Modelling and Simulation of Autonomous CubeSats for Orbital Debris Mitigation Rensselaer Polytechnic Institute

Christopher Iliffe Sprague 6th International Conference on Astrodynamics Tools and Techniques March 9, 2016

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

Background

Orbital Debris Active Debris Removal

3 Research

Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

∃ >

 Increasing space activity leads to an increased potential of generating orbital debris.

- Increasing space activity leads to an increased potential of generating orbital debris.
- The presence of orbital debris within Low Earth Orbit (LEO) is becoming increasingly prevalent.

Figure: Debris objects within LEO [2]

Image: Image:

- Increasing space activity leads to an increased potential of generating orbital debris.
- The presence of orbital debris within Low Earth Orbit (LEO) is becoming increasingly prevalent.
- Increasing the presence of objects within LEO leads to Kessler Syndrome [1].

Figure: Debris objects within LEO [2]

Image: Image:

Debris, Safety and Awareness

- Increasing space activity leads to an increased potential of generating orbital debris.
- The presence of orbital debris within Low Earth Orbit (LEO) is becoming increasingly prevalent.
- Increasing the presence of objects within LEO leads to Kessler Syndrome [1].
- Kessler Syndrome leads to the decreased viability of maintaining satellites in LEO.

Figure: Debris objects within LEO [2]

Image: Image:

March 9, 2016 4 / 45

Next Subsection

The Situation

Orbital Debris

Active Debris Removal

3 Research

Simulation Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

1⊒ →

According to scientific models, orbiting around Earth, there are:

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

March 9, 2016 6 / 4

≣⇒

According to scientific models, orbiting around Earth, there are:

• Over 170 million debris objects smaller than 1 mm.

According to scientific models, orbiting around Earth, there are:

- Over 170 million debris objects smaller than 1 mm.
- 670,000 debris objects larger than 1 cm.

According to scientific models, orbiting around Earth, there are:

- Over 170 million debris objects smaller than 1 mm.
- 670,000 debris objects larger than 1 cm.
- 29,000 debris objects larger than 10 cm [2].

• Orbital debris within LEO are situated in various orbital planes.

[2]

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

March 9, 2016 7 / 4

≣⇒

- Orbital debris within LEO are situated in various orbital planes.
- Orbital planes change over time, resulting in global coverage, leading to Kessler syndrome.

[2]

- Orbital debris within LEO are situated in various orbital planes.
- Orbital planes change over time, resulting in global coverage, leading to Kessler syndrome.
- Collisions in LEO can occur from virtually any direction.

- Orbital debris within LEO are situated in various orbital planes.
- Orbital planes change over time, resulting in global coverage, leading to Kessler syndrome.
- Collisions in LEO can occur from virtually any direction.
- Kessler syndrome entails the cascading of orbital debris collisions in LEO, such that space activities may one day become infeasible.

[2]

</

Orbital Debris - Sources

 Artificial satellites orbiting Earth, that have been abandoned or have become nonfunctional.

Figure: Vanguard I: the oldest surviving man made object remaining in orbit. [3]

Orbital Debris - Sources

- Artificial satellites orbiting Earth, that have been abandoned or have become nonfunctional.
- Rocket upper stages that have been broken up by unburned fuel.

Figure: Vanguard I: the oldest surviving man made object remaining in orbit. [3]

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Orbital Debris - Sources

- Artificial satellites orbiting Earth, that have been abandoned or have become nonfunctional.
- Rocket upper stages that have been broken up by unburned fuel.
- Anti-satellite weapons.

Figure: Vanguard I: the oldest surviving man made object remaining in orbit. [3]

< □ > < /□ >

For a typical satellite, a collision with a:

For a typical satellite, a collision with a:

• 10 cm object may result in a catastrophic fragmentation.

Figure: Exit hole through the Kevlar-Nextel fabric, used to shield the ISS; incurred by a 7.5 mm diameter aluminium bullet travelling at 7 km/s. [2]

< □ > < /□ >

For a typical satellite, a collision with a:

- 10 cm object may result in a catastrophic fragmentation.
- 1 cm object may result in a loss of function.

Figure: Exit hole through the Kevlar-Nextel fabric, used to shield the ISS; incurred by a 7.5 mm diameter aluminium bullet travelling at 7 km/s. [2]

< □ > < /□ >

March 9, 2016 9 / 45

For a typical satellite, a collision with a:

- 10 cm object may result in a catastrophic fragmentation.
- 1 cm object may result in a loss of function.
- 1 mm object may destroy its subsystems.

Figure: Exit hole through the Kevlar-Nextel fabric, used to shield the ISS; incurred by a 7.5 mm diameter aluminium bullet travelling at 7 km/s. [2]

< □ > < /□ >

Orbital Debris - Detectability

Debris, Safety a

• Debris as small as 1 cm can be detected.

Figure: Goldstone Antenna [4]

	🔺 🗗 🕨		≺ ≣ ►	- E.	\mathcal{O}	
nd Awareness		Ma	rch 9 201	16	10 / 45	

Christopher Iliffe Sprague (RPI)

Orbital Debris - Detectability

- Debris as small as 1 cm can be detected.
- Most debris cannot be directly observed.

Figure: Goldstone Antenna [4]

Orbital Debris - Detectability

- Debris as small as 1 cm can be detected.
- Most debris cannot be directly observed.
- Radar and optical detectors are mainly used.

Figure: Goldstone Antenna [4]

2 Background

Active Debris Removal

≣⇒

Current efforts include:

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

March 9, 2016 12 /

Current efforts include:

• Electrodynamic tethers

Debris, Safety and Awareness

Current efforts include:

- Electrodynamic tethers
- Laser brooms

Figure: An artistic representation of a laser broom's implementation. [5]

Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails

Figure: An artistic representation of a laser broom's implementation. [5]

Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails
- Nets

Figure: An artistic representation of a laser broom's implementation. [5]

Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails
- Nets
- And so on...

Figure: An artistic representation of a laser broom's implementation. [5]

Debris, Safety and Awareness

March 9, 2016 12 /

CubeSats - Design

Reasons to use CubeSats:

Figure: A CubeSat being deployed from the ISS. [6]

Debris, Safety and Awareness

March 9, 2016 13 / 4

CubeSats - Design

Reasons to use CubeSats:

• They're economical.

Figure: A CubeSat being deployed from the ISS. [6]

CubeSats - Design

Reasons to use CubeSats:

- They're economical.
- They can be deployed in multiples.

Figure: A CubeSat being deployed from the ISS. [6]

< □ > < /□ >
Reasons to use CubeSats:

- They're economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.

Figure: A CubeSat being deployed from the ISS. [6]

Image: Image:

Reasons to use CubeSats:

- They're economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.
- They are easily accommodated to preexisting payload capsules.

Figure: A CubeSat being deployed from the ISS. [6]

Image: Image:

Debris, Safety and Awareness

March 9. 2016 13 /

Reasons to use CubeSats:

- They're economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.
- They are easily accommodated to preexisting payload capsules.
- They can utilise launch opportunities on short notice.

Figure: A CubeSat being deployed from the ISS. [6]

Image: Image:

Debris, Safety and Awareness

March 9, 2016 13 /

Reasons to use CubeSats:

- They're economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.
- They are easily accommodated to preexisting payload capsules.
- They can utilise launch opportunities on short notice.
- Redundancy is not as big of a concern.

Figure: A CubeSat being deployed from the ISS. [6]

Image: Image:

Debris, Safety and Awareness

March 9, 2016 13 /

Technicals

• Standard CubeSats are made up of 10x10x11.35 cm units

Figure: 1-unit CubeSat. [7]

Debris, Safety and Awareness

March 9. 2016 14 / 4

Technicals

- Standard CubeSats are made up of 10x10x11.35 cm units
- Provide 1 litre of useful volume, while weighing no more than 1.33 kg per unit.

Figure: 1-unit CubeSat. [7]

< □ > < /□ >

Debris, Safety and Awareness

March 9. 2016 14 / 4

Technicals

- Standard CubeSats are made up of 10×10×11.35 cm units
- Provide 1 litre of useful volume, while weighing no more than 1.33 kg per unit.
- Size standardisation allows CubeSats to be launched by a common deployment system.

Figure: 1-unit CubeSat. [7]

Image: Image:

Debris, Safety and Awareness

March 9, 2016 14 /

Technicals

- Standard CubeSats are made up of 10×10×11.35 cm units
- Provide 1 litre of useful volume, while weighing no more than 1.33 kg per unit.
- Size standardisation allows CubeSats to be launched by a common deployment system.
- Commercial-off-the-shelf hardware is readily accessible.

Figure: 1-unit CubeSat. [7]

Image: Image:

Debris, Safety and Awareness

March 9, 2016 14 / -

Classifications:

Figure: 1-unit CubeSat. [7]

	_ ₹ ≣ ▶	_ ₹ ≣ ▶	- 2	*) Q (*	
	Ma	arch 9, 20	16	15 / 45	

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

Classifications:

• Microsatellites are 10 - 100 kg

Figure: 1-unit CubeSat. [7]

Debris, Safety and Awareness

March 9, 2016 15 / 4

Classifications:

- Microsatellites are 10 100 kg
- Nanosatellites are 1 10 kg

Figure: 1-unit CubeSat. [7]

Debris, Safety and Awareness

Classifications:

- Microsatellites are 10 100 kg
- Nanosatellites are 1 10 kg
- Picosatellite are 0.1 1 kg

Figure: 1-unit CubeSat. [7]

Classifications:

- Microsatellites are 10 100 kg
- Nanosatellites are 1 10 kg
- Picosatellite are 0.1 1 kg
- Femtosatellite are 0.01 0.1 kg

Figure: 1-unit CubeSat. [7]

Debris, Safety and Awareness

March 9, 2016 15 / 4

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation

Insertion

Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

≣⇒

• Python 2.7 was chosen as the programming language.

- Python 2.7 was chosen as the programming language.
- Ephemerides were obtained through NASA's Jet Propulsion Laboratory Development Ephemeris, *DE423*, by use of the Python module, *jplephem 1.2*.

- Python 2.7 was chosen as the programming language.
- Ephemerides were obtained through NASA's Jet Propulsion Laboratory Development Ephemeris, *DE423*, by use of the Python module, *jplephem 1.2*.
- Two-line elements of the debris were obtained through CelesTrack.

- Python 2.7 was chosen as the programming language.
- Ephemerides were obtained through NASA's Jet Propulsion Laboratory Development Ephemeris, *DE423*, by use of the Python module, *jplephem 1.2*.
- Two-line elements of the debris were obtained through CelesTrack.
- Cross-sectional areas of the debris were obtained through the satellite catalogue, SatCat, of CelesTrack.

Simulation - Road Map

		 < □ > < @ > < \aligned > < \aligned > \aligned \aligne \aligned \aligned \aligned \aligned \aligned \aligned \alig	৩৫৫
hristopher Iliffe Sprague (RPI)	Debris, Safety and Awareness	March 9, 2016	18 / 45

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation

Insertion

Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

≣⇒

In order to test for robustness, a potential testing spacecraft should have random initial:

In order to test for robustness, a potential testing spacecraft should have random initial:

• Coordinates: θ and ϕ .

Definition

Random initial longitude and latitude:

$$heta=2\pi u:u\in(0,1)$$

$$\phi = cos^{-1}(2v - 1) : v \in (0, 1)$$

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ .
- Altitude: h.

Definition

Random initial longitude and latitude:

$$\theta=2\pi u: u\in(0,1)$$

$$\phi=cos^{-1}(2v-1):v\in(0,1)$$

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ .
- Altitude: h.
- Eccentricity within limits: e.

Definition

Random initial longitude and latitude:

$$heta=2\pi u:u\in(0,1)$$

$$\phi=cos^{-1}(2\nu-1):\nu\in(0,1)$$

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ .
- Altitude: h.
- Eccentricity within limits: e.
- Direction of velocity: \hat{v} .

Definition

Random initial longitude and latitude:

$$\theta = 2\pi u : u \in (0,1)$$

$$\phi = \cos^{-1}(2\nu - 1) : \nu \in (0, 1)$$

Definition

Random initial velocity direction:

$$\hat{v} = \frac{\vec{r}_{arb} - \vec{r}}{\|\vec{r}_{arb} - \vec{r}\|}$$

Image: A matrix of the second seco

Debris, Safety and Awareness

March 9, 2016 20 / 4

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation Insertion

Environmental Modelling

Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

≣⇒

The relevant conservative forces must be accounted for:

Definition

Gravitational Acceleration:

$$\vec{\mathcal{A}}_n^j = -\frac{\mu^j (\vec{\mathcal{R}}_n^j - \vec{\mathcal{R}}_n^{sc})}{\|\vec{\mathcal{R}}_n^j - \vec{\mathcal{R}}_n^{sc}\|^3}$$

Debris, Safety and Awareness

March 9. 2016 22 /

The relevant conservative forces must be accounted for:

• Earth's gravity.

Definition

Gravitational Acceleration:

$$\vec{A}_{n}^{j} = -rac{\mu^{j}(\vec{R}_{n}^{j} - \vec{R}_{n}^{sc})}{\|\vec{R}_{n}^{j} - \vec{R}_{n}^{sc}\|^{3}}$$

The relevant conservative forces must be accounted for:

- Earth's gravity.
- The Sun's gravity.

Definition

Gravitational Acceleration:

$$\vec{\mathcal{A}}_{n}^{j} = -rac{\mu^{j}(\vec{\mathcal{R}}_{n}^{j} - \vec{\mathcal{R}}_{n}^{sc})}{\|\vec{\mathcal{R}}_{n}^{j} - \vec{\mathcal{R}}_{n}^{sc}\|^{3}}$$

The relevant conservative forces must be accounted for:

- Earth's gravity.
- The Sun's gravity.
- The Moon's gravity

Definition

Gravitational Acceleration:

$$\vec{A}_{n}^{j} = -rac{\mu^{j}(\vec{R}_{n}^{j} - \vec{R}_{n}^{sc})}{\|\vec{R}_{n}^{j} - \vec{R}_{n}^{sc}\|^{3}}$$

The relevant conservative forces must be accounted for:

- Earth's gravity.
- The Sun's gravity.
- The Moon's gravity
- Essentially an N-Body problem.

Definition

Gravitational Acceleration:

$$\vec{\mathcal{A}}_{n}^{j} = -rac{\mu^{j}(\vec{\mathcal{R}}_{n}^{j} - \vec{\mathcal{R}}_{n}^{sc})}{\|\vec{\mathcal{R}}_{n}^{j} - \vec{\mathcal{R}}_{n}^{sc}\|^{3}}$$

Definition N-Body Problem:

$$ec{\mathcal{A}}_{i,n} = \sum_{j=0, i
eq j}^{N} ec{\mathcal{A}}_{i,n}^{j}$$

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

Narch 9, 2016 22 / 4

Barycentric Perspective

 $\operatorname{Figure:}$ A barycentric view of a CubeSat in Low Earth Orbit with the Moon in view.

		< □ >	<∂>	₹)</th <th> < ≣ > </th> <th>÷.</th> <th>୬ବ୍ଦ</th>	 < ≣ > 	÷.	୬ବ୍ଦ
Christopher Iliffe Sprague (RPI)	Debris, Safety and Awareness			M	larch 9, 2	016	23 / 45

The non-conservative perturbations must be accounted for:

≣⇒

The non-conservative perturbations must be accounted for:

Atmospheric Drag.

Debris, Safety and Awareness

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.

Definition

Scaling atmospheric density model:

$$\rho_n = \rho_0 e^{\frac{-h_n}{H}}$$

Christopher Iliffe Sprague (RPI)

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.
- Solar-Radiation Pressure.

Definition

Acceleration due to solar-radiation pressure:

$$ec{A}_n^{Solar} = -rac{p_n^s C_n^R A_n^{\perp \hat{s}} \hat{s}_n}{m_n}$$

Definition

Scaling atmospheric density model:

$$\rho_n = \rho_0 e^{\frac{-h_n}{H}}$$

Christopher Iliffe Sprague (RPI)

March 9, 2016 24 / 4
Non-Conservative Forces

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.
- Solar-Radiation Pressure.
- Eclipse Model.

Definition

Scaling atmospheric density model:

$$\rho_n = \rho_0 e^{\frac{-h_n}{H}}$$

Definition Acceleration due to solar-radiation pressure: $\vec{A}_{n}^{Solar} = -\frac{p_{n}^{s}C_{n}^{R}A_{n}^{\perp \hat{s}}\hat{s}_{n}}{m_{n}}$ Definition Eclipse determination:

$$\tau = \frac{\vec{r} \cdot \vec{r} - \vec{s}_E}{|\vec{r} - \vec{s}_E|^2}$$

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

March 9, 2016 24 / 4

Atmospheric Drag

Figure: Atmospheric drag with scale model implemented.

		• • •	< @ ►	∢≣≯	<	-E	୬ବ୍ଦ
Christopher Iliffe Sprague (RPI)	Debris, Safety and Awareness			Ma	arch 9, 201	16	25 / 45

Solar-Radiation Pressure

Figure: Solar-radiation pressure model with eclipse model implemented.

		< □ >	- 🗇 🕨	∢ ≣ ▶	∢≣⊁	E	৩১৫
Christopher Iliffe Sprague (RPI)	Debris, Safety and Awareness			Ma	rch 9, 201	16	26 / 45

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

≣⇒

In order to accurately simulate the test spacecraft's motion, one must choose a numerical integrator:

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.

In order to accurately simulate the test spacecraft's motion, one must choose a numerical integrator:

• Forward Euler method.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.

In order to accurately simulate the test spacecraft's motion, one must choose a numerical integrator:

- Forward Euler method.
 - Simple, but may not be accurate.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.

In order to accurately simulate the test spacecraft's motion, one must choose a numerical integrator:

- Forward Euler method.
 - Simple, but may not be accurate.
- Runge-Kutta-Fehlberg method with an adaptive time-step.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.

In order to accurately simulate the test spacecraft's motion, one must choose a numerical integrator:

- Forward Euler method.
 - Simple, but may not be accurate.
- Runge-Kutta-Fehlberg method with an adaptive time-step.
 - Complex, but more accurate and accommodating.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.

March 9, 2016 28 / 4

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation

Rendezvou: Deorbit

4 Outro

Conclusions

≣⇒

The steps to efficient orbital debris mitigation:

Figure: MERiDIUS passively deorbiting captured debris. [10]

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

March 9 2016 30 /

The steps to efficient orbital debris mitigation:

• Rendezvous using Aerojet Rocketdyne's *MPS-120* (*CHAMPS*) [8] with $\Delta V = 200 \ m/s.$

Figure: MERiDIUS passively deorbiting captured debris. [10]

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne's *MPS-120* (*CHAMPS*) [8] with $\Delta V = 200 m/s.$
- Capture with ejected net.

Figure: MERiDIUS passively deorbiting captured debris. [10]

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne's *MPS-120* (*CHAMPS*) [8] with $\Delta V = 200 \ m/s.$
- Capture with ejected net.
- Passively deorbit with aerodynamic drag, utilising Clyde Space's (AEOLDOS)
 [9] with A = 3 m².

Figure: MERiDIUS passively deorbiting captured debris. [10]

Image: Image:

March 9, 2016 30 /

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne's *MPS-120* (*CHAMPS*) [8] with $\Delta V = 200 \ m/s.$
- Capture with ejected net.
- Passively deorbit with aerodynamic drag, utilising Clyde Space's (AEOLDOS)
 [9] with A = 3 m².
- Utilise remaining propellant.

Figure: MERiDIUS passively deorbiting captured debris. [10]

Image: Image:

March 9, 2016 30 / 4

Fengyun-1C

Attention will be brought to Fengyun–1C, the Chinese weather satellite that was destroyed on January 11th, 2007, as a result of an anti-satellite missile test.

- Polar orbit satellite of the Fengyun series.
- Mass of 750 kg.
- Created more dangerous orbital debris than any other space mission in history [11].

Figure: Fengyun-1C debris scattering, 5 minutes after its collision. [12]

Debris, Safety and Awareness

March 9, 2016 31 / -

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation

Rendezvous

Deorbit

4 Outro

Conclusions Future Work

≣⇒

March 9, 2016

Now to dispose of the debris...

Figure: The trajectory of every trackable debris fragment of Fengyun-1C as of January 1^{st} , 2016.

		< □ ►	4 🗗 🕨		< ≣ >	E.	୬ବଙ
Christopher Iliffe Sprague (RPI)	Debris, Safety and Awareness			Ma	rch 9, 201	16	33 / 45

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

Definition

The HCW equations:

$$\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m}$$
$$\delta \ddot{y} + 2n \delta \dot{x} = \frac{T_y}{m}$$
$$\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m}$$
Closed-form solution:
$$\delta \vec{r} (\delta t) = \mathbf{\Phi}_{rr} (\delta t) \delta \vec{r_0} + \mathbf{\Phi}_{rv} (\delta t) \delta \vec{v_0}$$
$$\delta \vec{v} (\delta t) = \mathbf{\Phi}_{vr} (\delta t) \delta \vec{r_0} + \mathbf{\Phi}_{vv} (\delta t) \delta \vec{v_0}$$

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

Computationally inexpensive.

Definition

The HCW equations:

$$\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m}$$
$$\delta \ddot{y} + 2n \delta \dot{x} = \frac{T_y}{m}$$
$$\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m}$$
losed-form solution:
$$\delta \vec{r}(\delta t) = \Phi_{rr}(\delta t) \delta \vec{r_0} + \Phi_{rv}(\delta t) \delta \vec{v_0}$$
$$\vec{v}(\delta t) = \Phi_{vr}(\delta t) \delta \vec{r_0} + \Phi_{vv}(\delta t) \delta \vec{v_0}$$

 \vec{v}_0

δ

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.
- Real-time control enables autonomy.

Definition

The HCW equations:

$$\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m}$$
$$\delta \ddot{y} + 2n \delta \dot{x} = \frac{T_y}{m}$$
$$\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m}$$
osed-form solution:
$$\vec{r}(\delta t) = \mathbf{\Phi}_{rr}(\delta t) \delta \vec{r_0} + \mathbf{\Phi}_{rv}(\delta t) \delta \vec{v_0}$$

 $\delta \vec{v}(\delta t) = \mathbf{\Phi}_{vr}(\delta t) \delta \vec{r_0} + \mathbf{\Phi}_{vv}(\delta t) \delta \vec{v_0}$

Clo

δi

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.
- Real-time control enables autonomy.
- Spacecraft must be in the vicinity of the target debris and the target.

Definition

The HCW equations:

$$\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m}$$

$$\delta \ddot{y} + 2n\delta \dot{x} = \frac{T_y}{m}$$
$$\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m}$$

Closed-form solution:

$$\delta \vec{r}(\delta t) = \mathbf{\Phi}_{rr}(\delta t)\delta \vec{r}_{0} + \mathbf{\Phi}_{rv}(\delta t)\delta \vec{v}_{0}$$
$$\delta \vec{v}(\delta t) = \mathbf{\Phi}_{vr}(\delta t)\delta \vec{r}_{0} + \mathbf{\Phi}_{vv}(\delta t)\delta \vec{v}_{0}$$

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.
- Real-time control enables autonomy.
- Spacecraft must be in the vicinity of the target debris and the target.
- Target must be in a *nearly* circular orbit.

Definition

The HCW equations:

$$\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m}$$

$$\delta \ddot{y} + 2n\delta \dot{x} = \frac{T_y}{m}$$
$$\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m}$$

Closed-form solution:

$$\delta \vec{r}(\delta t) = \mathbf{\Phi}_{rr}(\delta t) \delta \vec{r_0} + \mathbf{\Phi}_{rv}(\delta t) \delta \vec{v_0}$$

 $\delta \vec{v}(\delta t) = \mathbf{\Phi}_{vr}(\delta t) \delta \vec{r_0} + \mathbf{\Phi}_{vv}(\delta t) \delta \vec{v_0}$

Dynamic Greedy Travelling Salesperson The spacecraft is to:

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.

hristop	her Ilif	fe Sr	prague (RPI)
			nugue (

Debris, Safety and Awareness

March 9, 2016 35 /

The spacecraft is to:

 Determine the permissible HCW space X³:
 HCW Space.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The spacecraft is to:

- Determine the permissible HCW space X³:
 HCW Space.
- Search within that space for possible debris targets: NNS.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.

The spacecraft is to:

- Determine the permissible HCW space X³:
 HCW Space.
- Search within that space for possible debris targets: NNS.
- Compute the cost to rendezvous with each feasible debris: **MCW2I**.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.

The spacecraft is to:

- Determine the permissible HCW space X³:
 HCW Space.
- Search within that space for possible debris targets: NNS.
- Compute the cost to rendezvous with each feasible debris: **MCW2I**.
- Rendezvous with the debris requiring the least ΔV .

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.

The spacecraft is to:

- Determine the permissible HCW space X³:
 HCW Space.
- Search within that space for possible debris targets: NNS.
- Compute the cost to rendezvous with each feasible debris: **MCW2I**.
- Rendezvous with the debris requiring the least ΔV .
- Repeat for each subsequent debris until all propellant is expended.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.

Figure: Unconstrained NN tours. $\Delta V_{con} = 5000 \ m/s \& \Delta t_{tr} = 3 \ hrs$

Image: Image:

Christopher Iliffe Sprague (RPI)

Debris, Safety and Awareness

March 9 2016 36 /

1 st Debris	2 nd Debris	$\Delta V_{spent} \ [m/s]$	A _{deb} [m ²]
1999-025AY	1999-025BMF	159.8777	1.752
1999-025BQ	1999-025ANC	206.9559	1.752
1999-025AEF	1999-025BXU	132.8574	1.752
1999-025AJX	1999-025BRF	197.5427	1.752
1999-025AZV	1999-025ZM	142.8967	0.277
1999-025BLJ	1999-025CT	182.6922	7.688
1999-025BMF	1999-025AY	199.7687	1.752
1999-025CAH	1999-025BLV	213.9889	7.688
1999-025CBT	1999-025ALT	99.7949	6.402
1999-025CFR	1999-025DLT	105.7221	14.185
1999-025DDV	1999-025DYC	126.0361	16.031
1999-025DVV	1999-025AZB	129.6952	8.249

Table: Feasible HCW Rendezvous Tours. $\Delta V_{cap} = 220 m/s \& \Delta t = 3 hrs$

HCW Rendezvous with Fengyun-1C Orbital Debris ($\Delta t_{tr} = 3hr, \Delta V_{out} = 220m/s$)

Figure: Optimal NN tours with $\Delta V_{cap} = 200 \ m/s$ and $\Delta t_{tr} = 3 \ hrs$.

		< • > < @ >	(▲콜) (▲콜) · 콜	୬୯୯
nristopher Iliffe Sprague (RPI)	Debris, Safety and Awareness		March 9, 2016	38 / 45

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Simulation Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous

Deorbit

4 Outro

Conclusions Future Work

≣⇒

Passive Deorbitation

Once the debris objects are captured, the drag sail is deployed, and the time to deorbit decreases significantly.

	$A_D = 0.01 \ [m^2]$	$A_D = 3 \ [m^2]$
Altitude [km]	Time to Deorb	oit T _D [hrs]
200	136.56	2.42
250	1185.61	7.24
300	21806.44	21.36
350	80219.76	79.23
400	275637.64	275.76
450	275637.62	928.84
500	887488.56	2968.56

Table: Orbital decay comparison from various altitudes for a 5 kg cubesat, with and without a deployed drag sail.

 </

Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions

Future Work

≣⇒

March 9, 2016

Conclusions

The method of deorbiting space debris with CubeSats through computationally inexpensive means and passive aerodynamic drag has herewith been conceptually proven. Some conclusions:

- Aerodynamic drag sails are currently the most efficient way to deorbit debris once they've been captured.
- The use the HCW equations may prove feasible in opportunistic debris removal.
- Instead of targeting debris, the debris should come to the spacecraft.
- CubeSats are a prime candidates for simultaneous, large-scale, economical active debris removal.
Next Subsection

The Situation

2 Background

Orbital Debris Active Debris Removal

3 Research

Insertion Environmental Modelling Numerical Propagation Orbital Debris Mitigation Rendezvous Deorbit

4 Outro

Conclusions Future Work

≣⇒

March 9, 2016

Future Work

To be included in future renditions of this project:

- Global optimisation.
- Continuous thrust.
- Heuristic sampling methods.
- Parallelisation.

Citations

Donald J Kessler, Nicholas L Johnson, J.-C Liou, and Mark Matney,

"The Kessler Syndrome: Implications to Future Space operations,"

📔 Esa,

"Technologies for space debris remediation," .

Alice Gorman,

"Humanity's next giant leap: our heritage in space is our future too," .

OrbitalHub,

"Goldstone Antenna," .

"Laser broom," jan 2016.