Safety Assessment in COMPASS

Future of COMPASS; October 22, 2015; ESA-ESTEC, Noordwijk

Introduction

- 2 Fault Tree Analysis
- 3 Failure Mode and Effects Analysis
- 4 Fault Detection, Isolation and Recovery

5 Future Work

1 Introduction

- 2 Fault Tree Analysis
- 3 Failure Mode and Effects Analysis
- 4 Fault Detection, Isolation and Recovery

5 Future Work

Overview

Model-Based Design and Safety Assessment

- Formal model of the system
- Decoupling modeling of *nominal* and *faulty* behavior (automatic model extension facilities)
- Formalized requirements
- Formal, systematic, tool-supported analyses encompassing functional verification, safety assessment, FDIR effectiveness, performance, etc.

Advantages

- Increase comprehension of the system under investigation
- Sharing of models between different stakeholders
- Ensure completeness and consistency of the analyses
- Automate tedious and error-prone tasks
- Support certification

COMPASS Methodology

Safety Assessment in COMPASS:

COMPASS Technology: Model Checking

Model Checker

A pictorial view of a model checker

Safety Assessment

COMPASS builds upon model checking technology to generate safety artifacts

Safety Assessment in COMPASS:

Safety Assessment

Objectives

- Analyse system behaviour in presence of malfunctions
- Determine the conditions under which safety hazards can occur
- Ensure that a system meets safety requirements

Some example properties:

- "If no more than 3 components fail, then I never have a total loss of hydraulic power"
- "No single point of failure can cause unavailability of both the primary and secondary power systems"
- "The probability of a total loss of hydraulic power is less than $10^{-7"}$

Patterns

• COMPASS provides patterns to specify properties – they are automatically translated into temporal properties

Safety Assessment in COMPASS

Safety Assessment Techniques

• COMPASS supports safety assessment techniques such as:

- Fault Tree Analysis (FTA)
- Failure Mode and Effects Analysis (FMEA)

FMEA Table								
Ref. No.	Item	Failure Mode	Failure Cause	Local Effects	System Effects	Detection Means	Severity	Corrective Actions
1	Pump	Fails to operate	Comp. broken No input flow	Coolant temperature increases	Reactor temperature increases	Temperature alarm	Major	Start secondary pump Switch to secondary circuit
2	Valve	Stuck closed	Comp. broken	Excess liquid	Reactor pressure increases	Coolant level sensor	Critical	Open release valve
3		Stuck open	Comp. broken	Insufficient liquid	Reactor temperature increases	Coolant level sensor	Critical	Open tank valve

Introduction

2 Fault Tree Analysis

3 Failure Mode and Effects Analysis

4 Fault Detection, Isolation and Recovery

5 Future Work

Fault Tree Analysis (FTA)

Main Features

- Deductive technique (top-down)
- Graphical representation of the effects of faults on system requirements (using Boolean gates)
- Widespread use in aerospace, avionics, and other domains
- Qualitative model that can be evaluated quantitatively

Fault Tree Analysis (FTA)

FTA requires:

- Specifying a Top Level Event (TLE) representing an undesired condition
- Find all possible chains of basic events (faults) that may cause the TLE to occur

A Fault Tree:

- Is a systematic representation of such chains of events
- Uses logical gates to represent the interrelationships between events and TLE, e.g. AND, OR

Minimal Cut Sets (MCSs)

- FT shape of particular interest: representation in terms of Minimal Cut Sets (MCSs)
- Minimal cut set = "smallest set of basic events which, conjoined, cause the top level event to occur"
- Logically: Disjunctive Normal Form (DNF) = disjunction of conjunctions of basic events
- The fault tree on the right has two MCSs: C (single point of failure) and A \wedge B (cut set of order 2)

Algorithms for FTA

Symbolic Algorithms for FTA

Several algoritmhs:

- BDD-based algorithms
 - Forward algorithm
 - Backward algorithm
- SAT-based algorithms
- SMT- and IC3-based ones (ongoing work)

Several Algorithmic Optimizations

- Dynamic Pruning
- Backward algorithm with DCOI (Dynamic Cone of Influence)

An Example

Θ...

BDD-based forward algorithm

- $F_1 \wedge F_2$ is a cut set
- History variables remember past failure events: O_i is true if and only if F_i is true at some point in the past: $\mathcal{R}^o = \begin{cases} O_i \rightarrow next(O_i) \\ \neg O_i \rightarrow (next(O_i) \leftrightarrow next(F_i)) \end{cases}$

function FTA-Forward (\mathcal{M}, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (\underline{o} = f)$; 3 Front := $\mathcal{I} \cap (\underline{o} = \underline{f})$; 4 5 6 7 8 9 10 11

function FTA-Forward (\mathcal{M}, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (\underline{o} = \underline{f});$ 3 Front := $\mathcal{I} \cap (\underline{o} = \underline{f})$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;*Reach* := *Reach* \cup 6 $fwd_img(\mathcal{M}, Front);$ 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 10 11

function FTA-Forward (\mathcal{M}, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (\underline{o} = \underline{f});$ 3 Front := $\mathcal{I} \cap (\underline{o} = \underline{f})$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ $fwd_img(\mathcal{M}, Front);$ 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(o, Reach \cap Tle);$ 10 11

function FTA-Forward (M, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (o = f)$; 3 Front := $\mathcal{I} \cap (o = f)$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ fwd_img(\mathcal{M} , Front); 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(\underline{o}, Reach \cap Tle);$ 10 11

function FTA-Forward (M, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (o = f)$; 3 Front := $\mathcal{I} \cap (o = f)$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ fwd_img(\mathcal{M} , Front); 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(\underline{o}, Reach \cap Tle);$ 10 11

function FTA-Forward (M, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (o = f)$; 3 Front := $\mathcal{I} \cap (o = f)$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ fwd_img(\mathcal{M} , Front); 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(\underline{o}, Reach \cap Tle);$ 10 MCS := Minimize(CS);11

function FTA-Forward (M, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (o = f)$; 3 Front := $\mathcal{I} \cap (o = f)$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ fwd_img(\mathcal{M} , Front); 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(\underline{o}, Reach \cap Tle);$ 10 MCS := Minimize(CS);11

function FTA-Forward (M, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (o = f)$; 3 Front := $\mathcal{I} \cap (o = f)$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ fwd_img(\mathcal{M} , Front); 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(\underline{o}, Reach \cap Tle);$ 10 MCS := Minimize(CS);11 return $Map_{o \to f}(MCS)$;

function FTA-Forward (M, Tle) $\mathcal{M} := Extend(\mathcal{M}, \mathcal{R}^o);$ 1 2 Reach := $\mathcal{I} \cap (o = f)$; 3 Front := $\mathcal{I} \cap (o = f)$; 4 while (*Front* $\neq \emptyset$) do 5 temp := Reach;6 $Reach := Reach \cup$ fwd_img(\mathcal{M} , Front); 7 *Front* := *Reach* \setminus *temp*; 8 end while: 9 $CS := Project(\underline{o}, Reach \cap Tle);$ 10 MCS := Minimize(CS);11 return $Map_{o \to f}(MCS)$;

Fault Tree Analysis (FTA)

Dynamic FTs

- Dynamic FTs extend FTs by considering dynamic aspects, such as: ordering constraints, functional dependencies, spares
- Dynamic FTs in COMPASS:
 - Ordering constraints between basic events can be analyzed
 - Priority AND gate (PAND) to display order

Screenshot: Fault Tree Analysis

Screenshot: Fault Tree Analysis

Introduction

2 Fault Tree Analysis

3 Failure Mode and Effects Analysis

4 Fault Detection, Isolation and Recovery

5 Future Work

Failure Mode and Effects Analysis (FMEA)

Main Features

- Inductive technique (bottom-up)
- Tabled representation of the effects of faults on a set of system properties
- Widespread use in aerospace, avionics, and other domains

FMEA Table

Ref. No.	Item	Failure Mode	Failure Cause	Local Effects	System Effects	Detection Means	Severity	Corrective Actions
1	Pump	Fails to operate	Comp. broken	Coolant temperature increases	Reactor temperature increases	Temperature alarm	Major	Start secondary pump
			No input flow					Switch to secondary circuit
2	Valve	Stuck closed	Comp. broken	Excess liquid	Reactor pressure increases	Coolant level sensor	Critical	Open release valve
3		Stuck open	Comp. broken	Insufficient liquid	Reactor temperature increases	Coolant level sensor	Critical	Open tank valve

FMEA Table

An FMEA table is a set of pairs linking a fault configuration (set of faults) FC_i to a property P_j . That is, P_j may be violated when the system fails according to FC_i .

Cardinality of FMEA Tables

- Often, cardinality one (single fault) is considered
- Generalizes to FMEA table of cardinality k (including fault configurations of cardinality up to k)

Dynamic FMEA Tables

• Order between fault events may be imposed

Screenshot: Failure Modes and Effects Analysis

Model Properties Mission	TFPG Validation Correctness Performability Safety FDIR FDIR Synthesis						
Properties Name FT F	Fault Tree Failure Mode Fault Tolerance (Dynamic) Fault (Dynamic) Fault Generation Effect Analysis Evaluation Tree Verification Tree Evaluation						
✓ FT: not system is_alive √ ○ FT: battery1 empty √	alive v The resulting FMEA table is presented underneath						
🗆 FT: battery2 empty 🛛 🖌	Su Generate FMEA Table						
	Cardinality: 1 1 SAT bound: 30						
Dynamic FMEA Compact FMEA							
	Num ID Failure Model	Failure Effect					
	1 1-1 sys.psu1.generatorerrorSubcomponent.#fault = True	!root.sc_sys.data_is_alive					
	2 2-1 sys.psu2.generatorerrorsubcomponent.#rault = True	!root.sc_sys.data_is_alive					

Screenshot: Failure Modes and Effects Analysis

Model Properties Mission TFPC Validation Correctness Properties Fill Terr Fall Terr Fall Terr Fall Terr Name FT Fall Terr Fall Terr Fall Terr Probattery1 FT Fall Terr Fall Terr Pribattery2 Fall Fall Terr Fall Terr Pribattery1 Pribattery1 Fall Fall Terr Pribattery2 FALL Fall Terr Fall Terr Pribattery1 Pribattery2 FALL Fall Terr Pribattery2 Pribattery2 FALL Fall Terr						
	Num Die Fallure Model 1 11 sys.put.generatorerrorSubcomponent.#Fault = True 2 sys.put.generatorerrorSubcomponent.#Fault = True 3 Sty.gesuz.generatorerrorSubcomponent.#Fault = True & sys.put.generatorerrorSubcomponent.#fault = True 4 6-1 (sys.semorlerrorSubcomponent.#fault = True & sys.put.generatorerrorSubcomponent.#fault = True 5 7/1 (sys.semorlerrorSubcomponent.#fault = True & sys.put.generatorerrorSubcomponent.#fault = True 6 8-1 (sys.semorlerrorSubcomponent.#fault = True & sys.put.generatorerrorSubcomponent.#fault = True 7 9-1 (sys.semorlerrorSubcomponent.#fault = True & sys.put.generatorerrorSubcomponent.#fault = True 8 10-1 (sys.semorlerrorSubcomponent.#fault = True & sys.put.generatorerrorSubcomponent.#fault = True	Traduce Effect Traduce, Sys. data, js., alive Traduce, Sys. Stata, Sys. Sta				

Introduction

- 2 Fault Tree Analysis
- 3 Failure Mode and Effects Analysis
- 4 Fault Detection, Isolation and Recovery

5 Future Work

Fault Detection, Isolation and Recovery

FDIR

• Fault Detection, Isolation and Recovery (FDIR) is an essential block of safety-critical systems – needed to ensure fault tolerance and prevent safety hazards

Goals of FDIR

- Fault detection: identify malfunctions
- Fault isolation: precisely identify the fault responsible for a malfunction
- Fault recovery: recover after a fault has occurred, e.g. reconfiguring the system or switching operational mode

FDIR in COMPASS

FDIR Effectiveness Analysis

• Evaluate the effectiveness of an existing FDIR

Diagnosability Analysis

• Check if there exists a diagnoser that can infer at run-time accurate and sufficient information on the behavior of the plant

FDIR Synthesis

Automatically synthesize an FDIR component

Fault Propagation Analysis

 See presentation on "Fault propagation modeling and analysis via TFPG" by Benjamin Bittner

The FAME Environment

Introduction

- 2 Fault Tree Analysis
- 3 Failure Mode and Effects Analysis
- 4 Fault Detection, Isolation and Recovery

5 Future Work

Ongoing Activities

Efficient routines for FTA

- Efficient IC3-based routines, based on parameter synthesis
- Compute MCSs by layers of increasing cardinality
- Anytime techniques: compute lower and upper bound of TLE probabilities, at each intermediate layer

Contract-Based Safety Assessment (CBSA)

- Tight integration between architectural design and safety assessment
- Based on iterative refinement
- Generation of Hierarchical Fault Trees
- See presentation on "Contract-based verification of AADL models" by Stefano Tonetta

FDIR

• Failure Propagation Analysis – validation and synthesis of TFPGs

Safety Critical Systems

(Storey, Addison-Wesley 1996)

• System Safety (Leveson, Addison-Wesley 1995)

• Formal Safety Assessment (Bozzano, Villafiorita, Taylor & Francis 2010)

• FTA (Fault Tree Handbook, NASA 2002)

Algorithms for FTA (Bozzano et. al, ATVA 2007, CAV 2015)

- Contract-Based Safety Assessment (Bozzano et. al, ATVA 2014)
- Formal Framework for FDI (Bozzano et. al, TACAS 2014)
- FAME

(Bittner et. al, IMBSA 2014)