

DELTA (DEBRIS ENVIRONMENT LONG-TERM ANALYSIS)

 B. Bastida Virgili
6th International Conference on Astrodynamics Tools and Techniques (ICATT), Darmstadt, Germany
15/03/2016

Contents

- Introduction
 - Future evolution of the environment
- DELTA
 - Architectural design
 - Collision prediction
- Simulation results
- Conclusion

Future evolution of the environment

Future evolution of the environment

Origin of objects in PMD0 – explosion - MRO scenario

DELTA | B. Bastida Virgili | 6th ICATT | 15/03/2016 | Slide 4

DELTA: Debris Environment Long Term Analysis

DELTA

- DELTA v3.1
 - Debris Environment Long-Term Analysis software, developed by QinetiQ
 - 3-D semi-deterministic model
 - Evolution of space debris environment and collision risks over the future in LEO, MEO and GEO
 - Different traffic profiles (launch, explosion, solid rocket motor firing)
 - Debris mitigation measures (passivation, end-of-life disposal)
 - Adaptation by ESA to add active debris removal
 - Different tools to post-process the results:
 - FEA: Fragmentation Event Analysis
 - EEA: Environment Evolution Analysis
 - CRA: Collision Risk Analysis
 - CEA: Collision Event Analysis

DELTA architectural design

DELTA collision prediction

- Target centered approach, based on flux
- $P_c = F_t \sqrt{\sigma_t^2 + \sigma_p^2 \Delta t}$
- Poisson distribution to predict collisions
- EMR > 40J/g → catastrophic collision
- EMR < 40J/g → noncatastrophic
- Chaser selected from same size bin, source bin and orbital regime

Influence of solar activity on long term propagations

• DELTA with different solar fluxes (F10.7 monthly, fix Ap=9), 50MC runs

- Default SF: uses data from cycle 12 (cycle from which there were both sunspot and geomagnetic activity observations) onwards for the fitting and prediction
- 1σ: standard deviation to the mean from cycles 1 to 21
- High SF: uses data from cycle19 onwards
- Low SF: uses data from cycle 1 onwards

Influence of solar activity on long term propagations

• DELTA with different solar fluxes (F10.7 monthly, fix Ap=9), 50MC runs

30%PMD: 30% compliance with postmission disposal, launches as for past 8 years

NFR: no-further-release (no launches)

 Default +/- 1σ are extreme case very unlikely to happen

ADR on LEO missions

- Reference scenario: partial mitigation with 90% success
- ADR removal start in 2024
 - 1 object removed per year until end of simulation
 - 5 objects removed per year until end of simulation
 - 5 objects removed per year for 35 years

DELTA | B. Bastida Virgili | 6th ICATT | 15/03/2016 | Slide 11

ESA UNCLASSIFIED – For Official Use

	1 obj/yr	5 obj/yr	5 obj/yr for 35y
Reduction in # objects (a)	2450	6760	4500
Reduction in # collisions (c)	2.7	10.6	8.1
#AR objects (b)	177.9	802.2	162.9
ORF (a/b)	13.77	8.43	27.62
CRF (b/c)	65.89	75.68	20.11
Population growth (%)	9.3	-17.1	-3.8
Years with AR missions	185	185	35

• ORF: Orbit reduction factor. CRF: collision reduction factor (results after 200 years)

Level of compliance of megaconstellations

- Compliance to the mitigation guidelines (post-mission disposal) has huge effect in environment
- → try to comply as much as possible (in own interest of constellation operator too)

Conclusion

- DELTA is a very powerful tool developed and maintained by ESA
- Allows to simulate the long-term evolution of the space environment under a large variety of conditions
- It has been used for many studies under international collaboration (IADC)
- It has been also used to further analyze the main space debris topics at the time these are detected
- Structure and modular design of DELTA has been explained, focus on collision detection algorithm
- Past results to exemplify the wide range of possibilities that the tool offers
- DELTA is under constant improvement and revision process
- Current efforts
 - using different collision detection algorithms,
 - improving the atmospheric model usage without losing performance