
UNDERSTANDING CONCEPTS OF OPTIMIZATION AND OPTIMAL CONTROL
WITH WORHP LAB

M. Knauer, C. Büskens

University of Bremen
Bibliothekstraße 1

28359 Bremen

ABSTRACT

The ESA-NLP solver WORHP is already used in several aca-
demic and industrial projects in a wide range of applications,
as aerospace, automotive or logistics. Currently over 500
users worldwide code their problem formulations using the
the standard interfaces to Fortran, C/C++ and MATLAB.

To simplify the formulation of optimisation problems for
demonstration and educational purposes WORHP Lab is de-
veloped as a graphical user interface (GUI). With a growing
set of applied examples and visualisation techniques it shows
the capabilities of the underlying solver WORHP and opens
access to more involved concepts like parametric sensitivity
analysis using WORHP Zen.

Furthermore, WORHP Lab provides the possibility to
solve optimal control problems using our transcription method
TransWORHP. Different approaches like full discretisation
with grid refinement or multiple shooting are compared easily
within this tool. Additionally, optimal control problems can
be solved on reduced time horizons to illustrate concepts of
nonlinear model predictive control.

WORHP Lab was already employed successfully in sev-
eral industrial workshops as well as for educational purposes
with pupils and students. In this talk we illustrate its features
with aerospatial examples of optimisation and optimal control
problems.

Index Terms— Nonlinear optimization, Optimal control,
Sensitivity analysis, Visualisation

1. INTRODUCTION

A large number of problems from diverse applications as
aerospace, automotive, logistics or energy management can
be led back to nonlinear programming problems (NLP). For
the numerical solution of these kind of problems, ESA funded
the development of the NLP solver WORHP (“We Optimize
Really Huge Problems”) at the University of Bremen [1]. By
exploiting special sparsity structures, WORHP is able to solve
NLP problems with over 109 variables and 109 constraints on
standard hardware.

Fig. 1. In 2015, WORHP had over 500 users worldwide.

Though WORHP is announced as the official ESA NLP
solver, it has over 500 users worldwide, see Fig. 1. They use
WORHP with the common interfaces to C/C++, FORTRAN,
MATLAB or AMPL.

With WORHP Lab we present a graphical user interface
to WORHP. It acts as a showcase for the features of WORHP
and is applied in industrial workshops as well as in education
projects at schools and universities.

WORHP Lab offers a simplified interface to WORHP by
hiding the organization of optimization variables and the pro-
gramming interface from the users. Functionalities like inter-
polation of characteristic maps assist the users to implement
their problem formulations rapidly. The iterative solving pro-
cess of WORHP can easily be analyzed by visualizing the so-
lution, by monitoring optimality conditions or even by clock-
ing the solver stages.

WORHP Lab also supports the module WORHP Zen for a
parametric sensitivity analysis, i.e. the effect of small changes
in the problem formulation can immediately be understood
using the graphical interface.

Another WORHP module, the transcription method
TransWORHP can also be accessed via WORHP Lab in
order to solve different types of discretized optimal control
problems [2].



2. PARAMETRIC OPTIMIZATION

A parametric optimization problem can be formulated de-
pending on a parameter vector p ∈ Rnp . For a fixed nominal
value of p, the vector of variables z ∈ Rn has to be opti-
mized, such that an objective function F : Rn ×Rnp → R
is minimized while constraints hold. To follow the notation
of WORHP, we differentiate between box constraints for
components of the optimization vector, and constraints given
by some (nonlinear) function G : Rn × Rnp → Rm. In
both cases, lower limits l ∈ Rn, L ∈ Rm and upper limits
u ∈ Rn, U ∈ Rm can be stated.

Putting all this together, WORHP solves nonlinear pro-
gramming problems of the form:

min
z∈Rn

F (z, p)

s.t. l ≤ z ≤ u
L ≤ G(z, p) ≤ U

(1)

Note, that F and G should be twice continuously differen-
tiable in all arguments.

2.1. WORHP Lab

A parametric optimization problem (1) can be typed straight-
forward into WORHP Lab. First, the variables have to be
declared. Each variable can either be flagged to be used in
optimization or to be constant:

Optimization variable. Starting from the initial guess,
WORHP will optimize this variable. Box constraints
can be provided.

Parameter. This variable will stay on its initial value, but can
be used for sensitivity analysis, see Section 3.

Both types of variables might refer to scalar, vector or matrix
data, if appropriate dimensions are set.

Second, code for the objective function has to be provided
as a fragment of C++ code.

Third, (nonlinear) constraints have to be specified by their
upper and lower boundary, their dimension (scalar, vector,
matrix) and a name to reference them in the user defined C++
code fragment.

These settings can be stored to an XML file.
After setting this up, WORHP Lab creates a C++ file and

compiles it to a dynamic link library (DLL) using compilers
from MinGW or Visual Studio to ensure fast model evalua-
tions. On successful compilation the function handles of the
DLL are loaded into WORHP Lab. Otherwise the compila-
tion output is prompted to the user.

The console output of the optimization process of WORHP
is shown to the user. However, in WORHP Lab he can mon-
itor the changes in the variables, and gets bar charts of the
optimality and feasibility conditions per iteration as well as a
detailed view of calculation times, see Fig. 2.

Fig. 2. Bar chart for calculation times in WORHP Lab.

Fig. 3. Iterative development of optimality (left) and feasibil-
ity conditions (right) for minimal surface problem.

2.2. Example: Minimal surface

For a given boundary a surface with minimal area is called a
minimal surface. For simplicity let’s assume that the surface
can be expressed as the graph of a function z : Ω → R for
Ω = [a, b]× [c, d] and is fixed on the boundary ∂Ω.

If the graph of the function z is a minimal surface, then
z has to fulfill a partial differential equation, formulated by
Lagrange in 1762:

(1 + z2x)zyy − 2zxzyzxy + (1 + z2y)zxx = 0 (2)

For a numerical solution of this problem, we discretize the
axes of Ω by equidistant grids with n1 resp. n2 points, and
instead of a function z we consider a matrix z ∈ Rn1×n2 .

The minimal surface is the solution of this optimization
problem:

min
z∈Rn1×n2

n1−1∑
i=2

n2−1∑
j=2

c(z, i, j)

s.t. z1,j = B1
j

zn,j = B2
j

zi,1 = B3
i

zi,m = B4
i

(3)

where the curvature c(z, i, j) is set to the left hand side of (2),
after replacing the derivatives by common finite differences,
and fixed values Bki are given on the boundary. In this exam-
ple we use constant and sine functions.

WORHP solves this problem in 5 iterations, see Fig. 3.



Fig. 4. Solution of minimal surface problem with one con-
stant and three sine shaped borders.

The discretized partial differential equation is fulfilled at all
points to (numerical) zero.

As the optimization variables are structured in matrix
form, WORHP Lab can display the solution as in Fig. 4.
However, user defined plots consisting of points and lines
are also supported for more complex data. This example is
a simple case of shape optimization. However, it might be
extended with a finite element method to arbitrary shapes, in
order to optimize shapes of wings or shields.

3. PARAMETRIC SENSITIVITY ANALYSIS

For a given set of nominal parameters p = p0 an NLP solver
like WORHP finds an optimal solution z = z(p0). Without
measurable computational cost, the effect of small perturba-
tions in p0 on the optimal solution can be calculated using
the module WORHP Zen in form of sensitivity derivatives
dz
dp (p0).

Algorithmic methods and applications for this parametric
sensitivity analysis are given in [3]. These results are applied
to nonlinear optimization problems in [4].

The sensitivity derivatives can be used to verify the model.
They can also be used for a first order approximation of the
perturbed solution for a parameter p 6= p0:

z(p) ≈ z(p0) + (p− p0) · dz
dp

(p0) (4)

This approximation might violate the constraints of (1).
However, as these violations can be interpreted as perturba-
tions of another set of parameters, they can be reduced itera-
tively.

3.1. WORHP Lab

The sensitivity derivatives calculated by WORHP Zen are di-
rectly available in WORHP Lab. The user can generate first
order approximations (4) with variable values of p− p0.

Fig. 5. Approximation of the optimal minimal surface for a
changed amplitude of a sine shaped border.

The parameters p can appear in the objective function or
the constraints. In Fig. 5 the amplitude of a bounding sine
function of the example from Section 2.2 is used as the sen-
sitivity parameter. The assumed effects of changes in the pa-
rameter can be visualized instantaneously.

If the sensitivity parameter appears in the objective func-
tion, these results can be used to get a linear approximation of
the Pareto front.

4. SPARSITY STRUCTURES

WORHP employs a sequential quadratic programming (SQP)
method to solve (1). Iteratively quadratic approximations of
the problem at the current solution will be generated (and
solved). For this, several derivatives have to be calculated:

• the gradient of the objective function,

• the Jacobian of the constraints,

• the Hessian of the Lagrangian (where the objective
function is added to constraints weighted by adjoint
variables).

The Jacobian, for example is a matrix with n columns
and m rows. Within WORHP, the structure and values of the
entries of the matrix can be provided by the user. The values
can also be calculated with finite differences.

To reduce calculation times in WORHP Lab, where the
user should not care about these details, the structure of the
Jacobian can be generated from the user’s code before starting
the optimization.

After setting an optimization variable to the value NaN
(not a number) introduced by the IEEE 754 floating-point
standard in 1985, the user defined constraints can be checked
for this value as any mathematical operation with NaN is in-
fectious.



5. OPTIMAL CONTROL PROBLEMS

While a vector of variables has to be determined for nonlin-
ear programming problems in order to minimize an objective
function, for optimal control problems vectors of state and
control functions (and additional variables) have to minimize
an objective while holding a system dynamics and other con-
straints:

min
x,u,p,tf

I[x, u] = φ(x(tf ), p)

s.t. ẋ(t) = f(x(t), u(t), p, t),
ω(x(0), x(tf ), p) = 0,
g(x(t), u(t), p) ≤ 0, t ∈ [0; tf ].

(5)

In detail, this means: The state of the system and the con-
trol are functions over the time interval [0; tf ], where the final
time tf can be fixed or free.

The state of a system at time t ∈ [0; tf ] may be expressed
by the state vector

x(t) = (x1(t), . . . , xn(t))T ∈ Rn.

The behavior of the system has to be controlled using a
control vector

u(t) = (u1(t), . . . , um(t))T ∈ Rm.

Here, x ∈ C1
p([0; tf ],Rn) is a vector of piecewise con-

tinuously differentiable functions, and the components of u ∈
C0
p([0; tf ],Rm) are piecewise continuous.

The changes in time of the state of the system can be ex-
pressed by a system of differential equations of first order

ẋ(t) = f(x(t), u(t), p, t), t ∈ [0; tf ].

Here, the continuous function f : Rn×Rm×Rp̂× [0; tf ]→
Rn is continuously differentiable with respect to x, u, p and
t.

Note, that the behaviour of the system can depend on free
parameters

p = (p1, . . . , pp̂)
T ∈ Rp̂,

which have to be determined as well.
The initial state x(0) or the final state x(tf ) of the sys-

tem, or just individual components of these, can be limited
with boundary conditions. Generally, these conditions are
formulated using a continuously differentiable function ω :
Rn ×Rn ×Rp̂ → Rr:

ω(x(0), x(tf ), p) = 0

Additionally, constraints for the control u(t) and the states
x(t) can be demanded at any time t using a function

g : Rn ×Rm ×Rp̂ → Rl

in the form

g(x(t), u(t), p) ≤ 0, t ∈ [0; tf ].

In practical cases, if parts of these constraints are just box
constraints for some states or controls, they can be handled
more easily.

Finally, the objective function φ(x(tf ), p) (here given in
Mayer form) has to be continuously differentiable with re-
spect to all arguments.

For the numerical solution of (5) two classes of methods
exist:

• The indirect methods reformulate it to a boundary value
problem using necessary conditions of Pontryagin.

• The direct methods reformulate it to a nonlinear opti-
mization problem (1) by discretization of the time.

TransWORHP uses direct methods to solve (5) and re-
places the continuous time axes [0; tf ] by N discrete time
points

0 = t1 ≤ t2 ≤ · · · ≤ tN = tf

The control function u(t) will only be considered at the
discrete time points ti, i.e. ui = u(ti), i = 1, . . . , N . In
between, the control will be interpolated linearly. The state
function x(t) can be handled in two ways:

• In single shooting only the initial state x1 = x(0) can
be optimized. Subsequent states are recursively inte-
grated by explicit Runge-Kutta-Schemes. This leads to
a small and dense NLP problem.

Similarly in multiple shooting, the states at some time
points can be optimized.

• Using full discretization, the state is used as an opti-
mization variable by the NLP solver at any discrete
time point, xi = x(ti), i = 1, . . . , N . The sys-
tem dynamics is forwarded to the NLP solver as con-
straints using different integration schemes, e.g. Euler’s
method:

0 = xi+1 − xi − (ti+1 − ti) · f(xi, ui, p, ti)

This leads to a large but sparse NLP problem.

The discretized version of (5) is equivalent to an NLP
problem (1):

min
x,u,p,tf

φ(xN , p)

s.t. xi+1 − xi = (ti+1 − ti)f(xi, ui, p, ti),
ω(x1, xN , p) = 0,
g(xi, ui, p) ≤ 0, i ∈ 1, . . . , N.

(6)

5.1. WORHP Lab

An optimal control problem can be edited in WORHP Lab
similar to an optimization problem. Each variable can be as-
signed to one of these types:



State. For each state box constraints as well as initial and
final states can be set. A differential equation has to be
provided in the next step.

Control. For each control box constraints can be set.

Free parameters. Box constraints can be provided for free
parameters.

Zen parameters. These parameters allow a sensitivity analy-
sis.

Data. Characteristic maps can be loaded and used in the
model.

Next the codes for the system of differential equations, the
objective function, path constraints and boundary conditions
have to be given by the user in C++ fragments.

The process time can be set to a fixed value, or the name
of a free parameter for free final time.

Full discretization works with Euler’s method, the Trape-
zoidal rule or Hermite-Simpson. The user can also switch to
shooting methods providing the indices of the multiple shoot-
ing nodes.

5.2. Example: Automated vehicle

The movement of an automated motor vehicle can be modeled
by this system of differential equations

ẋ = v cos θ
ẏ = v sin θ
v̇ = u

θ̇ = v
b sinϕ

ϕ̇ = σ

Here, x and y describe the position of the vehicle in the x-y
plane. v is its current velocity. The orientation of the vehicle
θ can be changed by the steering angle ϕ depending on the
parameter b = 1 describing the gear ratio.

The vehicle can be controlled using the rate of the steering
angle σ and the acceleration u.

For a parking maneuver, these initial and final states are
given:

x(0) = 0 x(tf ) = 5
y(0) = 0 y(tf ) = 2
v(0) = 0 v(tf ) = 0
θ(0) = 0 θ(tf ) = −π2
ϕ(0) = 0 ϕ(tf ) = 0

The objective function can be chosen as:

min tf +

∫ tf

0

u2 + σ2 dt

Note that the integral term can be eliminated by adding a
differential equation to the system.

Fig. 6. Optimal trajectory of the automated vehicle respecting
an obstacle.

Fig. 7. Additional states of the optimal solution.

Additionally, path constraints can be used, e.g. to define a
prohibited circular region around (x, y) = (5, 0):

(x− 5)2 + y2 ≥ 1

The optimal trajectory of this problem is given in Fig. 6
and 7. A large number of discrete time points is needed in or-
der to avoid crossing the obstacle between to adjacent points.

As optimal control problems are solved in TransWORHP
by reducing them to NLP problems, the solution can be ana-
lyzed by its parametric sensitivities. In Fig. 8 the direction of
the sensitivities in the x-y plane are indicated by thin lines for
changes of the gear ratio.

Fig. 8. Sensitivities indicating changes of optimal solution for
larger values of gear ratio.



Fig. 9. Reduction of the estimated error on the grid.

5.3. Grid refinement

WORHP Lab uses an equidistant grid for discretizing the op-
timal control problem. Larger number of grid points promise
a more precise result, but increase also the calculation time.
However, by calculating a discretization error between adja-
cent grid points, additional points can be inserted efficiently
where they are needed most.

Using an adaptation of the grid refinement method de-
tailed in [5], the user is able to reduce the approximation error
of the optimal solution iteratively, see. Fig 9.

Fig. 10. Following a moving target (red) using an MPC algo-
rithm within WORHP Lab.

5.4. Model predictive control

Tracking problems occur in several industrial applications:

• In robot-based simulators for flight training the simula-
tion has to react to user input in real-time.

• In assistance systems a controller can simplify han-
dling. This might apply to oscillation free movements
of container cranes, e.g.

In both examples the task is unknown in advance, and due to
constraints too complex for feedback controllers.

In nonlinear model predictive control (MPC), the opti-
mization problem is only solved on a finite prediction hori-
zon. From this solution, only the first part will be accepted.
The time frame is shifted accordingly and the optimization
continues iteratively.

The consideration of final states which can’t be reached
within the prediction horizon, has to be shifted into the objec-
tive function. In WORHP Lab, an MPC algorithm is prepared,
where the weights of the final states can be adjusted.

Fig. 10 shows the iterative steps of the vehicle following
an object moving on a lissajous figure. Note, that the given
path constraints hold during the optimization.

6. SUMMARY

WORHP Lab was designed to prototype problem formula-
tions and to easily access and visualize solutions of optimiza-
tion and optimal control problems, and its sensitivity infor-
mation.

Currently we collect applied examples from different
fields of application.

7. REFERENCES

[1] C. Büskens and D. Wassel, Modeling and Optimization in
Space Engineering, vol. 73 of Springer Optimization and
Its Applications, chapter The ESA NLP Solver WORHP,
Springer, 2013.

[2] M. Knauer and C. Büskens, “From WORHP to
TransWORHP,” in Proceedings of the 5th Interna-
tional Conference on Astrodynamics Tools and Tech-
niques, 2012.

[3] A. V. Fiacco, Introduction to Sensitivity and Stability
Analysis in Nonlinear Programming, vol. 165 of Math-
ematics in Science and Engineering, Academic Press,
1983.

[4] C. Büskens and H. Maurer, Online Opimization of Large
Scale Systems: State of the Art, chapter Sensitivity Analy-
sis and Real-Time Optimization of Parametric Nonlinear
Programming Problems, pp. 3–16, Springer, 2001.

[5] John T. Betts, Practical Methods for Optimal Control and
Estimation Using Nonlinear Programming, SIAM, 2010.


