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The Situation

• Increasing space activity leads
to an increased potential of
generating orbital debris.

• The presence of orbital debris
within Low Earth Orbit (LEO)
is becoming increasingly
prevalent.

• Increasing the presence of
objects within LEO leads to
Kessler Syndrome [1].

• Kessler Syndrome leads to the
decreased viability of
maintaining satellites in LEO.

Figure: Debris objects within LEO [2]
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Orbital Debris - Numbers

According to scientific models, orbiting around Earth, there are:

• Over 170 million debris objects smaller than 1 mm.

• 670,000 debris objects larger than 1 cm.

• 29,000 debris objects larger than 10 cm [2].
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Orbital Debris - Characterisation

• Orbital debris within LEO are situated in various orbital planes.

• Orbital planes change over time, resulting in global coverage,
leading to Kessler syndrome.

• Collisions in LEO can occur from virtually any direction.

• Kessler syndrome entails the cascading of orbital debris collisions
in LEO, such that space activities may one day become infeasible.

[2]
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Orbital Debris - Sources

• Artificial satellites orbiting
Earth, that have been
abandoned or have become
nonfunctional.

• Rocket upper stages that have
been broken up by unburned
fuel.

• Anti-satellite weapons.

Figure: Vanguard I: the oldest
surviving man made object remaining
in orbit. [3]
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Orbital Debris - Dangers

For a typical satellite, a collision
with a:

• 10 cm object may result in a
catastrophic fragmentation.

• 1 cm object may result in a
loss of function.

• 1 mm object may destroy its
subsystems.

Figure: Exit hole through the
Kevlar-Nextel fabric, used to shield
the ISS; incurred by a 7.5 mm
diameter aluminium bullet travelling
at 7 km/s. [2]
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Orbital Debris - Detectability

• Debris as small as 1 cm can
be detected.

• Most debris cannot be directly
observed.

• Radar and optical detectors
are mainly used.

Figure: Goldstone Antenna [4]
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Active Debris Removal - Current Efforts

Current efforts include:

• Electrodynamic tethers

• Laser brooms

• Solar Sails

• Nets

• And so on...
Figure: An artistic representation of a
laser broom’s implementation. [5]
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CubeSats - Design

Reasons to use CubeSats:

• They’re economical.

• They can be deployed in
multiples.

• They minimise risk to the rest
of their launch vehicle.

• They are easily
accommodated to preexisting
payload capsules.

• They can utilise launch
opportunities on short notice.

• Redundancy is not as big of a
concern.

Figure: A CubeSat being deployed
from the ISS. [6]
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CubeSats - Design

Technicals

• Standard CubeSats are made
up of 10x10x11.35 cm units

• Provide 1 litre of useful
volume, while weighing no
more than 1.33 kg per unit.

• Size standardisation allows
CubeSats to be launched by a
common deployment system.

• Commercial-off-the-shelf
hardware is readily accessible.

Figure: 1-unit CubeSat. [7]
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CubeSats - Design

Classifications:

• Microsatellites are 10 - 100 kg

• Nanosatellites are 1 - 10 kg

• Picosatellite are 0.1 - 1 kg

• Femtosatellite are 0.01 0.1 kg

Figure: 1-unit CubeSat. [7]
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Simulation - Development

• Python 2.7 was chosen as the programming language.

• Ephemerides were obtained through NASA’s Jet Propulsion
Laboratory Development Ephemeris, DE423, by use of the
Python module, jplephem 1.2.

• Two-line elements of the debris were obtained through
CelesTrack.

• Cross-sectional areas of the debris were obtained through the
satellite catalogue, SatCat, of CelesTrack.
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Simulation - Road Map
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Random Insertion

In order to test for robustness, a
potential testing spacecraft should
have random initial:

• Coordinates: θ and φ.

• Altitude: h.

• Eccentricity within limits: e.

• Direction of velocity: v̂ .

Definition

Random initial longitude and
latitude:

θ = 2πu : u ∈ (0, 1)

φ = cos−1(2v − 1) : v ∈ (0, 1)

Definition

Random initial velocity direction:

v̂ =
~rarb − ~r
‖~rarb − ~r‖
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Conservative Forces

The relevant conservative forces
must be accounted for:

• Earth’s gravity.

• The Sun’s gravity.

• The Moon’s gravity

• Essentially an N-Body
problem.

Definition

Gravitational Acceleration:

~Aj
n = −µ

j(~R j
n − ~Rsc

n )

‖~R j
n − ~Rsc

n ‖3

Definition

N-Body Problem:

~Ai ,n =
N∑

j=0,i 6=j

~Aj
i ,n
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Barycentric Perspective

Figure: A barycentric view of a CubeSat in Low Earth Orbit with the Moon
in view.
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Non-Conservative Forces

The non-conservative
perturbations must be accounted
for:

• Atmospheric Drag.

• Atmospheric Scale Model.

• Solar-Radiation Pressure.

• Eclipse Model.

Definition

Scaling atmospheric density model:

ρn = ρ0e
−hn
H

Definition

Acceleration due to solar-radiation
pressure:

~ASolar
n = −psnC

R
n A⊥ŝn ŝn
mn

Definition

Eclipse determination:

τ =
~r · ~r − ~sE
|~r − ~sE |2
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Atmospheric Drag

Figure: Atmospheric drag with scale model implemented.
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Solar-Radiation Pressure

Figure: Solar-radiation pressure model with eclipse model implemented.
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Numerical Propagation

In order to accurately simulate the
test spacecraft’s motion, one must
choose a numerical integrator:

• Forward Euler method.

• Simple, but may not be
accurate.

• Runge-Kutta-Fehlberg
method with an adaptive
time-step.

• Complex, but more
accurate and
accommodating.

Figure: Simple Low Earth Orbit
motion, as propagated by the RKF45
method.
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Mechanism of Action

The steps to efficient orbital debris
mitigation:

• Rendezvous using Aerojet
Rocketdyne’s MPS-120
(CHAMPS) [8] with
∆V = 200 m/s.

• Capture with ejected net.

• Passively deorbit with
aerodynamic drag, utilising
Clyde Space’s (AEOLDOS)
[9] with A = 3 m2.

• Utilise remaining propellant.

Figure: MERiDIUS passively
deorbiting captured debris. [10]
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Fengyun-1C

Attention will be brought to
Fengyun−1C, the Chinese weather
satellite that was destroyed on
January 11th, 2007, as a result of
an anti-satellite missile test.

• Polar orbit satellite of the
Fengyun series.

• Mass of 750 kg.

• Created more dangerous
orbital debris than any other
space mission in history [11].

Figure: Fengyun−1C debris
scattering, 5 minutes after its
collision. [12]
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Now to dispose of the debris...
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Fengyun-1C Orbital Debris

Figure: The trajectory of every trackable debris fragment of Fengyun−1C as
of January 1st , 2016.
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Relative Motion
In order to simulate the relative
motion of a spacecraft to its
target, the closed-form solution of
the Hill-Clohessy-Wiltshire
equations can be implemented for
rendezvous.

• Computationally inexpensive.

• Real-time control enables
autonomy.

• Spacecraft must be in the
vicinity of the target debris
and the target.

• Target must be in a nearly
circular orbit.

Definition

The HCW equations:

δẍ − 3n2δx − 2nδẏ =
Tx

m

δÿ + 2nδẋ =
Ty

m

δz̈ + n2δz =
Tz

m

Closed-form solution:

δ~r(δt) = Φrr (δt)δ~r0 + Φrv (δt)δ~v0

δ~v(δt) = Φvr (δt)δ~r0 + Φvv (δt)δ~v0
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δẍ − 3n2δx − 2nδẏ =
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Ty

m

δz̈ + n2δz =
Tz

m

Closed-form solution:

δ~r(δt) = Φrr (δt)δ~r0 + Φrv (δt)δ~v0

δ~v(δt) = Φvr (δt)δ~r0 + Φvv (δt)δ~v0

Christopher Iliffe Sprague (RPI) Debris, Safety and Awareness March 9, 2016 34 / 45



Dynamic Greedy Travelling Salesperson
The spacecraft is to:

• Determine the permissible
HCW space X3:
HCW Space.

• Search within that space for
possible debris targets: NNS.

• Compute the cost to
rendezvous with each feasible
debris: MCW2I.

• Rendezvous with the debris
requiring the least ∆V .

• Repeat for each subsequent
debris until all propellant is
expended.

 

𝑟𝑛 

𝑟𝑛+1 

𝑟𝑛+2 

𝑟𝑛+3 

𝕏𝑛
3  

𝕏𝑛+1
3  

𝕏𝑛+2
3  

Figure: An illustration of the method
by which the spacecraft is to capture
debris efficiently.
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Dynamic Greedy Travelling Salesperson
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Figure: Unconstrained NN tours. ∆Vcap = 5000 m/s & ∆ttr = 3 hrs

Christopher Iliffe Sprague (RPI) Debris, Safety and Awareness March 9, 2016 36 / 45



Dynamic Greedy Travelling Salesperson

1st Debris 2nd Debris ∆Vspent [m/s] Adeb [m2]

1999-025AY 1999-025BMF 159.8777 1.752
1999-025BQ 1999-025ANC 206.9559 1.752

1999-025AEF 1999-025BXU 132.8574 1.752
1999-025AJX 1999-025BRF 197.5427 1.752
1999-025AZV 1999-025ZM 142.8967 0.277
1999-025BLJ 1999-025CT 182.6922 7.688

1999-025BMF 1999-025AY 199.7687 1.752
1999-025CAH 1999-025BLV 213.9889 7.688
1999-025CBT 1999-025ALT 99.7949 6.402
1999-025CFR 1999-025DLT 105.7221 14.185
1999-025DDV 1999-025DYC 126.0361 16.031
1999-025DVV 1999-025AZB 129.6952 8.249

Table: Feasible HCW Rendezvous Tours. ∆Vcap = 220m/s & ∆t = 3hrs
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Dynamic Greedy Travelling Salesperson
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HCW Rendezvous with Fengyun-1C Orbital Debris (∆ttr=3hr,∆Vcap=220m/s)

Figure: Optimal NN tours with ∆Vcap = 200 m/s and ∆ttr = 3 hrs.
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Passive Deorbitation
Once the debris objects are captured, the drag sail is deployed, and
the time to deorbit decreases significantly.

AD = 0.01 [m2] AD = 3 [m2]
Altitude [km] Time to Deorbit TD [hrs]

200 136.56 2.42
250 1185.61 7.24
300 21806.44 21.36
350 80219.76 79.23
400 275637.64 275.76
450 275637.62 928.84
500 887488.56 2968.56

Table: Orbital decay comparison from various altitudes for a 5 kg cubesat,
with and without a deployed drag sail.
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Conclusions

The method of deorbiting space debris with CubeSats through
computationally inexpensive means and passive aerodynamic drag has
herewith been conceptually proven. Some conclusions:

• Aerodynamic drag sails are currently the most efficient way to
deorbit debris once they’ve been captured.

• The use the HCW equations may prove feasible in opportunistic
debris removal.

• Instead of targeting debris, the debris should come to the
spacecraft.

• CubeSats are a prime candidates for simultaneous, large-scale,
economical active debris removal.
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Future Work

To be included in future renditions of this project:

• Global optimisation.

• Continuous thrust.

• Heuristic sampling methods.

• Parallelisation.
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