

European Commission FP7 ICT-2011.1.4 Trustworthy ICT Project #318772 2012 - 2015

Contract-Based Verification of MILS-AADL Models

Stefano Tonetta FBK-irst tonettas@fbk.eu

D-MILS Project

- Research based on the MILS approach
 - Component-based approach for the construction, assurance, and certification of critical systems
 - Two-phase design process
 - 1. Architecture-based design of the information flow policy
 - 2. Implementation based on a platform composed of MILS foundational components
- D-MILS focused on:
 - Extending the technology to distributed systems
 - Providing an end-to-end support to
 - Design and verification
 - Deployment
 - Assurance case

FP7 project

- Nov. 2012-Oct. 2015
- Partners (underlined ones are present today):
 - The Open Group (UK) Lead
 - Fondazione Bruno Kessler (IT)
 - <u>fortiss</u> (DE)
 - Frequentis (AT)
 - LynuxWorks (FR)
 - <u>RWTH Aachen University</u> (DE)
 - TTTech (AT)
 - Université Joseph Fourier (FR)
 - University of York (UK)

FIRST USAGE OF COMPASS IN A NON-ESA PROJECT

Verification goals

- Compositional verification
 - Prove that global properties are correctly refined by local properties
 - Efficient reasoning
 - Delegate proof of application components to the provider
 - Focus on the verification of the architecture
 - Formalize assumptions of system and components
 - Cover different types of requirements:
 - Functional
 - Real-time
 - Safety
 - Security
 - Efficient verification, effectively mixing
 - SMT-based symbolic model checking
 - Inductive reasoning
 - Automated abstraction refinement

Contract-Based Design

MILS and CBD

$$\frac{\frac{\mathbf{D} \models P_{\mathbf{D}}, \mathbf{E} \models P_{\mathbf{E}}}{\gamma_{B}(D, E) \models \gamma_{B}(P_{\mathbf{D}}, P_{\mathbf{E}})} \gamma_{B}(P_{\mathbf{D}}, P_{\mathbf{E}}) \models P_{\mathbf{B}}}{\mathbf{B} \models P_{\mathbf{B}}} \quad \mathbf{C} \models P_{\mathbf{C}}}{\gamma_{A}(B, C) \models \gamma_{A}(P_{\mathbf{B}}, P_{\mathbf{C}})} \quad \gamma_{A}(P_{1}, P_{2}) \models P_{\mathbf{E}}}$$
$$\mathbf{A} \models P$$

AADL annotated with OCRA contracts

system Sys

features

cmd: in event data port int;

switch_to_high: in event port;

```
switch_to_low: in event port;
```

return: out event data port int;

outL: out data port int;

```
{ OCRA: CONTRACT secure
```

assume: always (

```
({cmd} implies then ({return} releases (not ({cmd or switch_to_high or switch_to_low}))))
and (((not {switch_to_high}) since {switch_to_low}) implies (not {is_high(last_data(cmd))}))
and ({is_high(0)} = false) );
guarantee: always ( ({is_high(outL)}=false));
```

}

Property Specification Language

LTL

- always (p implies in the future q)
- First-order
 - always (high(value) iff high(cmd)) implies never (high(output))
- Real-time
 - always (corrupted(memory) implies time_until(alarm)<=time_bound)

Verification Framework

- The framework consists of a collection of tools
 - COMPASS (baseline developed in ESA projects) as front-end for MILS-AADL models
 - OCRA for contract-based
 - nuXmv for model checking
 - xSAP for safey analysis (e.g. FTA)
 - secureBIP for transitive non-interference
 - RT-DFinder for invariant and deadlock checking

Validation with

- Simulation
- Deadlock checking
- Timelock checking
- Reachability and other queries in temporal logic

Verification of

- Functional requirements
- Real-time requirements
- Security requirements
- Safety requirements

Analysis Tool Chain

Starlight Architecture

Stefano Tonetta

Starlight reqs formalization

- Req-Sys-secure: No high-level data shall be sent by L to the external world.
 - Formal-Sys-secure: never is_high(last_data(outL))
- Req-User-secure: The user shall switch the dispatcher to high before entering high-level data.
 - Formal-User-secure: always ((is_high(last_data(cmd))) implies ((not switch_to_low) since switch_to_high))
- Proved system guarantess Formal-Sys-secure assuming Formal-User-secure.
- Req-Sys-safe: No single failure shall cause a loss of Req-Sys-secure.

Starlight fault tree for secure req

Conclusions

- COMPASS used in a non-ESA project
- MILS-AADL (a variant of SLIM) models annotated with OCRA contracts
- Efficient analysis tool chain for scalable verification on very expressive logic
- Verification applied to both safety and security requirements.

Next in CATSY

- Guided formalization based on CSSP
 - Taxonomy of requirements and
 - Formal property patterns
 - Specific patterns for low-level properties (deadline, monitoring frequency, threshold, ...)
 - Validation of the formalization with
 - Queries to test the formalization
 - Traces to show possible executions
 - Explanation/debugging of the refinement
- Language tailored to property and contract specification
 - Abstract components
 - No required implementation
 - No required hw bindings
 - Mode transitions only for component configuration (behaviors only in the leaf components)
 - Simpler semantics of interaction
- Paving the way to higher TRL
 - New code repository management
 - Improve testing framework