Modelling and Simulation of Autonomous CubeSats for Orbital Debris Mitigation

Rensselaer Polytechnic Institute

Christopher Iliffe Sprague

6th International Conference on Astrodynamics Tools and Techniques

March 9, 2016
Outline

1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
Next Subsection

1 Introduction

The Situation

2 Background

Orbital Debris
Active Debris Removal

3 Research

Simulation
Insertion
Environmental Modelling
Numerical Propagation
Orbital Debris Mitigation
Rendezvous
Deorbit

4 Outro

Conclusions
Future Work
The Situation

• Increasing space activity leads to an increased potential of generating orbital debris.
The Situation

- Increasing space activity leads to an increased potential of generating orbital debris.
- The presence of orbital debris within Low Earth Orbit (LEO) is becoming increasingly prevalent.

Figure: Debris objects within LEO [2]
The Situation

- Increasing space activity leads to an increased potential of generating orbital debris.
- The presence of orbital debris within Low Earth Orbit (LEO) is becoming increasingly prevalent.
- Increasing the presence of objects within LEO leads to Kessler Syndrome [1].

Figure: Debris objects within LEO [2]
The Situation

- Increasing space activity leads to an increased potential of generating orbital debris.
- The presence of orbital debris within Low Earth Orbit (LEO) is becoming increasingly prevalent.
- Increasing the presence of objects within LEO leads to Kessler Syndrome [1].
- Kessler Syndrome leads to the decreased viability of maintaining satellites in LEO.

Figure: Debris objects within LEO [2]
Orbital Debris - Numbers

According to scientific models, orbiting around Earth, there are:

• Over 170 million debris objects smaller than 1 mm.
• 670,000 debris objects larger than 1 cm.
• 29,000 debris objects larger than 10 cm [2].
According to scientific models, orbiting around Earth, there are:

- Over 170 million debris objects smaller than 1 mm.
Orbital Debris - Numbers

According to scientific models, orbiting around Earth, there are:

- Over **170 million** debris objects smaller than 1 mm.
- **670,000** debris objects larger than 1 cm.
Orbital Debris - Numbers

According to scientific models, orbiting around Earth, there are:

- Over **170 million** debris objects smaller than 1 mm.
- **670,000** debris objects larger than 1 cm.
- **29,000** debris objects larger than 10 cm [2].
Orbital Debris - Characterisation

- Orbital debris within LEO are situated in various orbital planes.

[2]
Orbital debris within LEO are situated in various orbital planes. Orbital planes change over time, resulting in global coverage, leading to Kessler syndrome.
Orbital Debris - Characterisation

- Orbital debris within LEO are situated in various orbital planes.
- Orbital planes change over time, resulting in global coverage, leading to Kessler syndrome.
- Collisions in LEO can occur from virtually any direction.

[2]
Orbital Debris - Characterisation

- Orbital debris within LEO are situated in various orbital planes.
- Orbital planes change over time, resulting in global coverage, leading to Kessler syndrome.
- Collisions in LEO can occur from virtually any direction.
- Kessler syndrome entails the cascading of orbital debris collisions in LEO, such that space activities may one day become infeasible.

[2]
Orbital Debris - Sources

- Artificial satellites orbiting Earth, that have been abandoned or have become nonfunctional.

Figure: Vanguard I: the oldest surviving man made object remaining in orbit. [3]
Orbital Debris - Sources

- Artificial satellites orbiting Earth, that have been abandoned or have become nonfunctional.
- Rocket upper stages that have been broken up by unburned fuel.

Figure: Vanguard I: the oldest surviving man made object remaining in orbit. [3]
Orbital Debris - Sources

- Artificial satellites orbiting Earth, that have been abandoned or have become nonfunctional.
- Rocket upper stages that have been broken up by unburned fuel.
- Anti-satellite weapons.

Figure: Vanguard I: the oldest surviving man made object remaining in orbit. [3]
Orbital Debris - Dangers

For a typical satellite, a collision with a:

- 10 cm object may result in a catastrophic fragmentation.
- 1 cm object may result in a loss of function.
- 1 mm object may destroy its subsystems.
For a typical satellite, a collision with a:

- 10 cm object may result in a catastrophic fragmentation.
- 1 cm object may result in a loss of function.
- 1 mm object may destroy its subsystems.

Figure: Exit hole through the Kevlar-Nextel fabric, used to shield the ISS; incurred by a 7.5 mm diameter aluminium bullet travelling at 7 km/s. [2]
Orbital Debris - Dangers

For a typical satellite, a collision with a:

- 10 cm object may result in a catastrophic fragmentation.
- 1 cm object may result in a loss of function.

Figure: Exit hole through the Kevlar-Nextel fabric, used to shield the ISS; incurred by a 7.5 mm diameter aluminium bullet travelling at 7 km/s. [2]
Orbital Debris - Dangers

For a typical satellite, a collision with a:

- 10 cm object may result in a catastrophic fragmentation.
- 1 cm object may result in a loss of function.
- 1 mm object may destroy its subsystems.

Figure: Exit hole through the Kevlar-Nextel fabric, used to shield the ISS; incurred by a 7.5 mm diameter aluminium bullet travelling at 7 km/s. [2]
Orbital Debris - Detectability

- Debris as small as 1 cm can be detected.

Figure: Goldstone Antenna [4]
Orbital Debris - Detectability

- Debris as small as 1 cm can be detected.
- Most debris cannot be directly observed.

Figure: Goldstone Antenna [4]
Orbital Debris - Detectability

- Debris as small as 1 cm can be detected.
- Most debris cannot be directly observed.
- Radar and optical detectors are mainly used.

Figure: Goldstone Antenna [4]
Introduction

The Situation

Background

Orbital Debris

Active Debris Removal

Research

Simulation
Insertion
Environmental Modelling
Numerical Propagation
Orbital Debris Mitigation
Rendezvous
Deorbit

Outro

Conclusions
Future Work
Active Debris Removal - Current Efforts

Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails
- Nets
- And so on...
Active Debris Removal - Current Efforts

Current efforts include:

- Electrodynamiic tethers
Active Debris Removal - Current Efforts

Current efforts include:
• Electrodynamic tethers
• Laser brooms

Figure: An artistic representation of a laser broom’s implementation. [5]
Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails

Figure: An artistic representation of a laser broom’s implementation. [5]
Active Debris Removal - Current Efforts

Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails
- Nets

Figure: An artistic representation of a laser broom’s implementation. [5]
Active Debris Removal - Current Efforts

Current efforts include:

- Electrodynamic tethers
- Laser brooms
- Solar Sails
- Nets
- And so on...

Figure: An artistic representation of a laser broom’s implementation. [5]
CubeSats - Design

Reasons to use CubeSats:

• They’re economical.
• They can be deployed in multiples.
• They minimise risk to the rest of their launch vehicle.
• They are easily accommodated to preexisting payload capsules.
• They can utilise launch opportunities on short notice.
• Redundancy is not as big of a concern.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Reasons to use CubeSats:

- They’re economical.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Reasons to use CubeSats:

- They’re economical.
- They can be deployed in multiples.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Reasons to use CubeSats:

- They’re economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Reasons to use CubeSats:

- They’re economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.
- They are easily accommodated to preexisting payload capsules.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Reasons to use CubeSats:

- They’re economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.
- They are easily accommodated to preexisting payload capsules.
- They can utilise launch opportunities on short notice.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Reasons to use CubeSats:

- They’re economical.
- They can be deployed in multiples.
- They minimise risk to the rest of their launch vehicle.
- They are easily accommodated to preexisting payload capsules.
- They can utilise launch opportunities on short notice.
- Redundancy is not as big of a concern.

Figure: A CubeSat being deployed from the ISS. [6]
CubeSats - Design

Technicals

- Standard CubeSats are made up of 10x10x11.35 cm units

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Technical

- Standard CubeSats are made up of 10x10x11.35 cm units
- Provide 1 litre of useful volume, while weighing no more than 1.33 kg per unit.

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Technical

- Standard CubeSats are made up of 10×10×11.35 cm units
- Provide 1 litre of useful volume, while weighing no more than 1.33 kg per unit.
- Size standardisation allows CubeSats to be launched by a common deployment system.

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Technicals

- Standard CubeSats are made up of 10\times 10\times 11.35 \text{ cm units}
- Provide 1 litre of useful volume, while weighing no more than 1.33 \text{ kg per unit}
- Size standardisation allows CubeSats to be launched by a common deployment system.
- Commercial-off-the-shelf hardware is readily accessible.

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Classifications:

- Microsatellites are 10 - 100 kg
- Nanosatellites are 1 - 10 kg
- Picosatellite are 0.1 - 1 kg
- Femtosatellite are 0.01 - 0.1 kg

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Classifications:

- Microsatellites are 10 - 100 kg
- Nanosatellites are 1 - 10 kg
- Picosatellites are 0.1 - 1 kg
- Femtosatellites are 0.01 - 0 kg

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Classifications:
- Microsatellites are 10 - 100 kg
- Nanosatellites are 1 - 10 kg

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Classifications:

- Microsatellites are 10 - 100 kg
- Nanosatellites are 1 - 10 kg
- Picosatellite are 0.1 - 1 kg

Figure: 1-unit CubeSat. [7]
CubeSats - Design

Classifications:

- Microsatellites are 10 - 100 kg
- Nanosatellites are 1 - 10 kg
- Picosatellite are 0.1 - 1 kg
- Femtosatellite are 0.01 - 0.1 kg

Figure: 1-unit CubeSat. [7]
Next Subsection

1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
• Python 2.7 was chosen as the programming language.
• **Python 2.7** was chosen as the programming language.
• **Ephemerides** were obtained through NASA’s Jet Propulsion Laboratory Development Ephemeris, *DE423*, by use of the Python module, *jplephem 1.2*.
• Python 2.7 was chosen as the programming language.
• Ephemerides were obtained through NASA’s Jet Propulsion Laboratory Development Ephemeris, *DE423*, by use of the Python module, *jplephem 1.2*.
• Two-line elements of the debris were obtained through CelesTrack.
• **Python 2.7** was chosen as the programming language.

• **Ephemerides** were obtained through NASA’s Jet Propulsion Laboratory Development Ephemeris, *DE423*, by use of the Python module, *jplephem 1.2*.

• **Two-line elements** of the debris were obtained through CelesTrack.

• **Cross-sectional areas** of the debris were obtained through the satellite catalogue, *SatCat*, of CelesTrack.
Simulation - Road Map

- Enviromental Modelling
 - N-Body Problem
 - Ephemerides
 - Solar Radiation Pressure
 - Aerodynamic Drag

- Thruster Selection
 - High Impulse
 - Low Impulse

- Initial Orbit
 - Random Initial LEO Position
 - Random Initial Circular Velocity
 - Random Initial Direction

- Debris Selection
 - Proximity
 - ΔV Required
 - Priority

- Rendezvous
 - Hill-Clohessy-Wiltshire Equations
 - Global Optimisation

- Deorbitation
 - Passive Aerobreaking
 - Remaining Propulsive Resources
Next Subsection

1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
Random Insertion

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ.
- Altitude: h.
- Eccentricity within limits: e.
- Direction of velocity: \hat{v}.

Definition

Random initial longitude and latitude:

$\theta = 2\pi u$: $u \in (0, 1)$

$\phi = \cos^{-1}(2v - 1)$: $v \in (0, 1)$

Definition

Random initial velocity direction:

$\hat{v} = \frac{\vec{r}_{arb} - \vec{r}}{|\vec{r}_{arb} - \vec{r}|}$
Random Insertion

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ.

Definition

Random initial longitude and latitude:

$$\theta = 2\pi u : u \in (0, 1)$$

$$\phi = \cos^{-1}(2v - 1) : v \in (0, 1)$$
Random Insertion

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ.
- Altitude: h.

Definition

Random initial longitude and latitude:

$$\theta = 2\pi u : u \in (0, 1)$$

$$\phi = \cos^{-1}(2v - 1) : v \in (0, 1)$$
Random Insertion

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ.
- Altitude: h.
- Eccentricity within limits: e.

Definition

Random initial longitude and latitude:

$$\theta = 2\pi u : u \in (0, 1)$$

$$\phi = \arccos(2v - 1) : v \in (0, 1)$$
Random Insertion

In order to test for robustness, a potential testing spacecraft should have random initial:

- Coordinates: θ and ϕ.
- Altitude: h.
- Eccentricity within limits: e.
- Direction of velocity: \hat{v}.

Definition

Random initial longitude and latitude:

$$\theta = 2\pi u : u \in (0, 1)$$

$$\phi = \cos^{-1}(2v - 1) : v \in (0, 1)$$

Definition

Random initial velocity direction:

$$\hat{v} = \frac{\vec{r}_{arb} - \vec{r}}{||\vec{r}_{arb} - \vec{r}||}$$
Introduction

The Situation

Background

Orbital Debris
Active Debris Removal

Research

Simulation
Insertion

Environmental Modelling
Numerical Propagation
Orbital Debris Mitigation
Rendezvous
Deorbit

Outro

Conclusions
Future Work
The relevant conservative forces must be accounted for:

\[
\vec{A}_n = -\mu^j_n (\vec{R}_n^j - \vec{R}_n^{sc}) \frac{1}{\left\| \vec{R}_n^j - \vec{R}_n^{sc} \right\|^3}
\]
Conservative Forces

The relevant conservative forces must be accounted for:
- Earth’s gravity.

Definition

Gravitational Acceleration:

\[
\vec{A}_n^j = -\mu_j \left(\frac{\vec{R}_n^j - \vec{R}_{scn}^j}{\| \vec{R}_n^j - \vec{R}_{scn}^j \|^3} \right)
\]
Conservative Forces

The relevant conservative forces must be accounted for:

- Earth’s gravity.
- The Sun’s gravity.

Definition

Gravitational Acceleration:

\[
\vec{A}_n^i = -\mu^j \left(\frac{\vec{R}_n^j - \vec{R}_{sc}^n}{\|\vec{R}_n^j - \vec{R}_{sc}^n\|^3} \right)
\]
Conservative Forces

The relevant conservative forces must be accounted for:

- Earth’s gravity.
- The Sun’s gravity.
- The Moon’s gravity

\[\vec{A}_n = -\mu^j \left(\vec{R}_n^j - \vec{R}_{sc}^n \right) \frac{1}{\| \vec{R}_n^j - \vec{R}_{sc}^n \|^3} \]
Conservative Forces

The relevant conservative forces must be accounted for:

- Earth’s gravity.
- The Sun’s gravity.
- The Moon’s gravity.
- Essentially an N-Body problem.

Definition

Gravitational Acceleration:

$$\vec{A}_n^j = -\mu^j \frac{(\vec{R}_n^j - \vec{R}_{scn}^j)}{||\vec{R}_n^j - \vec{R}_{scn}^j||^3}$$

Definition

N-Body Problem:

$$\vec{A}_{i,n} = \sum_{j=0, i \neq j}^{N} \vec{A}_{i,n}^j$$
Figure: A barycentric view of a CubeSat in Low Earth Orbit with the Moon in view.
Non-Conservative Forces

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.
- Solar-Radiation Pressure.
- Eclipse Model.

Definition: Scaling atmospheric density model:

\[\rho_n = \rho_0 e^{-hn/H} \]

Definition: Acceleration due to solar-radiation pressure:

\[\vec{A}_{\text{Solar}} = -p_{\text{s}} C_{\text{R}} A_{\perp} \hat{s}_n m_n \]

Definition: Eclipse determination:

\[\tau = \vec{r} \cdot \vec{r} - \vec{s}_E \left| \vec{r} - \vec{s}_E \right|^2 \]
Non-Conservative Forces

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
Non-Conservative Forces

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.

Definition

Scaling atmospheric density model:

\[\rho_n = \rho_0 e^{-\frac{hn}{H}} \]
Non-Conservative Forces

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.
- Solar-Radiation Pressure.

Definition
Scaling atmospheric density model:

\[\rho_n = \rho_0 e^{-\frac{h_n}{H}} \]

Definition
Acceleration due to solar-radiation pressure:

\[\vec{A}_{n_{Solar}} = - \frac{p_n^s C^R_n A_n \hat{s}^\perp \hat{s}_n}{m_n} \]
Non-Conservative Forces

The non-conservative perturbations must be accounted for:

- Atmospheric Drag.
- Atmospheric Scale Model.
- Solar-Radiation Pressure.
- Eclipse Model.

Definition

Scaling atmospheric density model:

\[\rho_n = \rho_0 e^{-\frac{hn}{H}} \]

Definition

Acceleration due to solar-radiation pressure:

\[\vec{A}_{n_{Solar}} = -\frac{p_s C_R A_n \hat{s}_n}{m_n} \]

Definition

Eclipse determination:

\[\tau = \frac{\vec{r} \cdot \vec{r} - \hat{s}_E}{|\vec{r} - \hat{s}_E|^2} \]
Figure: Atmospheric drag with scale model implemented.
Figure: Solar-radiation pressure model with eclipse model implemented.
Introduction
The Situation

Background
Orbital Debris
Active Debris Removal

Research
Simulation
Insertion
Environmental Modelling
Numerical Propagation
Orbital Debris Mitigation
Rendezvous
Deorbit

Outro
Conclusions
Future Work
Numerical Propagation

In order to accurately simulate the test spacecraft’s motion, one must choose a numerical integrator:

- **Forward Euler method.**
 - Simple, but may not be accurate.
- **Runge-Kutta-Fehlberg method with an adaptive time-step.**
 - Complex, but more accurate and accommodating.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.
Numerical Propagation

In order to accurately simulate the test spacecraft’s motion, one must choose a numerical integrator:

- Forward Euler method.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.
Numerical Propagation

In order to accurately simulate the test spacecraft’s motion, one must choose a numerical integrator:

- Forward Euler method.
 - Simple, but may not be accurate.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.
Numerical Propagation

In order to accurately simulate the test spacecraft’s motion, one must choose a numerical integrator:

- Forward Euler method.
 - Simple, but may not be accurate.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.
In order to accurately simulate the test spacecraft’s motion, one must choose a numerical integrator:

- Forward Euler method.
 - Simple, but may not be accurate.
 - Complex, but more accurate and accommodating.

Figure: Simple Low Earth Orbit motion, as propagated by the RKF45 method.
Next Subsection

1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
Mechanism of Action

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne’s MPS-120 (CHAMPS) with $\Delta V = 200 \text{ m/s}$.
- Capture with ejected net.
- Passively deorbit with aerodynamic drag, utilising Clyde Space’s (AEOLDOS) with $A = 3 \text{ m}^2$.
- Utilise remaining propellant.

Figure: MERiDIUS passively deorbiting captured debris. [10]
Mechanism of Action

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne’s *MPS-120 (CHAMPS)* [8] with $\Delta V = 200 \, m/s$.

Figure: MERiDIUS passively deorbiting captured debris. [10]
Mechanism of Action

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne’s *MPS-120 (CHAMPS)* [8] with $\Delta V = 200 \text{ m/s}$.
- Capture with ejected net.

Figure: MERiDIUS passively deorbiting captured debris. [10]
Mechanism of Action

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne’s MPS-120 (CHAMPS) \[8\] with $\Delta V = 200 \text{ m/s}$.
- Capture with ejected net.
- Passively deorbit with aerodynamic drag, utilising Clyde Space’s (AEOLDOS) \[9\] with $A = 3 \text{ m}^2$.

Figure: MERiDIUS passively deorbiting captured debris. \[10\]
Mechanism of Action

The steps to efficient orbital debris mitigation:

- Rendezvous using Aerojet Rocketdyne’s *MPS-120 (CHAMPS)* [8] with $\Delta V = 200 \, m/s$.
- Capture with ejected net.
- Passively deorbit with aerodynamic drag, utilising Clyde Space’s *AEOLDOS* [9] with $A = 3 \, m^2$.
- Utilise remaining propellant.

Figure: MERiDIUS passively deorbiting captured debris. [10]
Fengyun-1C

Attention will be brought to Fengyun–1C, the Chinese weather satellite that was destroyed on January 11th, 2007, as a result of an anti-satellite missile test.

- Polar orbit satellite of the Fengyun series.
- Mass of 750 kg.
- Created more dangerous orbital debris than any other space mission in history [11].

Figure: Fengyun–1C debris scattering, 5 minutes after its collision. [12]
Next Subsection

1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
Now to dispose of the debris...

Figure: The trajectory of every trackable debris fragment of Fengyun-1C as of January 1st, 2016.
Relative Motion

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

Definition

The HCW equations:

\[
\begin{align*}
\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} &= \frac{T_x}{m} \\
\delta \ddot{y} + 2n \delta \dot{x} &= \frac{T_y}{m} \\
\delta \ddot{z} + n^2 \delta z &= \frac{T_z}{m}
\end{align*}
\]

Closed-form solution:

\[
\begin{align*}
\delta \vec{r}(\delta t) &= \Phi_{rr}(\delta t)\delta \vec{r}_0 + \Phi_{rv}(\delta t)\delta \vec{v}_0 \\
\delta \vec{v}(\delta t) &= \Phi_{vr}(\delta t)\delta \vec{r}_0 + \Phi_{vv}(\delta t)\delta \vec{v}_0
\end{align*}
\]
Relative Motion

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.

Definition

The HCW equations:

\[
\begin{align*}
\delta\ddot{x} - 3n^2\delta{x} - 2n\delta{y} &= \frac{T_x}{m} \\
\delta\ddot{y} + 2n\delta{x} &= \frac{T_y}{m} \\
\delta\ddot{z} + n^2\delta{z} &= \frac{T_z}{m}
\end{align*}
\]

Closed-form solution:

\[
\begin{align*}
\delta\vec{r}(\delta{t}) &= \Phi_{rr}(\delta{t})\delta\vec{r}_0 + \Phi_{rv}(\delta{t})\delta\vec{v}_0 \\
\delta\vec{v}(\delta{t}) &= \Phi_{vr}(\delta{t})\delta\vec{r}_0 + \Phi_{vv}(\delta{t})\delta\vec{v}_0
\end{align*}
\]
Relative Motion

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.
- Real-time control enables autonomy.

Definition

The HCW equations:

\[
\begin{align*}
\delta \ddot{x} - 3n^2 \delta x - 2n \delta y &= \frac{T_x}{m} \\
\delta \ddot{y} + 2n \delta \dot{x} &= \frac{T_y}{m} \\
\delta \ddot{z} + n^2 \delta z &= \frac{T_z}{m}
\end{align*}
\]

Closed-form solution:

\[
\begin{align*}
\delta \vec{r}(\delta t) &= \Phi_{rr}(\delta t)\delta \vec{r}_0 + \Phi_{rv}(\delta t)\delta \vec{v}_0 \\
\delta \vec{v}(\delta t) &= \Phi_{vr}(\delta t)\delta \vec{r}_0 + \Phi_{vv}(\delta t)\delta \vec{v}_0
\end{align*}
\]
Relative Motion

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.
- Real-time control enables autonomy.
- Spacecraft must be in the vicinity of the target debris and the target.

Definition

The HCW equations:

\[\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m} \]

\[\delta \ddot{y} + 2n \delta \dot{x} = \frac{T_y}{m} \]

\[\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m} \]

Closed-form solution:

\[\delta \vec{r}(\delta t) = \Phi_{rr}(\delta t)\delta \vec{r}_0 + \Phi_{rv}(\delta t)\delta \vec{v}_0 \]

\[\delta \vec{v}(\delta t) = \Phi_{vr}(\delta t)\delta \vec{r}_0 + \Phi_{vv}(\delta t)\delta \vec{v}_0 \]
Relative Motion

In order to simulate the relative motion of a spacecraft to its target, the closed-form solution of the Hill-Clohessy-Wiltshire equations can be implemented for rendezvous.

- Computationally inexpensive.
- Real-time control enables autonomy.
- Spacecraft must be in the vicinity of the target debris and the target.
- Target must be in a nearly circular orbit.

Definition

The HCW equations:

\[\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{T_x}{m} \]
\[\delta \ddot{y} + 2n \delta \dot{x} = \frac{T_y}{m} \]
\[\delta \ddot{z} + n^2 \delta z = \frac{T_z}{m} \]

Closed-form solution:

\[\delta \vec{r}(\delta t) = \Phi_{rr}(\delta t)\delta \vec{r}_0 + \Phi_{rv}(\delta t)\delta \vec{v}_0 \]
\[\delta \vec{v}(\delta t) = \Phi_{vr}(\delta t)\delta \vec{r}_0 + \Phi_{vv}(\delta t)\delta \vec{v}_0 \]
Dynamic Greedy Travelling Salesperson

The spacecraft is to:

- Determine the permissible HCW space X^3.
- Search within that space for possible debris targets NNS.
- Compute the cost to rendezvous with each feasible debris $MCW2I$.
- Rendezvous with the debris requiring the least ΔV.
- Repeat for each subsequent debris until all propellant is expended.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.
Dynamic Greedy Travelling Salesperson

The spacecraft is to:

- Determine the permissible HCW space \mathbb{X}^3:
 HCW Space.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.
The spacecraft is to:

- Determine the permissible HCW space X^3: **HCW Space**.
- Search within that space for possible debris targets: **NNS**.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.
Dynamic Greedy Travelling Salesperson

The spacecraft is to:

- Determine the permissible HCW space X^3: **HCW Space**.
- Search within that space for possible debris targets: **NNS**.
- Compute the cost to rendezvous with each feasible debris: **MCW2I**.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.
Dynamic Greedy Travelling Salesperson

The spacecraft is to:

• Determine the permissible HCW space X^3: **HCW Space**.
• Search within that space for possible debris targets: **NNS**.
• Compute the cost to rendezvous with each feasible debris: **MCW2I**.
• Rendezvous with the debris requiring the least ΔV.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.
Dynamic Greedy Travelling Salesperson

The spacecraft is to:

- Determine the permissible HCW space X^3: **HCW Space**.
- Search within that space for possible debris targets: **NNS**.
- Compute the cost to rendezvous with each feasible debris: **MCW2I**.
- Rendezvous with the debris requiring the least ΔV.
- Repeat for each subsequent debris until all propellant is expended.

Figure: An illustration of the method by which the spacecraft is to capture debris efficiently.
Dynamic Greedy Travelling Salesperson

Figure: Unconstrained NN tours. $\Delta V_{cap} = 5000 \text{ m/s} & \Delta t_{tr} = 3 \text{ hrs}$
Dynamic Greedy Travelling Salesperson

<table>
<thead>
<tr>
<th>1ˢᵗ Debris</th>
<th>2ⁿᵈ Debris</th>
<th>$\Delta V_{spent} ,[\text{m/s}]$</th>
<th>$A_{deb} ,[\text{m}^2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-025AY</td>
<td>1999-025BMF</td>
<td>159.8777</td>
<td>1.752</td>
</tr>
<tr>
<td>1999-025BQ</td>
<td>1999-025ANC</td>
<td>206.9559</td>
<td>1.752</td>
</tr>
<tr>
<td>1999-025AEF</td>
<td>1999-025BXU</td>
<td>132.8574</td>
<td>1.752</td>
</tr>
<tr>
<td>1999-025AJX</td>
<td>1999-025BRF</td>
<td>197.5427</td>
<td>1.752</td>
</tr>
<tr>
<td>1999-025AZV</td>
<td>1999-025ZM</td>
<td>142.8967</td>
<td>0.277</td>
</tr>
<tr>
<td>1999-025BLJ</td>
<td>1999-025CT</td>
<td>182.6922</td>
<td>7.688</td>
</tr>
<tr>
<td>1999-025BMF</td>
<td>1999-025AY</td>
<td>199.7687</td>
<td>1.752</td>
</tr>
<tr>
<td>1999-025CAH</td>
<td>1999-025BLV</td>
<td>213.9889</td>
<td>7.688</td>
</tr>
<tr>
<td>1999-025DDV</td>
<td>1999-025DYC</td>
<td>126.0361</td>
<td>16.031</td>
</tr>
<tr>
<td>1999-025DVV</td>
<td>1999-025AZB</td>
<td>129.6952</td>
<td>8.249</td>
</tr>
</tbody>
</table>

Table: Feasible HCW Rendezvous Tours. $\Delta V_{cap} = 220 \text{m/s} \& \Delta t = 3 \text{hrs}$
Figure: Optimal NN tours with $\Delta V_{cap} = 200 \, m/s$ and $\Delta t_{tr} = 3 \, hrs$.
Introduction

The Situation

Background

Orbital Debris
Active Debris Removal

Research

Simulation
Insertion
Environmental Modelling
Numerical Propagation
Orbital Debris Mitigation
Rendezvous

Deorbit

Outro

Conclusions
Future Work
Passive Deorbitation

Once the debris objects are captured, the drag sail is deployed, and the time to deorbit decreases significantly.

\[
A_D = 0.01 \text{ [m}^2\text{]} \\
A_D = 3 \text{ [m}^2\text{]}
\]

<table>
<thead>
<tr>
<th>Altitude [km]</th>
<th>(A_D = 0.01 \text{ [m}^2\text{]})</th>
<th>(A_D = 3 \text{ [m}^2\text{]})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time to Deorbit (T_D) [hrs]</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>136.56</td>
<td>2.42</td>
</tr>
<tr>
<td>250</td>
<td>1185.61</td>
<td>7.24</td>
</tr>
<tr>
<td>300</td>
<td>21806.44</td>
<td>21.36</td>
</tr>
<tr>
<td>350</td>
<td>80219.76</td>
<td>79.23</td>
</tr>
<tr>
<td>400</td>
<td>275637.64</td>
<td>275.76</td>
</tr>
<tr>
<td>450</td>
<td>275637.62</td>
<td>928.84</td>
</tr>
<tr>
<td>500</td>
<td>887488.56</td>
<td>2968.56</td>
</tr>
</tbody>
</table>

Table: Orbital decay comparison from various altitudes for a 5 kg cubesat, with and without a deployed drag sail.
1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
Conclusions

The method of deorbiting space debris with CubeSats through computationally inexpensive means and passive aerodynamic drag has herewith been conceptually proven. Some conclusions:

- Aerodynamic drag sails are currently the most efficient way to deorbit debris once they’ve been captured.
- The use the HCW equations may prove feasible in opportunistic debris removal.
- Instead of targeting debris, the debris should come to the spacecraft.
- CubeSats are a prime candidates for simultaneous, large-scale, economical active debris removal.
Next Subsection

1 Introduction
 The Situation

2 Background
 Orbital Debris
 Active Debris Removal

3 Research
 Simulation
 Insertion
 Environmental Modelling
 Numerical Propagation
 Orbital Debris Mitigation
 Rendezvous
 Deorbit

4 Outro
 Conclusions
 Future Work
Future Work

To be included in future renditions of this project:

- Global optimisation.
- Continuous thrust.
- Heuristic sampling methods.
- Parallelisation.
Citations

Donald J Kessler, Nicholas L Johnson, J.-C Liou, and Mark Matney,
“The Kessler Syndrome: Implications to Future Space operations,”

Esa,
“Technologies for space debris remediation,”

Alice Gorman,
“Humanity’s next giant leap: our heritage in space is our future too,”

OrbitalHub,
“Goldstone Antenna,”

“CubeSat and ISS,”

Rob Garner,

Derek T Schmuland, Robert K Masse, and Charles G Sota,
“SSC11-X-4 Hydrazine Propulsion Module for CubeSats,”

Patrick Harkness, Malcolm McRobb, Paul Lützkendorf, Ross Milligan, Andrew Feeney, and Craig Clark,

Christopher Iliffe Sprague, Patrick Martin, Zac Amicucci, Jacob Hartley, Daniel Sparer, Adam Ware, and Hans Ofer,

T S Kelso,
“Analysis of the 2007 Chinese ASAT Test and the Impact of its Debris on the Space Environment,”

“CelesTrak,”

Christopher Iliffe Sprague (RPI)
Debris, Safety and Awareness
March 9, 2016
45 / 45