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SMART

∙ 2015: Strathclyde Mechanical and Aerospace Research Toolboxes
∙ 2016: open source release of SMART-UQ under the MPL license
∙ GitHub https://github.com/space-art, C++, Doxygen

∙ SMART-UQ for Uncertainty
quantification

∙ SMART-O2C for Optimisation and
Optimal Control

∙ SMART-ASTRO for Astrodynamics
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SMART-UQ

∙ Sampling: random sampling, Latin
Hypercube sampling (LHS), low
discrepancy sequence (Sobol).

∙ Polynomial: Tchebycheff and Taylor
basis

∙ Integrators: fixed stepsize integrators
(Euler, Runge-Kutta methods)

∙ Dynamics: Lotka-Volterra, Van der Pol,
Two-body problem
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Interface

∙ User: can instantiate one of the
available polynomial basis,
sampling techniques,
integration scheme, dynamical
system

∙ Developer: can extend one of
the abstract classes
base_dynamics,
base_integrators,
base_polynomial,
base_sampling to integrate
new numerical strategies and
problems
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SMART-UQ: Background and Motivation

SMART-UQ: Background and Motivation

∙ Intrusive methods: they apply inside the model, modifying
algebraic operators
∙ Advantages: scalability
∙ Disadvantages: requires more effort to implement

∙ Non-intrusive methods: evaluation of the model in sample points
and construction of the response surface
∙ Advantages: easy implementation
∙ Disadvantages: curse of dimensionality
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SMART-UQ: Background and Motivation

Generalised Intrusive Polynomial expansion (GIPE)

∙ 1982 (Epstein) Ultra Arithmetic
∙ 1986 (Berz) Taylor Differential Algebra
∙ 1997 (Berz) Taylor Models
∙ 2003 (Berz) Taylor Models and Other Validated Functional
Inclusion Methods

∙ 2010 (Joldes) Formal comparison between Taylor, Tchebycheff,
Newton Models (univariate)

IDEA
Develop a generic computer environment for multivariate polynomial
algebra Generalized Intrusive Polynomial Expansion (GIPE).
Integrate the work already done in the team on non-intrusive
techniques and apply them to problems in astrodynamics.
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Multivariate Polynomials

Multivariate polynomial approximation
In d variables up to degree n

P(x) =
∑
i,|i|≤n

piαi(x) ∈ Pn,d(αi) , (1)

where x ∈ Ω = [−1, 1]d ⊂ Rd , i ∈ [0,n]d ⊂ Nd , |i| =
∑d

r=1 ir and αi(x)
is the polynomial basis of choice.

∙ Ω = [a,b] ⊂ Rd and τ : Ω → Ω → αi(x) = αi(τ(x)),
∙ Taylor Ti(x) =

∏d
r=1 x

ir
r .

∙ Tchebycheff Ci(x) =
∏d

r=1 Cir(xr) , where C0(xr) := 1,
Cir(xr) := cos(ir arccos(xr)). They form an orthogonal basis in
Pn,d(αi)
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Polynomial Approximation

f(x) multivariate function in d variables

f(x) ∼
∑
i,|i|≤n

piαi(x) ∈ Pn,d(αi), |i| =
d∑
r=1

ir

pi can be determined by means of hyperinterpolation techniques or
algebraic manipulations of polynomials.

Approximation theory
∙ Tchebycheff: uniform convergence over the interval of definition (f
is required to be more than continuous but less than
differentiable)

∙ Taylor: convergence in a neighborhood of the expansion point (f is
required to be n-th times differentiable)
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Intrusive methods

Intrusive methods

Algebra Definition
(Pn,d,⊗) is the Algebra on the space of polynomials such that being
Pf(x) and Pg(x) the polynomial approximation of f(x) and g(x)
respectively, in the chosen basis,

Pf(x)⊕g(x) = Pf(x) ⊗ Pg(x),

where ⊕ ∈ {+,−, ∗, /} and ⊗ is the corresponding operation in the
algebra.

∙ N = dim(Pn,d,⊗) =
(n+d

d
)
= (n+d)!

n!d!
∙ Composition: h(x) ∈ {1/x, sin(x), cos(x), exp(x), log(x), ...}, f(x) a
multivariate function

h(f(x)) ∼ H(x) ◦ F(x) , H(x) ∈ Pn,1(αi), F(x) ∈ Pn,d(αi)
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Intrusive methods

Manipulation in Monomial basis

∙ Motivation: computationally expensive multiplication in
Tchebycheff basis

∙ Solution: transform the expansion of elementary functions into
monomial base ϕi. Given h(x) ∈ { 1/x, sin(x), cos(x), exp(x),
log(x), ... } and f(x) a multivariate function

h(f(x)) ∼ τ(H(x)) ◦ Fϕ(x) ,

where Fϕ(x) is the approximation in the monomial basis of f and τ

is the transformation.
∙ New polynomial basis inherit a virtual method from the base class
for transformation to and from monomial basis
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Intrusive methods

Integration of Dynamical Systems

Expansion of the flow of an autonomous ODE{
ẋ = f(x)
x(t0) = x0

Initialize x0 as an element of the algebra

X0(x) = (α11(x), . . . , α1d(x)) ∈ (Pn,d(αi),⊗)d

Forward Euler scheme:
∙ Real Algebra: x1 = x0 + dt f(x0)
∙ Polynomial Algebra: X1(x) = X0(x) + dt f(X0(x)) ∈ (Pn,d,⊗)d

Polynomial Expansion of the Flow
At the k-th iteration in the polynomial algebra environment

Xk(x) = Xk−1(x) + dt f(Xk−1(x)) ∈ (Pn,d,⊗)d
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Intrusive methods

Implementation

∙ Template library: integration schemes and dynamical systems are
implemented for real or polynomial evaluations

∙ Operator overloading: algebraic operators and elementary
function have been overloaded

∙ Abstract base classes: if new polynomial basis, integrators,
sampling techniques or dynamics are added to the toolbox a set
of virtual functions need to be implemented (example
integrate(ti, tend, nsteps, x0, xfinal) for
integrators, evaluate(t,state,dstate) for dynamics,
evaluate(x)) for polynomials and so on
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Non-intrusive methods

Non-intrusive methods

Polynomial Interpolation
The interpolation polynomial on the grid nodes is computed as

F(x) =
∑

i∈I(Γn,d)

pi αi(x) , (2)

Where Γn,d is the chosen sampling scheme. The unknown
coefficients pi are computed by inverting the linear system HP = Y

H =

α0(x1) . . . αN (x1)
...

. . . ...
α0(xs) . . . αN (xs)

 , P =

 p0...
pN

 , Y =

Y1...
Ys

 ,

where s = |Γn,d| is the number of nodes, x1, . . . , xs are the nodes Y
are the true values.
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Non-intrusive methods

Implementation

∙ Template library: integration and polynomial evaluation are
performed in the space of real numbers

∙ Abstract class: in the superclass the method for interpolating
given a set of values (obtained through sampling and evaluation of
the analysis or supplied as text file) is inherited by any polynomial
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Two Body Problem

Problem Definition
In an inertial reference frame the dynamical equations are

ẍ = − µ

r3 x+
T
m +

1
2ρ
CDA
m ∥vrel∥vrel + ϵ

where r is the distance from the Earth, vrel is the Earth relative
velocity and the mass of the spacecraft varies as

ṁ = −α∥T∥
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Problem parameters

∙ Initial conditions (circular LEO):

x(0) = 7338 · 103[m], vx(0) = 0 ,
y(0) = 0, vy(0) = 7350.21[m/s] ,
z(0) = 0, vz(0) = 0 ,
m(0) = 2000[kg] .

∙ Atmosphere: ρ = ρ0 · exp
(
− r−r0

H
)
[kg/m3], CDA = 4.4[m2]

∙ Thrust: constant low thrust of 500 mN in the y direction with
α = 3.33 · 10−5[s/m]

∙ Constant perturbation ϵ is nominally zero
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Uncertainity region

Table: Parameters and states uncertainties (% refers to the nominal value, d
is the number of uncertain variables)

Test-case 1 2 3 4
ux(0) [m] 103 103 103 103
uv(0) [m/s] 5.00 5.00 5.00 5.00
um(0) [Kg] 1.00 1.00 1.00 1.00
uT, uα – 5% 5% 5%

uρ0 , uH, uCD – – 1% 1%
uϵ – – – 10−4

d 7 11 14 17
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Numerical set up

∙ Integrator: Runge-Kutta 4th order.
∙ Polynomial approximation of order 4
∙ Validation
∙ Monte Carlo: sampling of N = 10000 points
∙ Error measure: RMSE =

√
1
N
∑N

i=1(x̂i − xi)2,

∙ Comparison of non-intrusive techniques (sampling on LHS and
interpolation with Tchebycheff and monomial basis) and intrusive
techniques (Taylor and Tchebycheff)
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Results
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Scaled problem

The fundamental scaling factors are the planetary canonical units of
the Earth and the initial mass of the spacecraft, i.e.

DU = 6378136m , TU = 806.78 s , m0 = 2000 kg .

∙ position xscaled = x/DU, ux,scaled = ux/DU
∙ velocity vscaled = v/(DU/DT), uv,scaled = uv/(DU/DT)
∙ mass mscaled = m/m0, um,scaled = um/m0
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Results (scaled problem)
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Computational complexity
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Figure: Run-time vs. dimension of uncertainty space.
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Discussion

∙ SMART-UQ is a flexible toolbox for uncertainity quantification and
propagation by means of intrusive and non-intrusive polynomial
approximation techniques

∙ The techniques currently available have been applied to a space
dynamic problem and compared in terms of accuracy and
computational costs

∙ Intrusive methods are computationally more efficient that
non-intrusive one for large problems

∙ Tchebycheff intrusive method is more robust (unsensitive to
scaling factors)
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Future Work

∙ Treat of singularity in intrusive method by mean of domain
splitting

∙ Extend the toolbox to include sparse grid sampling techniques and
intrusive, non-intrusive techniques for reduced polynomial basis

∙ Populate the toolbox with more test cases for different
applications

∙ Increase the number of users and finding more bugs ...
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Questions?
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