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ABSTRACT

The use of the gravity of celestial bodies for gravity assist
maneuvers is quite common in astrodynamics. The spacecraft
gravitationally interacts with the celestial body in such a way
as to provide the desired delta-v to the spacecraft. While this
works well for large bodies such as planets, the gravitational
attraction of small bodies, such as asteroids, is typically too
small to perform such maneuvers.

In this paper we analyze a different type of fly-by orbit
using a variable length tether. During a fly-by of the space-
craft at an asteroid, a tether is attached to the asteroid which
is then reeled out maintaining a constant tension within the
limits of the tether. A dynamical model describing such a
tethered flyby is developed. Using this model, it is possible to
perform fly-by maneuvers that conceptually are very similar
to traditional gravity assist maneuvers. Unlike various pre-
viously reported tethered trajectory designs, these flybys are
within the realm of feasibility already with currently existing
tether technology.

We demonstrate a potential use of such tethered flyby ma-
neuvers for the design of multiple asteroid rendezvous orbits.
A spacecraft in the main asteroid belt has to visit a sequence
of asteroids via tethered flybys. The required change in veloc-
ity is achieved mainly through the tethered flyby aided by one
chemical burn. Optimization is performed with respect to the
required Av provided by chemical propulsion. The compu-
tation is performed using the PyKEP and PyGMO toolboxes
developed by the Advanced Concepts Team. Due to its flexi-
ble open source design, this Python based toolbox can easily
be modified to include these novel fly-by dynamics.

Index Terms— flyby, asteroid, tether, sequence, gravity
assist

1. INTRODUCTION

Since the 1960 classical gravity assist maneuvers around
planets and their moons have been a standard tool in the
design of interplanetary trajectories [1]. Due to their low
gravitational field, asteroids are not suitable for such ma-
neuvers. However, using a tether to temporarily connect a
spacecraft with an asteroid allows for tethered flyby maneu-
vers yielding a similar result. This mechanism was already

proposed in of the earliest papers on the topic [2]. This work
mostly focused on possible applications and the limits they
place on the tether strength. subsequently, various models
for the dynamics of tethered spacecraft motion have been
developed over time, considering variations such as fixed and
variable length tethers, fixed and varying cross-section tethers
as well as different possible applications of tethered motion.

In [3] the complete dynamics of tethered motion includ-
ing rotation of the asteroid, possible thrusting by the space-
craft during flyby, and variable tether cross-section profiles
are developed. The resulting equations of motion are sim-
plified and yield differential equations for the motion of the
spacecraft. The authors then apply their dynamics to a near
Earth asteroid mission. In [4], instead, the same simple tether
dynamics of the original work by Penzo et al. is used to study
the possibility of tethering two asteroids in order to effect a
change in velocity of one of them in order to capture the as-
teroid for space mining. In [5] the authors study the same
simple tether dynamics but in the setting of the circular re-
stricted three body problem (CR3BP). The goal there is to
use a tethered flyby of a moon to achieve subsequent capture
of the spacecraft by the planet.

In this work, we study the possibility of a sequence of
tethered flyby maneuvers of asteroids in the main asteroid belt
using a variable length constant force tether. The spacecraft
attaches a tether to various asteroids in order to obtain the
required change in orbit to reach another asteroid, similar to
the way the Spiderman comic character swings through the
streets of New York by attaching spider silk to sky scrapers.
While such an asteroid belt mission was already mentioned as
a possibility in [2], to the best knowledge of the authors using
tethered flybys to achieve such a sequence of flyby maneuvers
in the main asteroid belt has never been implemented. Fur-
thermore, due to the often simplified modeling the flyby dy-
namics the tension in the tethers are often unrealistically high
[4, 5], leading to mechanically unfeasible requirements on
the tether and the spacecraft structure. To avoid this, we de-
velop the dynamics for a tension limited tether which ensures
that the tension in the tether never exceeds a given maximum
value. The tension required in the tether in our examples is
achievable with currently commercially available tether ma-
terials. The resulting dynamics are solved analytically, yield-
ing an explicit expression for the final deflection angle during



Fig. 1. Coordinate system of a tethered flyby.

the flyby in terms of an elliptic integral as a function of the
parameters of the flyby. This allows the implementation of a
flyby in a way very similar to classical gravity assist maneu-
vers in terms of a single parameter, the minimum flyby radius,
yielding the final velocity after the flyby.

We begin by developing the equations governing a sin-
gle flyby maneuver in Section 2 and continue to analyze their
behavior in Section 3. This is followed by a discussion of
the global search algorithm for a sequence of asteroid flybys
in the main asteroid belt and its implementation within the
PyKEP and PyGMO frameworks in Section 4. Finally we
present some concluding remarks in Section 5.

2. FLYBY DYNAMICS

The flyby is modeled as starting at the closest approach of the
spacecraft and the asteroid. We only consider the spacecraft
dynamics after the tether is securely attached to the asteroid
surface, neglecting the process of rolling out the tether and
attaching it to the asteroid surface.

The coordinate system for the flyby is centered at the point
on the asteroid surface where the tether is attached to the as-
teroid and the asteroid is assumed to be at rest. Since tethered
flybys are generally quite fast, this is a reasonable assump-
tion as both the non-inertial motion of the asteroid’s center of
mass due to the solar gravity as well as a possible rotation of
the asteroid itself are several orders of magnitude slower than
the flyby.

2.1. Dynamics

The initial distance from the surface of the asteroid to the
spacecraft is given by r;, while the initial velocity v; is en-
tirely in the tangential direction (see Figure 1). This means
that the flyby begins at the distance of closest approach be-
tween asteroid and spacecraft.

The radial force exerted by the tether on the spacecraft is

modeled as

-F 7>0
Fr = {min(-F,-m%) =0 (1)
0 <0

where F'is the maximum force exerted on the spacecraft. This
is a typical force law for a constant friction force. The force
always acts against the outward motion but never adds energy
to the spacecraft. Practically, this represents a tether being
released while a friction force is being applied either to the
tether directly or to the mechanism releasing the tether. The
effect of this purely radial force is to reduce the radial velocity
of the spacecraft as it passes by.
The initial angular momentum of the spacecraft is

L = mor.

As this is a purely radial force, the angular momentum L
is conserved. The force is obviously not conservative in the
general case. However, while the spacecraft is only moving
outwards (7 > 0) it can be represented by a potential of the
form

P(r) = Fr. (2)

From Equation 1 we can deduce that whenever 7+ = 0 there are
two possible cases for the further dynamics: either mv? /r; >
F', in which case the radial force F, is less than the cen-
tripetal force required to maintain a circular orbit and hence
7 > 0. Otherwise, the radial force F). is exactly equal to the
centripetal force, thus maintaining a circular orbit and hence
7 = 0 for all future times. Since the 7 is continuous, this
implies that if 77 > 0 at some time g, © > 0 for all future
times t > to. This justifies why we can consider this motion
to be taking place in a potential of the form given in Equation
2 even if the radial force is not conservative.
The energy is then also conserved and given by

1
FE = §m1)2 + Fr.

For our flybys we are interested only in orbits that are not
permanently captured in a circular orbit, but that reach the
final radius 7y given by the tether length when the tether is
severed and the flyby ends. The two conditions for circular
capture are v; = v and muv? /7 < F. Since both F and L are
conserved, we need to satisfy the condition
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at any point during the flyby. Rewriting we obtain

L2
— < Er*-Fr’. 3)
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When v; = v we must have equality in Equation 3. Since

all of the constants are positive the polynomial on the right



hand side has two roots at » = 0 and r = E/F and one
single maximum at » = 2E/3F. Therefore, there are two
positive values r; < 75 such that equality is attained, and
for positive r the inequality is only satisfied in the interval
[r1,72]. This implies that circular capture can only occur at
the two radii 71 and r and a flyby is only possible between
these two boundaries. One of them is » = 7; by construction
as the initial v; = v; | . Checking that

mv?r; > F

ensures that the spacecraft is not immediately captured and
hence r; = r; (instead of ro = r;). Verifying that Equation
3 is satisfied at » = r then ensures that for all intermediate
r; < r < ry, and hence the entire flyby, no further circular
capture can occur.

2.2. Deflection angle

Since we ensure that no circular capture can occur, the space-
craft is ensured to eventually reach the final radius 7y, where
the tether is released. At that point, the energy is given by

1
E= imvﬁ—FFrf

and hence solving for vy we find

vp =1/2m(E — Fry).

At the same time the angular momentum is given by
L= muvg | Tf

and hence
L Vi
Uf’J_ = = .
TTLT‘f Tf

The angle of the final velocity vector with respect to the radial
direction is therefore given by

[ = arccos (W) .
vy

To compute the angle « of the radial direction between r; and
¢, we use Binet’s equation [6]:
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Finally, the total deflection angle between the incoming
and outgoing velocities in the local coordinate system is given
by 6 = a — 3 (see Figure 1) and the energy difference is
AE = F(r; —r;). This energy is either released as thermal
energy due to friction, or can at least partly be converted into
electrical energy by the tether unrolling mechanism on the
spacecraft.

We remark that one can recover Equation 3 from Equa-
tion 4 by observing that the change in angle as a function of
radius becomes singular (i.e. we enter circular motion) when
the square root becomes zero which reduces exactly to the
condition for no circular capture.

2.3. Solving the elliptic integral

The integral in Eq.(4) is an elliptic integral and can be solved
in the most general case in terms of the Weierstrass elliptic
and related functions: @, o, ( (see [7] for an extended intro-
duction to these special functions). We rewrite the expression
in the more convenient form:

L 1/ udu
o= ——
vem Jijr, Vaut +bu? + cu
L2

where ¢ = —3-, b = E and ¢ = —F. In order to reduce
the quartic polynomial to a cubic, we observe that zero is a
root of the quartic polynomial and thus (see [8], Chapter 8)
we may apply the substitution u = % obtaining:

L /Tf 3
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We then bring the cubic in its depressed form (see [9], Ap-

(67

pendix) using the substitution £ = :\3/%77 — % which results
in a Weierstrass normal elliptic integral of the third kind:

I o(ry) dn
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where p(¢§) = /5 (E+ 2). 92 = %\3/%93 = 3= —a.

The final substitution 7 = g(w) results in the expression:

L i/E/ﬁ(rf) dw
a=—79/- _—
Vem V4 Sy p(w) —p(v)

where 5(€) = 1 (p(€)) and p(v) = % {/$. We eventually
obtain the final, analytical, expression:

(%

o ot = R

The evaluation of the Weierstrass elliptic and related func-
tions appearing in the above integral can be efficiently made
using modern computer implementations such as the open
source one (C++ and python) available at:

https://github.com/bluescarni/w_elliptic

and described in [10].
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Fig. 2. Example of a tethered flyby with different initial ve-
locities v; with analytically computed final velocity directions
(arrows) as well as numerically computed trajectories (blue).

2.4. Tether tension

The total force at any point along the tether is caused by two
effects: the force of the spacecraft on the tether given by F,.
and an internal force due to the rotation of the massive tether
itself [2]. In fact, the force at any point 7 in a tether of uniform
linear density p and length 7 rotating around the origin with
angular velocity w is given by

T 1
Fy(7) = [ prw’dr = H (r* — %) w?.

This force is maximal at the attachment point of the tether at
7 = 0 and since w = v; /r we have that

1 1
F, = F(0) = §ur2w2 = §uvf.

Note that this expression only depends on the incoming ve-
locity but is independent of the radial distance 7 of the closest
approach.

The total maximum force in the tether is then F,,,, =
F; + F,. and hence in order to limit the maximum force at any
point in the tether to F};,,., the parameter [ in the force law
F, must be chosen as

F:Fmaz_Ft- (5)

On the other hand, if a fixed F' is to be used in Equation 1,
then the maximum relative velocity for a flyby is limited by
the condition F; < Fq0 — F.
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Fig. 3. Deflection angle achieved as a function of the initial
velocity v; and minimal required velocity to avoid circular
capture (between 280 — 347 m/s).

3. ANALYSIS

Figure 2 illustrates the orbits of various flybys at different ini-
tial velocities. The parameters for the flybys are

F = 10kN
m = 800kg
ri = 2500m
ry = 6000m

and the initial velocities are chosen as
v; € [250, 300, 350, 400, 450, 500].

The initial velocities are shown in different shades of blue
starting with dark blue for the lowest velocity. As can be
seen, for v; = 250 m/s and v; = 300 m/s no flyby is pos-
sible because the spacecraft gets captured in a circular orbit
before reaching the final radius. For the other velocities the
spacecraft does reach the final radius and it is deflected to
various degrees. As expected, the final deflection angle de-
creases monotonously with the initial velocity. The faster the
spacecraft moves initially, the smaller the impact of the flyby
maneuver is. This observation is confirmed in Figure 3, where
the final deflection angle is shown as a function of initial ve-
locity v; for various initial radii 7;. Note that in all cases
there is a minimum initial velocity required to achieve a full
flyby, here between 280 m/s for r; = 550 m and 347 m/s for
r; = 1500 m. Below this minimum v; the spacecraft is cap-
tured in a circular orbit and does not complete the flyby. This
is clear as for a sufficiently slow spacecraft capture would be
immediate.

The same analysis can be made for the dependence on the
initial flyby radius r;. This is of particular interest as this pa-
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Fig. 4. Example of a tethered flyby with different initial radii
r; with analytically computed final velocity directions (ar-
rows) as well as numerically computed trajectories (blue).

rameter is completely determined by the trajectory design and
requires no changes to the mechanical setup of the spacecraft.
As in the case of gravity assists, it is the free parameter than
can be chosen by the trajectory designer to achieve the opti-
mal deflection angle. Figure 4 shows several trajectories for
v; = 340 m/s and

r; € [1000, 2000, 3000, 4000, 5000, 6000].

m. All other parameters are kept as in the previous case. Set-
ting the initial radius equal to the final radius obviously does
not result in any change to the spacecraft velocity, which is
clear. More interesting is the place where the maximum de-
flection is reached. For these values, it is towards the smallest
allowable initial radius that does not lead to a captured or-
bit. However, this is not always the case. As can be seen
in Figure 5, when the initial velocity is increased to a value
such that no choice of initial radius leads to a captured orbit
(i.e. all radii are allowed), the shape of the deflection curve
changes completely. In this case, the deflection angle is zero
for both r; = 0 and r; = 7y, while it has a maximum at
roughly (r; +r¢)/2.

Intuitively this behavior makes sense: for the hypotheti-
cal r; = 0 case, there is no rotation and the only effect of
the tether force is to slow down the spacecraft. If the ini-
tial energy (or equivalently the initial velocity) is sufficiently
large, the spacecraft can still reach the final radius with only a
change in final kinetic energy (and hence final velocity). This
is not possible if the initial energy is too low and the space-
craft cannot reach 7 for energetic reasons. As r; increases,
the radial tether force starts to act in a direction different from
the spacecraft velocity v, thus deflecting the orbit. However,
as r; approaches ry, the time the spacecraft spends in the
flyby reduces, effectively exposing the spacecraft to the de-
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Fig. 5. Deflection angle achieved as a function of the initial
radius ; and minimal required radius to avoid circular capture
where applicable (between 1357 — 2532 m/s).

flecting force for a shorter time. In the limit r; = 7, the time
spent in the flyby is 0 as the spacecraft immediately leaves
the maximum tether radius, and hence no change in velocity
occurs.

4. FLYBY SEQUENCING

To demonstrate how tethered flybys can be used in a mission
design, we implemented a global search for a sequence of
tethered asteroid flybys aided by chemical propulsion. More
specifically, the spacecraft starts at some asteroid in the main
asteroid belt and then use a sequence of other asteroids to
tether to in order to reach the next asteroid in the sequence
with the least amount of additional fuel used. The set of as-
teroids considered is an exhaustive database of 16256 main
belt asteroids provided as part of the 7th edition of the Global
Trajectory Optimization Contest (GTOC7) [11]. The aster-
oids are assumed to move on Keplerian orbits around the sun.
The numeric IDs used to reference the asteroids in this paper
are the same one-based indices used in the GTOC7 database.
The asteroids of the main belt are particularly suitable for a
tethered flyby mission because of their abundance and the fact
that there are plenty of asteroids with relatively small differ-
ences in their orbits and hence relative velocities. This allows
us to construct a sequence of asteroids with a required Av at
each asteroid on the order of hundreds of m/s. As the previous
analysis has shown, this kind of Awv is feasible with tethered
flybys.

The hypothetical spacecraft has an initial wet mass of 800
kg and is launched from a mothership that is in orbit with
one of the asteroids. It receives an initial Av of up to 1 km/s
from the mothership in any direction. The launch date of the



emission is chosen between 11000 MJD and 12000 MJID (12
Feb 2030 - 8 Nov 2032). The maximum time for is fixed to a
maximum of 6 years.

The tether is assumed to have a maximum safe force of
F,02 = 10* N and a maximum length of 6 km. Already with
currently available materials, these specifications are feasible.
Commercially available polyethylene fiber (such as Spectra
2000), for example, has a stress limit of 3 GPa and a density
of 970 kg/m3 [12]. A tether made from this material of a cross
section of about 4 mm? hence has a linear density of about
1 = 0.004 kg/m yielding a total mass of less than 25 kg for
the full length tether and a maximum safe force of 1.2-10* N.
Using these values as a reference, we design each flyby not to
exceed the maximum safe force F},,, according to Equation
5. The only free parameter for each flyby is the initial flyby
radius 7;. The minimum flyby radius is set to 1 km.

As the Aw produced by a single flyby is not always suffi-
cient to produce the required change in orbit to reach the next
asteroid in the sequence, we allow for one chemical burn per
leg to provide additional Av. The time of this burn can be
anywhere along the leg, either as a boost right after the flyby
or as a deep space maneuver in the middle of the leg.

4.1. Sequence optimization

For a given fixed sequence of asteroids, we have the following
free variables to be determined:

1. starting epoch Tj,
2. angles u, v and magnitude V;, y of the initial Av,
3. time of flight dt; allocated for each leg,

4. fraction n); of each leg’s flight time at which a chemical
burn is performed,

5. fraction &; of the flyby radius at the beginning of each
leg (except first leg),

6. angle 3; of the flyby plane at the beginning of each leg
(except first leg).

In order to determine these values, we perform a global op-
timization using evolutionary optimization. To that end, we
first implemented the above dynamics using PyKEP, a flexi-
ble and fast library of common astrodynamics routines with a
convenient Python interface developed by the Advanced Con-
cepts Team (ACT) at ESA [13]. The Python interface allows
the quick and easy implementation and testing of new flyby
dynamics such as the one presented in this work. We imple-
ment the dynamics as a function that given a flyby radius r;
and an orientation (3 returns the final velocity of the spacecraft
after the flyby.

To optimize the open parameters of each leg, we use the
open source optimization library PaGMO also developed at

GTOC? asteroid id: 14196 2030-Sep-11
GTOC7 a 2337 2032-Nov-10
GTOC7 a 7384 2033-Nov-09
GTOC7 a 9645 2035-0ct-06
GTOC7 a 5702 2037-Feb-02
GTOC7 a 10980 2037-Nov-09
GTOC? asteroid id: 14145 2038-Aug-26

—0.05
-0.10
—0.15

-0.20

Fig. 6. Trajectory of a sequence of 7 asteroids connected by
tethered flybys. Each leg before the deep space maneuver is
shown in blue, afterwards in red.

the ACT [13]. Due to the open source nature of the tool, exist-
ing code for the optimization of classical gravity assist flyby
sequences can easily be outfit with the new dynamics. The
decision vector for the problem contains the free variables de-
scribed above, with the limits given by the problem descrip-
tion. The cost function is the sum of all the impulsive Aw
required to complete the sequence. It is assumed that the ini-
tial Aw is provided by the mothership and no attempt is made
to match the orbit of the final asteroid in the sequence, so nei-
ther the initial V;,, ; nor the final excess velocity are taken into
account.

4.2. Sequence generation

The sequence of asteroids to perform the flybys is generated
incrementally. We start with three asteroids selected from pre-
viously computed GTOCT7 solutions by the authors [14].

In order to extend the sequence by one more asteroid, we
first filter the asteroid list using a KNN algorithm to compute
the N nearest asteroids in a metric that takes into account both
the orbit shape and the phasing relative to the last asteroid of
the sequence and the arrival epoch. The rationale behind this
approach is the observation that the relative velocity is crucial
during a tethered flyby. Too high values for the relative ve-
locity of asteroid and spacecraft cause the flyby to have virtu-
ally no effect. The best candidates for extending the sequence
with minimal chemically provided Awv are typically found in
the first 100 nearest asteroids.

To determine how much chemical fuel is needed to reach



Asteroid ID [ Epoch [MJD2000] | r; [m] | Flyby Av [m/s] | Chemical Av [m/s] |

14196 11211.2 - - 0.49
2337 12002.9 5891.8 27.6 0.22
7384 12366.6 3934.0 127.2 7.42
9645 13062.2 3957.6 33.6 42.6
5702 13547.9 3112.7 51.5 0.16
10980 13828.0 4910.7 133.6 0.26
14145 14117.4 - - -

Table 1. The identified sequence of 7 asteroids.

each possible next asteroid in the filtered set, we perform an-
other optimization. First, we extract the final asteroid of the
existing sequence, along with the arrival epoch t;, and the
velocity vy at arrival of the spacecraft. Then a flyby is per-
formed at radius r; and orientation 5y, which is followed by
a Lambert arc to reach the next asteroid candidate in time ¢.
The cost of this flyby is estimated by considering the differ-
ence Avy in velocities after the flyby and the required initial
velocity of the Lambert arc. An optimization is then carried
out over r¢, 3¢ and t to minimize the mismatch Av + between
the effect of the flyby and the velocity required to move to the
next asteroid.

This optimization is notably simpler than the full se-
quence optimization described previously. While it does not
yield the globally best solution even for this sequence, it is a
fast and quite accurate measure of the quality of a candidate.
In particular, if this local optimization finds a free transfer,
this translates also into a free transfer for the optimal full
sequence.

After selecting the most promising candidate asteroid, the
sequence is extended and a full sequence optimization is per-
formed before repeating the process.

We also tried to directly use GTOC7 sequences, but due
to the different objectives of GTOC7 and this work the whole
sequences do not yield good results for tethered flybys.

4.3. Result

We identified a sequence of 7 asteroids the can be connected
by flybys. The total chemical Awv required for this mission is
51 m/s, while the flybys yield an additional Av of 373 m/s.
To complete the same trajectory using only chemical propul-
sion would require a Av of about 235 m/s. We stopped at
7 asteroids but our experiments show that there is no limit
at that value and that it is possible to build other and longer
sequences as well.

Figure 6 shows the trajectories associated with the iden-
tified sequence. The asteroids visited, along with the epoch,
flyby radius, and both the Awv resulting from the flyby as well
as the Av from the deep space maneuver are shown in Table
1.

It is interesting to note that the flyby radii are all above 3

km. The analysis in Section 3 suggests that the minimum for
non-captured flybys occurs around that value, so this is un-
derstandable. The Av amount in each flyby ranges from 27.6
m/s up to 133.6 m/s. The largest chemical deep space ma-
neuver is required after the flyby of asteroid 9645, where over
80 % of the total chemical propulsion is needed. The other
flybys are nearly completely passive with very little required
chemical correction.

Another point worth mentioning is the location of the
deep space maneuvers. While left free in the optimization
problem formulation, the deep space maneuver most of the
time occurs at the time of the flyby. This is due to the very
similar orbits of the asteroids which do not benefit much from
deep space corrections.

The initial Av provided by the launcher and not included
in this analysis is 0.5 km/s while the final excess velocity at
asteroid 14145 is 1.44 km/s.

5. CONCLUSIONS

The dynamical model for tethered asteroid flybys with a
force-limited tether developed in this paper lends itself to the
global search for flyby sequencing. The analytical solution
of the dynamics in terms of an elliptic integral or an elliptic
function yields an efficient method for the calculation of the
deflection of the spacecraft. The implementation of the dy-
namics in the PyKEP open source library for astrodynamics is
straight forward due to the availability of the existing source
code. The global optimization framework PaGMO allows the
optimization of a flyby sequence of several asteroids in the
asteroid belt.

To illustrate the effect of these flybys we constructed a
sequence that requires significantly less Av from chemical
propulsion, 51 m/s, than a non-tethered alternative trajectory.
The majority of the required total Av comes from tethered
flyby maneuvers contributing 373 m/s.

In this work we ignored the challenging the mechanical
aspects of these tethered flybys such as attachment mecha-
nisms and tether unwinding. However, our work shows that
from a trajectory design perspective these types of flybys can
provide significant Av under realistic mission conditions.
Also the tether requirements are within the realm of what can



be accomplished with today’s tether materials. As such our
proposed flybys are not as unrealistic as other advanced tether
concepts which rely on hypothetical carbon nanotube tether
materials.
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