_ERC32) is a software emulatéhe ERC32 family of processors and
some of its accompanying devices, including thelatimn of co-processor and floating-point instraas. It is used to
drive the operation of Operational Simulators, lingrthe on-board software of the simulated spadicra

The ESOC Emulator is composed by two main companamnt emulatocor e and an emulatashell. The emulator core
implements the main functionality of the emulatas. ithe fetching, decoding and emulation of therimsions,
management of interrupts and timers, etc. The awmushell is the interface between the user ofaimeillator and the
emulator core. It provides a set of services inftren of procedure calls. Those services include éxecution of a
given number of instructions, access to the emdi&®U registers, a debugging interface, warm amd resets, the
raising of interrupts and traps, scheduling of ¢éveetc.

Client
4 P Shell

Application

Fig. 1. Client apps communicate with the emula&ing the emulator shell.

The emulator core is written in assembly languagetd performance reasons (described in the netibeg However,
assembly language is non portable, and the retocafithe emulator to new machine architectureséav versions of
some existing hardware architecture) would requemendous amounts of work. For that reason thaaor core is
written in a RISC like abstract instruction set,Ad6. The EMMA macro assembler (shipped with theuktor) can
translate AIS programs into very efficient nativesambly programs provided that the target physiwathine
implements a typical RISC architecture. That inekd

« Plenty of general-purpose registers to store buttbger values and floating-point values. At l€zatinteger
registers of 64 bits are required.

¢ Register —to-register and immediate-to-registezdhoperands instructions.

» Load/store instructions for half words, words aodlle words.

In addition to provide machine-independence, theM&Mmacro assembler eases the development of asgembl
language programs by providing facilities suchlesdllocation of registers, management of labelsgnam sections,
etc. The emulator core makes an intensive udeosktfacilities.

Ada
. SM_EMMA_Macro_Assembler

SM_EMMA_VAC SM_EMMA_ALPHA SM_EMMA_SPARC

Fig. 1. EMMA macro assembler packages.

The EMMA macro assembler is available in the forrh several Ada packages. (see Figure 1). The
SM_EMMA_Macro_Assembler package provides generdilifiegs and internal services used by the backeBdsh
backend implements a set of generic proceduressmmonding to the instructions defined in the AlBe Execution of
those procedures will generate different code, deipg on the specific backend used.

The ERC32 emulator generator is a generic Ada ppeckaat makes use of the EMMA AIS. The user cand &hould)
customize many aspects of the emulated machinailnyibg the generic package. Those customizataresmainly
hooks that will get executed when some event arisash as the reading or writing of some memoraarénce
tailored, the resulting package can be compiledgigith EMMA to build an Emulator Generator bina8ee Figure 2.

Ada Ada
ERE32 k- - - - User
Emulator Tailoring
Generator
Emulator
Generator
Ada
EMMA Macro

Assembler

Fig. 2 Building the Emulator Generator

The emulator shell is a generic Ada package progithe services described above. It must be tailbyethe user. The
combination of an emulator core (generated by thaulgtor Generator) and a tailored emulator shefifaons a

complete Emulator that can be integrated in anasjmeral simulator. The resulting Emulator librasyusually a static
archive containing position independent code. Sger€ 3.

Emulator

Generator

Ada Ada
Emulator |----1 User
Shell Tailoring
Emulator

EMTH/EMTS

_Ada

Test
Harness

Fig. 3 Build of the emulator library and thettharness.

A test harness command line application is alstuded with the ESOC Emulator suite. It implementaidy complete
scripting language.

RELOCATING THE ESOC EMULATOR TO SPARC

As we mentioned in the previous section the corin@fEmulator is in charge of implementing operaithat are quite
intensive in terms of CPU usage. Those operaiiuriade:

* Fetching, decoding and execution of the emulatstiuntions.

* Management of the address space of the emulateggses, including memory attributes and the hagdifn
memory-mapped input-output.

e Emulation of interrupts and traps.

* Scheduled events and timers.

Given the CPU requirements of the emulator comeai$ decided to write it in assembly code insteadsifig a high
level language such as Ada or C. Even if it is Uguwareal challenge for a human to compete wittdera optimizing
compilers such as gcc in terms of the performafi¢kengenerated code, CPU emulation is one ofeheffelds where
a significant advantage can be achieved by a diréfand crafted implementation.

Early versions of the ESOC emulator used to geeezatulator cores written in the Alpha assembly lagg. Those
cores could run on AD164 co-processor cards atthtbepersonal computers. Each AD164 card feataredV5

Alpha processor. The performance achieved by thgstms was quite good, reaching mips/Ghz rati@pmeaning
that a 1Ghz host machine would be needed to em2&ateillion of instructions per second.

Unfortunately, at some point it was decided to gbe emulator to 1A32 and AMD64 systems. Thosdesgs are
CISC architectures and thus are not suitable foatave EMMA backend. A backend generating portablealled
VAC (Virtual Alpha in C) was written and added toet EMMA distribution. VAC is the backend used tpda
operational simulators. The native back ends, geimgr Alpha and MIPS-64 code, are no longer used.

There is a performance penalty in the usage oMh€ backend. In the words of Alan Dartnell: “Ita@iid be noted

that while an emulator written using the EMMA AlSaynbe very efficient when the AIS is translateaifig bit RISC

instructions, this is not the case when the AISYAC is used as in this case the emulator codéfatieis modeling an

Alpha like processor emulating the emulated pram®4&]. How big is that performance penalty? Basgdmeasures
taken using the AD164 cards and given the simidaribetween the 64 bit RISC architectures, it leentestimated that
the performance of a single processor RISC systeaked at 1.5 GHz would be in the order of 100 njids

The previous estimation was made in the context®fHerschel-Planck operational simulator. At tiae the idea of
using a native AIS implementation targeted at aenodRkISC machine was considered, but then discdrdeduse the
simulation infrastructure (namely SIMSAT) was nbteato run in modern RISC architectures such as/8PAr MIPS.

Some months ago we considered at Terma the pagsilfilwriting a native AlS implementation for a uhern RISC
architecture. The idea was to generate an emutaterin native assembly and measure the achievéornpance in a
modern machine. After considering the different giloitities we choose the SPARC architecture. Thesoes for
choosing SPARC include:

e The availability of very powerful SPARC machineskel the medium and high-end servers sold by
Sun/Oracle.

e ltis a stable architecture in terms of market. $hd fate of the Alpha architecture, that was bbagh then
killed by Intel in favor of the Itanium, is unlikelyoing to happen to SPARC.

e The Open SPARC initiative may promote the develapnoé third party SPARC-based systems.

e The other widely used RISC architecture, MIPS, geclin low consumption and portable devices. Those
devices are not appropriate for running CPU intensbftware like the ERC32 Emulator.

The SPARC native AIS backend was completed in twathis, and the process of designing and writingai quite an
interesting, instructive and entertaining activiBackages were developed to cover the full rangsupported AIS
instructions, including routine calling operationlstanch instructions, byte operations, float fuomsi, integer
operations, loads and stores, logical operatiohdt sperations, conditional integer moves, constpools, data
directives, scaled integer operations and synchatioin operations.

| g

Emulator

SPARCvV9
Assembler ELF&64 object
p code

Generator

Fig. 4 Generation of an emulator core for SPARC.

The superb EMMA design helped a lot, and made skitbe to port a complex assembly application the Emulator
core in a relatively small time. The availability the existing Alpha and MIPS back ends was alsibequseful:

problems like the endianess and the delay slots akeeady handled there and we were able to réessame solution.
However we had to face some interesting challengemy of them derived from peculiarities of the HRA
architecture. A brief list follows:

« Windowed registers architecture. SPARC systems, unlike other RISC architectures Aikgha and MIPS,
organize most of their general purpose registersvarlapping windows. That makes it possible toesthe
window every time a routine is called, avoiding tieed of saving the value of the registers. The sfzhe
window is enough to provide 32 integer registerargt moment, a few of them reserved for specigh@ses
(like the stack pointer and the stack frame).

e Limited range of values in immediate operands. Most of the SPARC immediate-to-register operaion
accept 13 bit signed integers. That makes it nacgs$e use a temporary register to hold 32 bit tamts. On
the other hand branch instructions use signed t2ddred immediate values to hold the destinatagresses,
so additional temporary registers are needed thidé®e consequence is that a one-to-one instruatiorsiation
can't be used for most of the branch operations. Sdme applies to the load/store operations.

e The stack bias. The SPARC v9 Sys V ABI mandates the usage ofekshias to differentiate processes
running in 32 bit mode from processes running inb@mode. That had to be taken into account in the
implementation of the routine calling conventionsl ahe registers saving operations.

* Rigid stack management. The SPARC architecture is designed to promoteutizgye of registers to hold the
intermediate results of computations, as opposeshate those values in the stack. As a consequiece
design of the stack frame in SPARC ABIs is quitgdi at any time there should be enough spacea#ddn
the top of the stack to hold the values of thestegs. In the occurrence of a window overflow @me other
trap, the current values of the registers are cbibiere before to jump to the trap managementmeulti

* Position independent code (PIC). The emulator requires the usage of position iedepnt code, since the
object code of the emulator core will usually beliled in a shared library. That complicates tbdec
generation.

The EMMA SPARC backend generates position indepeindede SPARC v9 assembly code that is compatiftle w
the System V application binary interface. The GA&sembler gas is then used to assemble the oligxt The Ada
parts of the Emulator are compiled with the GNU pder.

One of the main conclusions reached by this agtigitthe confirmation of the portability of the ESGEmulator, as
well as the convenience of its design. The Ada aamepts will run in any platform supported by the \GBompiler (a
language is as portable as its compiler/interpreted new EMMA back ends can be added in a relgtsienple way.
All combined, this provides excellent performanaod good portability: a luxury that can be easilglerestimated.

At the time of writing this paper we are still assiag the performance improvements achieved byéwe backend.
Preliminary measures show promising results.

HANDLING OF MEMORY-MAPPED INPUT/OUTPUT

A known performance issue in the operation of spefe operational simulators is the managementhefrhemory
mapped Input/Output, or MMIO. The emulator shelbypdes services to mark blocks in the address spédhe

emulated process as MMIO served memory locatioghenever a memory location pertaining to those saisa
accessed by a load or store operation, the codergied by a user-provided tailoring procedure scated and the
emulation continues.

The management of a MMIO read or write operatiamllg requires two steps:

e Thedecoding of the requested address to determine the I/O device that shall attendlf@eoperation. The
user-provided tailoring procedure is given the mgnaaldress and the size of the data to load diote.s

e The modelling of the 1/0 device. As soon as we identify which 1/O device shall psx¢he access to the
MMIO address, the proper model is invoked to enaulaé operation.

Some of the standard 1/0O devices that can be faumsh ERC32 board are modelled by the Emulator.cdiiee user
tailoring can invoke those internal models aftex trecoding is done. On the contrary, spacecraftifsp&/O devices
are usually modelled out of the emulator core,ame SMP2 model. That means that the user-proviaiéating shall
call those external models by using a call bacKotinnately, the classic way to manage those sinatn Operational
Simulators involves the usage of a single call baglchanism that handles the requests for all thed#vices. The
situation is depicted in the Figure 5.

Fig. 5 Emulator interacting with several /0 ASi@dels.

The usage of a single call back to manage the Mkd@Quests for the externally modelled 1/0O devices baveral
problems:

e The frequency of read/write operations directed to externally modelled MMIO devices istive order of
thousands of accesses per second. That meanshéhatficiency of the MMIO handler is critical andrc
easily become a bottleneck in the overall perforreanf the emulator, and thus of the simulation.

e The decoding of the I/O address is performed twice. Since the user-tailored procedure implementing the
MMIO calls has to decide whether to call to aning IO model or to invoke the single call back fhe
external devices, some of the decoding of the emddis always performed in the emulator core. That
usually done using efficient assembly operatiorehsas the application of logic masks and bit rotai But
then the external handler has to decode the extéthalevice. That second-stage decoding is ugwhe
with inefficient C++ data structures from the starditemplates library such as lists and vectors.

It seems that the usage of a single call back nmsimais the consequence of a long standing regeinénn
Operational simulators for ESOC: compatibility witie TSIM ERC32 emulator. If that requirement & present
more efficient solutions can be put in place byngsihe customization facilities provided by the ES@mulator.
Fortunately, recent operational simulators intra@tlisome interesting performance improvements fdiea.

SWARM tries to avoid the usage of the single call ba@cihanism for one of its mostly accessed modelsifegtty
accessing to the memory managed by the Link Memawgel, for both reading and writing operations.pdinter to
the buffer managed by the I/O model is passedérethulator arguments. The same optimization coeldgdplied for
the writing operation in the Exchange Memory. Fitreo devices the single call back is still used.

Herschel-Planck makes use of an extremely nice Ada written modeltfie COCOS device. COCOS stands for
“Computer Core Support” and is a sort of multi-ftion hub that acts as an interface between the PR@3cessor and
the several buses and devices[3]. Most of thosiee are mapping registers and memory areas iadtieess space of
the processor. The COCOS model used in HerschatRlalong with the tailoring of the emulator, yides a direct
access to a memory buffer for simple register i@adl write operations. It still resorts to an exéfMIO handler in
complex read and write operations where a sideceffas to be simulated by the model. The MMIO tailg of the
emulator used in Herschel-Planck can be configtmetbt use the direct access to the memory bufeam emulator
shell service and a test harness command. Thisitis useful when debugging.

I/O ASIC model
rfw
RAM 4 4 Emulator
Buffer
\
MMIO Handler 4
- invoke

Fig. 6 External I/0O device and the Emulator.
The conclusions we derive from those use cases are:

» Direct access to memory buffers provided by the external 1/0O devices shall be usbdnever possible. The
user shall be able to force the usage of call bémkdebugging purposes.

e The usage of a single MMIO handler routine shall be avoided. Instead, every external /0O device shall
provide a MMIO handler. In that way we avoid effduplication, since all the decoding could be perfed
in the tailored emulator core. See Figure 6.

« Moving some of the I/O modelsinto the emulator core is an interesting possibility for devices usualsed
in spacecrafts.

REFERENCES

[1] A. Dartnell. “Herschel-Planck Simulator Sefire Budget Report”.

[2] A. Dartnell. “Extensible Meta-Macro Assemb{&EMMA) User’'s Manual”. Issue 2 Revision 0. 24 Oloer 2001.

[3] Catovic, Edvin, Hedberg, Daniel. “High LeveleBcription of an ASIC Implementing CPU Support df@
Control”. Chalmers University of Technology. Gotep@002.

