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ABSTRACT

It is well known that orbital debris about Earth impose in-
creasingly stringent restrictions on the operation and commis-
sioning of both current and future space applications. These
orbital debris, which are becoming ever so prevalent, can lit-
erally destroy a satellite. Even particles of diminutive stature
can result in disastrous ramifications. Many of these endan-
gered satellites, of which humans are reliant upon for sup-
plying the infrastructure necessary to support modern life in
the twenty-first century, routinely have to perform avoidance
manoeuvres in response to ground data indicating that an ob-
ject is on a trajectory that could pose a threat, negating away
precious finite amounts fuel. These orbital debris are vexa-
tious, with respect to not only a spacecraft’s integrity, but also
its lifespan. It is imperative that a solution be realised. This
study aims to demonstrate the feasibility of utilising modu-
lar CubeSats to deorbit space debris. A large high fidelity
simulation is constructed with the goal to simulate the Cube-
Sat’s orbital dynamics, as well as its autonomous functions.
Such autonomous functions will manifest in the development
of autonomous control algorithms to execute mitigation pro-
cedures, such as path planning and rendezvous, with the intent
of substantiating their real-time implementability.

Index Terms— CubeSats, Orbital Debris, Simulation

1. INTRODUCTION

It is now clearer than ever that the future of sustainable space
operations is in a dire predicament. This is especially true
within the increasingly congested confines of Earth’s low
earth orbit (LEO) region (160km to 2,000km), where or-
bital debris are most concentrated. Through humanity’s half
century of space efforts, an estimated 400,000 and 14,000
objects of 1-10 cm and over 10 cm diameters, respectfully,
have congregated in LEO [1]. With a presumably increas-
ing commissioning rate of approximately 70 new satellites
annually [2], the probability of catastrophic collisions occur-
ring is ever increasing and worrisome. Responding to this
predicament by delaying the progression of space operations

would be an insult to the innovative demeanour that human-
ity has demonstrated through the course of its existence.
Without perturbation, orbital debris situated in LEO’s most
congested region of around 800km can remain in orbit for
decades; remaining idle would prove to be inefficacious. In
order to continue the efficient progression of technological
innovation in space exploration, active debris removal must
be implemented.

2. MECHANISM OF ACTION

Such a recalcitrant problem as orbital debris requires an inno-
vative solution. Within this study, attention will be brought to
passive aerobraking as a method for deorbiting space debris.
Under this paradigm of orbital debris mitigation the space-
craft is to, from any initial orbit, autonomously and intelli-
gently navigate to and rendezvous with orbital debris of spec-
ified criteria, subsequently encapsulating the object with an
ejected net. Following encapsulation, the spacecraft is to pas-
sively transport the object into a lower orbit via deployable
drag sails and remaining propulsive resources, only releasing
it once it is determined that the object, by itself, will decay
in a reasonable amount of time. To illustrate such a novel
mechanism of action, an extensive simulation is required.

3. DEVELOPMENT FRAMEWORK

With concern to selection of programming language, it was
chosen that the simulation be composed in Python 2.7 [3].
This selection was not without careful consideration to what
this study requires, especially in terms of manipulability. The
utilisation of commercial astrodynamics programs is akin to
using a black box. Although such programs have proven
records in regards to industrial usage, it is imperative that
the processes by which the results are determined be clearly
defined and easily manipulated, especially in a simulation
that necessitates modelling of not only the spacecraft’s dy-
namics, but also the environment in which it operates, and its
autonomous functions.
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Fig. 1: Simulation Development Road Map

4. EPHEMERIDES

The development of an accurate spacecraft simulation ne-
cessitates the modelling of the celestial bodies in order to
instantiate their influences on the spacecraft. This requires
both the position and velocity of all the solar system’s mas-
sive bodies; however, in the context of a spacecraft in LEO,
it is a proper approximation to invoke only the influences of
the Sun, Earth, and Moon. The positions and velocities of all
the bodies within the solar system may be obtained through
an ephemeris, a tabulation of the celestial bodies’ calculated
states. In this study, ephemerides were obtained through
NASA’s Jet Propulsion Laboratory Development Ephemeris,
DE423 (used in MESSENGER), accessed through the Python
module, ’jplephem 1.2’ [4].

5. PROPULSION

As it is the desire of this study to maximise efficiency through
the course of the spacecraft’s mission, the effects of its propul-
sion subsystem will only be intentionally invoked where they
are necessarily required, namely the orbital manoeuvring
phase in which the spacecraft navigates to the chosen orbital
debris objects. In order to maintain this study’s adherence to
reality, it is necessary to procure the propulsive specifications
of actual commercially available propulsion systems. In order
to augment the breadth of this study’s applicability, attention
will be brought to two distinct regimes of propulsion systems,
namely high impulse and low impulse propulsion.

5.1. High impulse

Among the most prevalent regimes of spacecraft propulsion is
high impulse chemical propulsion. Though chemical propul-
sion is inherently energy limited, systems of this type are su-

perior with respect to their high thrust and low power require-
ments as compared to low impulse electric propulsion sys-
tems. Such propulsion systems can allow spacecraft to ma-
noeuvre in an agile manner.

There are a variety of cubesat propulsion systems avail-
able to the commercial market. In the context of a 4 kilo-
gramme three unit CubeSat, such as that of MERiDIUS
[5] (Mitigation of Environmental Risks Due to Impact on
Unfortunate Spacecraft), a cubesat designed entirely with
commercially available products, one can utilise the one
unit MPS-120 CubeSat High-Impulse Modular Propulsion
System (CHAMPS) of Aerojet Rocketdyne [6], fuelled with
hydrazine propellant and equipped with four thrusters. This
system has the ability to provide 2.79 Newtons of force per
thruster and a potential ∆V of 220 meters per second in the
case of MERiDIUS. The use of hydrazine, though highly
controversial due to its horrendous health effects, is highly
advantageous, being able to supply a favourable specific
impulse (Isp) of approximately 220 seconds.

5.2. Low impulse

Similarly to impulsive chemical propulsion systems, low im-
pulse electrically propelled systems have their own limita-
tions. Electric propulsion systems are inherently power lim-
ited; however they are contrarily not at all energy limited, ig-
noring hardware lifetime degradations [7]. In fact, low im-
pulse electrically propelled systems can impart an arbitrar-
ily immense amount of energy, allowing for a greatly ele-
vated specific impulse. Resultantly, such systems provide a
low thrust to mass ratio for their given spacecraft. Though
this type of propulsion system results in a greatly decreased
spacecraft acceleration, it has the ability to produce a prodi-
gious amount of total impulse over time as compared to chem-
ically propelled systems. Similarly to chemical propulsion
systems, there are numerous commercially available low im-
pulse propulsion systems available to consumers. In the case
of MERiDIUS, one could choose the 1.6 unit Busek Bit-3 Ion
Thruster [8]. This thruster supplies a specific impulse of 3500
seconds, a thrust of 1.4 milliNewtons an astounding potential
∆V of 5460 meters per second, in the case of a 4.5kg version
of MERiDIUS.

5.3. Summary

The propulsive specifications of the two aforementioned com-
mercially available propulsion systems can readily be invoked
as metrics within the manoeuvring and decay phase of the
spacecraft’s simulation. There are three important metrics
within the context of a spacecraft simulation, namely: poten-
tial delta-V (∆Vcap), specific impulse (Isp) and maximum
thrust (TMax). These metrics are summarised for each of the
aforementioned propulsion systems in Table 1.

Although low impulse electric propulsion certainly has its
merits and accolades from its recent use in space exploration,



Table 1: CubeSat System Specifications

Type ∆V [ms ] Isp[s] TM [N] m0[kg] mf [kg]
High Imp. 220 220 11.16 4 3.7
Low Imp. 5460 3500 1.4e-3 4 3.4

for the sake of this study’s intent on demonstrating the fea-
sibility of real-time autonomous operation in the context of
active debris removal, this study’s focus is herewith restricted
to high impulse propulsion.

6. AEROBRAKING

With regard to the unique mechanism of action that this study
aims to demonstrate the feasibility of, the spacecraft will
utilise a deployable drag sail. Utilisation of such a device
will enable the spacecraft, after it has encapsulated its desired
object, to passively transport the object into a lower orbit,
where it will subsequently realise its demise. Similarly to
CubeSat propulsion systems, there is also a variety of deorbit
devices available to the commercial market. Such as it is, in
the case of MERiDIUS, one may employ the use of the 0.4
unit Aerodynamic End of Life DeOrbit System for CubeSats
(AEOLDOS) of Clyde Space [9], which is able to supply 3
square metres of area. This aerobraking system is depicted in
Figure 2, shown in its deployed state, after the spacecraft has
captured its targeted debris object.

(a) Net Caputure (b) Deployed Drag Sail

Fig. 2: MERiDIUS [5]

7. INITIAL ORBIT CHARACTERISATION

In simulating the spacecraft’s orbital dynamics with the in-
tention of verifying the robustness of its autonomous control
algorithms, it is essential to instill randomness within the pa-
rameters of the environment in which the spacecraft operates
in. Among the conditions in which this study is conducted
are: 1) the spacecraft must only operate in a low Earth or-
bit with adherence to the task of only seeking orbital debris

bodies which are also in LEO and 2) the spacecraft must be
initially inserted into a circular orbit of random initial longi-
tude, latitude, and direction for the reason that it will have
likely been transported into orbit by a launch vehicle whose
intentions are that of a separate mission.

8. INITIAL POSITION

As it is desired to instill randomness into this simulation for
the sake of verifying the robustness of the spacecraft’s au-
tonomous functions; the initial latitude, longitude, and alti-
tude should be generated at random within this study’s con-
straints.

8.1. Random points on a sphere

It would be incorrect to simply select at random the space-
craft’s spherical coordinates from uniform distributions of
longitude and latitude: θ ∈ [0, 2π) and φ ∈ [0, π], re-
spectively [10]. Randomly selecting from such distributions
would result in point clustering towards the poles of the
sphere, since any small area element on its surface is a
function of φ such that dΩ = sinφdθdφ. Because a dif-
ferential element of solid angle on a sphere is characterised
by dΩ = sinφdθdφ = −dθd(cosφ), one may ensure a con-
sistent number of available points to select from each small
surface area on the sphere, as to allow an equal probability
for each point to be selected, by implementing the following
formulation:

θ = 2πu : u ∈ (0, 1) (1)

φ = cos−1(2v − 1) : v ∈ (0, 1) (2)

where θ and φ are respectfully the spacecraft’s possible lon-
gitudes and latitudes uniformly distributed over the sphere’s
surface S2, and {u, v} are both uniformly distributed over
(0, 1).

8.2. Cartesian coordinates

Assuming the longitude and latitude of the spacecraft’s initial
orbit have been randomly selected from a uniform point dis-
tribution about S2, the initial altitude of the spacecraft may
be randomly generated. Imposing the criteria that the space-
craft may only operate within LEO, its initial altitude may be
selected at random from a uniform distribution between 160
and 2,000 km as follows:

r = hsc + rE | hsc ∈ (160 km, 2000 km) (3)

where hsc is the spacecraft’s altitude measured from sea level,
rE is the volumetric mean radius of Earth (6371.0 km), and
r is the distance from the spacecraft to the centre of Earth.
These parameters are then converted to accommodate the pri-
mary Cartesian coordinate system centred at the barycentre of



the solar-system:

x = r sin(φ) cos(θ) (4)

y = r sin(φ) sin(θ) (5)

z = r cos(φ) (6)

~r = xî+ yĵ + zk̂ (7)

~Rsc = ~RE + ~r (8)

where [x, y, z]T forms the vector ~r of the spacecraft’s Carte-
sian coordinates as measured from Earth’s centre, ~RE forms
Earth’s Cartesian coordinates as measured from the barycen-
tre of the solar system, and ~Rsc composes the the barycentric
coordinates of the spacecraft.

9. INITIAL VELOCITY

Once the initial position of the spacecraft has been deter-
mined, all that remains is to initialise its velocity such that
it maintains a circular orbit in the context of a two-body prob-
lem with Earth, which of course, due to forces exerted by
ancillary bodies such as the Moon and the Sun, and non con-
servative forces such as aerodynamic drag and solar radiation
pressure, may not be entirely accurate; however, for a space-
craft in LEO, such an approximation is suitable for its initial-
isation.

9.1. Magnitude

The only specific requirement of the spacecraft to maintain a
circular orbit is the magnitude of its velocity, which can be de-
termined by assuming the semi-major axis of the spacecraft’s
orbit is equal to the magnitude of its initial geocentric posi-
tion, and that it must be directed tangentially along its sphere
of orbit about Earth, such that its radial velocity towards Earth
is zero, which is summarised accordingly:

v =

√
µE(

2

r
− 1

a
)⇒

√
µE
r

: a = r (9)

where v is the magnitude of the spacecraft’s geocentric ve-
locity, µE is the standard gravitational parameter of Earth, r
is the magnitude of the spacecraft’s geocentric position, and
a is the magnitude of the semi-major axis of the spacecraft’s
orbit.

9.2. Direction

In order to maintain this study’s desired randomness in the
spacecraft’s initial orbital characterisation, its velocity vector
must be directed in any direction that is tangential to its sphere
of orbit about Earth. In order to do this, firstly the equation
of the plane tangent to the spacecraft’s sphere of orbit about

Earth at its initial instance, whose points are arbitrary, must
be obtained accordingly:

x(xarb − x) + y(yarb − y) + z(zarb − z) = 0 (10)

where ~r = [x, y, z]T ∈ S2 composes the spacecraft’s Carte-
sian geocentric coordinates and ~rarb = [xarb, yarb, zarb]

T ∈
TP composes the geocentric coordinates of an arbitrary point
somewhere in the tangent space (TP ) of the spacecraft’s or-
bital sphere manifold (S2) at it’s initial coordinates. Secondly,
in accordance to this study’s scheme, two arbitrary points ly-
ing on the orbital sphere’s tangent space are selected at ran-
dom from a uniform distribution between -1 and 1 such that
{yarb, zarb} ∈ (−1, 1), which enables the subsequent deter-
mination of zarb, the third remaining arbitrary Cartesian co-
ordinate on the orbital sphere’s tangent plane. Thirdly, the di-
rection of the spacecraft’s initial velocity vector can be deter-
mined by calculating the position vector from the spacecraft
to the arbitrary point on the plane tangent to the spacecraft’s
sphere of orbit about Earth, and then computing its unit vector
accordingly:

v̂ =
~rarb − ~r
‖~rarb − ~r‖

(11)

where v̂ is the direction of the spacecraft’s geocentric velocity
vector. Further clarification on the process which led to this
result can be attained by observing Figure 3.
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Fig. 3: This figure represents the spacecraft’s sphere of or-
bit S2 and tangential plane TP , from which the spacecraft’s
random initial velocity direction is calculated.

9.3. Vectorisation

Finally, the spacecraft’s geocentric and barycentric velocity
vectors, can be determined respectively:

~v = vv̂ (12)



~Vsc = ~VE + ~v (13)

where ~v is the spacecraft’s geocentric velocity vector, ~VE is
Earth’s velocity vector with respect to the barycentre of the
solar system, and ~Vsc is the spacecraft’s barycentric velocity
vector.

10. ENVIRONMENTAL CHARACTERISATION

Commonly, in elementary studies of orbital dynamics, only
the gravitational effects native to the two body problem are
taken into account. However, in reality, a spacecraft orbiting
Earth will experience a multitude of accelerations, instilled by
not only conservative forces, but also non-conservative forces.

10.1. Conservative forces

Of the conservative forces considered extraneous in the con-
text of basic orbital dynamics, are the gravitational influences
of all ancillary bodies in the solar system; however, it is in-
deed valid to only heed influences of the Earth, Moon and
Sun, as the forces felt by the other planets in the solar system
whilst orbiting Earth are negligible in comparison. Such as it
is, one may construct the spacecraft’s conservative accelera-
tion vector as the summation of the gravitational influences of
the Sun, Earth and Moon accordingly:

~ACn = ~ASunn + ~AEarthn + ~AMoon
n (14)

~Ajn = −µ
j(~Rjn − ~Rscn )

‖~Rjn − ~Rscn ‖3
(15)

where ~ACn is the spacecraft’s conservative acceleration vector,
~Ajn denotes the spacecraft’s acceleration due to the gravita-
tional influence of the jth body such that j signifies the index
of the observed body, µj is the standard gravitational param-
eter of the jth body, ~Rjn is the barycentric position vector of
the jth body, ~Rscn is the spacecraft’s barycentric position vec-
tor, and the subscript n denotes the nth time step within the
simulation.

Fig. 4: Barycentric perspective of the spacecraft situated in
low Earth orbit, with the moon in view.

10.2. Non-conservative forces

Whilst conservative forces display continuous conservation
of energy within the spacecraft’s orbital dynamics, non-
conservative force cause perturbations that lead to observed
deviations from the idealised predictions of the spacecraft’s
motion. Among the non-conservative forces that the space-
craft may experience are aerodynamic drag and pressure
due to solar radiation. One may start by constructing the
spacecraft’s non-conservative acceleration vector, as the sum-
mation of its perceived aerodynamic acceleration and accel-
eration due to solar radiation pressure, accordingly:

~ANCn = ~AAeron + ~ASolarn (16)

where ~ANCn is the spacecraft’s non-conservative acceleration
vector, ~AAeron is the acceleration due to aerodynamic drag felt
by the spacecraft, and ~ASolarn is the spacecraft’s acceleration
due to solar radiation pressure.

10.3. Aerodynamic drag

While the calculation of solar-radiation pressure is relatively
straight forward, obtaining the atmospheric density at a given
altitude in accordance to an exponential scale model requires
a change in scale as the spacecraft descends into each sub-
sequent altitude range as its orbit decays, as can be seen in
Figure 5. The vector of the spacecraft’s acceleration due to
aerodynamic drag can be formulated as follows [11]:

~AAeron = −ρnC
D
n A
⊥v̂
n v2v̂n

2mn
(17)

where, as before, the subscript n denotes the nth time step
within the simulation, CDn is the spacecraft’s drag coefficient,
A⊥v̂n is the area of the spacecraft perpendicular to the direc-
tion of the spacecraft’s velocity, ρn is the atmospheric density
at the spacecraft’s altitude, v is the spacecraft’s geocentric ve-
locity, v̂n is the direction of the spacecraft’s velocity, and mn

is the spacecraft’s mass.
It should be noted that before the deployment of the drag

sail, the spacecraft’s area perpendicular to flow is such that
A⊥v̂n = 10cm2; however this area increases significantly once
the drag sail is deployed such thatA⊥v̂n → 3m2. Furthermore,
it is widely accepted to assume that CDn = 2.2 for a space-
craft. In order to accurately simulate the atmospheric drag
that the spacecraft will experience, the atmospheric density at
any given altitude must be computed accordingly [12]:

ρn = ρ0e
−hn
H (18)

where ρ0 is the atmospheric density at sea level, H is the
atmospheric scale height for the given range that the space-
craft’s altitude pertains to, and hn is the altitude of the space-
craft.



Fig. 5: This figure represents the functioning of the atmo-
spheric scale model. As the spacecraft descends into lower
altitudes, its atmospheric scale height drops into a new range.
The altitude, velocity, and acceleration due to drag are de-
picted in the top, middle, and bottom rows, respectively.

10.4. Solar radiation pressure

Among the remaining non-conservative perturbations that the
spacecraft may experience whilst orbiting about Earth is so-
lar radiation pressure. Solar radiation pressure is the force
imparted on the spacecraft as a result of electromagnetic par-
ticles either being reflected or absorbed by the spacecraft’s
exterior. The resultant acceleration due to this force may be
computed accordingly:

~ASolarn = −p
s
nC

R
n A
⊥ŝ
n ŝn

mn
(19)

where psn is the nominal value of solar pressure felt at Earth’s
location (' 5.00e − 6 N

m2 ), CRn is the spacecraft’s coefficient
of reflectivity, A⊥ŝn is the area of the spacecraft perpendicu-
lar to the sun’s direction, ŝn is the direction vector from the
spacecraft to the sun and mn is the spacecraft’s mass. The
spacecraft coefficient of reflectivity may vary from 0.0 to 2.0
such that CRn ∈ [0.0, 2.0], where 0.0 indicates a translucent
surface with no influence, 1.0 indicates a completely absorb-
ing surface and 2.0 indicates a surface that both absorbs and
reflects. Additionally, the value of psn is difficult to compute
due to unpredictable fluctuations in solar activity. An effec-
tive model can be found to indicate whether the spacecraft is
in sunlight or being eclipsed by either Earth or another celes-
tial body using geometry [11]:

τ =
~r · ~r − ~sE
|~r − ~sE |2

(20)

where ~r is the spacecraft’s geocentric position vector and ~sE
is the position vector from Earth to the Sun. If τ is either less
than zero or greater than one, than the spacecraft will be in
sunlight.

Fig. 6: In this figure, the functioning of the solar radiation
pressure and eclipse models can be seen. As the spacecraft’s
view to the sun becomes blocked by a celestial body, its ac-
celeration due to solar radiation drops.

11. NUMERICAL PROPAGATION

In modelling and simulating the spacecraft’s orbital dynam-
ics, it is necessary to propagate the effects of the environ-
mental accelerations applied to the spacecraft by way of inte-
grating a set of ordinary differential equations. It is through
this integration that the primarily gravitational motion of the
spacecraft is characterised. However, it is not only gravity that
the spacecraft’s motion is caused by; other non-conservative
forces, such as aerodynamic drag and solar radiation pressure,
also make their effects known. Given that, in regards to the
spacecraft’s gravitational influences, not only is Earth taken
into account, but also the Sun and Moon. It is for this reason
that it is necessary to apply the N-Body Method to accommo-
date more than one body of attraction as follows:

~Ai,n =

N∑
j=0,i6=j

~Aji,n (21)

where ~Ai,n is the ultimate acceleration of the ith body, ~Aji,n
is the acceleration of the ith body due to the influence of the
jth body, and N is the total number of bodies. All of the
spacecraft’s environmental influences may culminate in the
form of one ultimate acceleration vector that is readily applied
to multiple spacecraft simultaneously:

~Ai,n = ~ASuni,n + ~AEarthi,n + ~AMoon
i,n + ~AAeroi,n + ~ASolari,n (22)

where the individual accelerations that compose the space-
crafts’ accelerations, ~Ai,n, are defined as they were before.
The acceleration of the spacecraft in observance to multiple
attracting bodies and non-conservative perturbations can be
propagated through the time frame of the spacecraft’s simu-
lation with the utilisation of one of the variety of numerical
integration methods available to handle ordinary differential
equations.



11.1. Forward Euler method

Among the simplest of such methods that are available to
integrate the ordinary differential equation that compose the
spacecraft’s motion is the Forward Euler Method of numeri-
cal integration. This method can be summarised as follows:

~Vi,n+1 = ~Vi,n + δt ~Ai,n (23)

~Ri,n+1 = ~Ri,n + δt~Vi,n (24)

where ~A is an acceleration vector, ~V is a barycentric velocity
vector, ~R is a barycentric position vector, δt is the simula-
tion’s time step size with units of seconds, i denotes the ith

body and n denotes the nth time step whose value may either
be n or n+ 1 in order to indicate the next time time step from
the spacecraft’s current time step.

11.2. Runge-Kutta-Fehlberg method

In order to guarantee accuracy of this study’s simulation,
it’s necessary to implement a more advance integration al-
gorithm. For the case of initial value problems such as the
one of this study, where the spacecraft has a random initial
position and velocity about Earth, one can ensure numerical
integration accuracy by varying the simulation’s step size in a
dynamic manner. In order to determine how the simulation’s
time step should be varied as time progresses, one would
intuitively have to run the simulation multiple times at dif-
ferent time steps and compare the accuracy of their results.
In order to avoid such a computationally intensive process it
is advised to implement the Runge-Kutta-Fehlberg (RKF45)
method with a dynamic time step.

The Runge-Kutta-Fehlberg algorithm is able to determine
the proper step size δt to use by computing the error between
two different approximations methods at each time step of
the simulation. The algorithm adjusts the step size until the
step’s two approximations come to agreement within a speci-
fied accuracy tolerance. At each step of the simulation, vector
coefficients are generated accordingly [13]:

(~r1, ~v1) = (~Rn, ~Vn) (25)

~a1 = δt ~A(tn, ~r1, ~v1) (26)

~v2 = ~v1 +
1

4
~a1 (27)

~r2 = ~r1 +
1

4
~v1 (28)

~a2 = δt ~A(tn +
1

4
δt, ~r2, ~v2) (29)

~v3 = ~v1 +
3

32
~a1 +

9

32
~a2 (30)

~r3 = ~r1 +
3

32
~v1 +

9

32
~v2 (31)

~a3 = δt ~A(tn +
3

8
δt, ~r3, ~v3) (32)

~v4 = ~v1 +
1932

2197
~a1 −

7200

2197
~a2 +

7296

2197
~a3 (33)

~r4 = ~r1 +
1932

2197
~v1 −

7200

2197
~v2 +

7296

2197
~v3 (34)

~a4 = δt ~A(tn +
12

13
δt, ~r4, ~v4) (35)

~v5 = ~v1 +
439

216
~a1 − 8~a2 +

3680

513
~a3 −

845

4104
~a4 (36)

~r5 = ~r1 +
439

216
~v1 − 8v2 +

3680

513
~v3 −

845

4104
~v4 (37)

~a5 = δt ~A(tn + δt, ~r5, ~v5) (38)

~v6 = ~v1 −
8

27
~a1 + 2~a2 −

3544

2565
~a3 +

1859

4104
~a4 −

11

40
~a5 (39)

~r6 = ~r1 −
8

27
~v1 + 2~v2 −

3544

2565
~v3 +

1859

4104
~v4 −

11

40
~v5 (40)

~a6 = δt ~A(tn +
1

2
δt, ~r6, ~v6) (41)

where the members of (~Rn, ~Vn) are defined as they were be-
fore as the spacecraft’s barycentric position and velocity vec-
tor at the nth time step, δt is the time step size of the simula-
tion and ~A is the acceleration function as defined in equation
22 that takes ~R and ~V as its arguments. After the coefficients
have been generated, approximations from both the Runge-
Kutta 4th and 5th order methods can be computed accord-
ingly:

~V
O(4)
n+1 = ~Vn +

25

216
a1 +

1408

2565
a3 +

2197

4101
a4 −

1

5
a5 (42)

~R
O(4)
n+1 = ~Rn +

25

216
v1 +

1408

2565
v3 +

2197

4101
v4 −

1

5
v5 (43)

~V
O(5)
n+1 = ~Vn+

16

135
a1+

6656

12825
a3+

28561

56430
a4−

9

50
a5+

2

55
a6

(44)
~R
O(5)
n+1 = ~Rn+

16

135
v1 +

6656

12825
v3 +

28561

56430
v4−

9

50
v5 +

2

55
v6

(45)
where O(4) and O(5) denote the 4th and 5th order Runge-
Kutta approximations, respectfully. Once the approximations
have been computed, the value of the errors between the two
methods associated with the spacecraft’s barycentric velocity
and position may subsequently be determine as follows:

E~V =
1

360
a1 −

128

4275
a3 −

2197

75240
a4 +

1

50
a5 +

2

55
a6 (46)

E~R =
1

360
v1 −

128

4275
v3 −

2197

75240
v4 +

1

50
v5 +

2

55
v6 (47)

where E~V and E~R are the errors between the 5th and
4th order Runge-Kutta methods for both the spacecraft’s
barycentric velocity and position vectors, ~Vn+1 and ~Rn+1,



respectively. If either of these error values are outside of
the simulation’s specified error tolerance criteria such that
{E~R,n, E~V ,n} > ET or {E~R,n, E~V ,n} � ET , then the coef-
ficients [a1, . . . , a6] and [v1, . . . , v6] are recomputed at time
step sizes of δt

2 or 2δt, respectively, until the error is accept-
able such that {E~R,n, E~V ,n} < ET , where ET ' 1e − 8.
Once it has been determined that the estimated error asso-
ciated with both the spacecraft’s barycentric velocity and
position are within the simulation’s error tolerance criteria,
the values ~V O(5)

n+1 and ~R
O(5)
n+1 can be accepted, and a conserva-

tive estimate of the next iteration’s time step can be computed
accordingly:

δtopt = min

δt
 ET δt

2
∣∣∣E~R,n

∣∣∣
1/4

, δt

 ET δt

2
∣∣∣E~V ,n∣∣∣

1/4

(48)

where δtopt is the approximated optimal time step for the sim-
ulation’s next iteration based on the error between the 5th and
4th order Runge-Kutta methods for the current iteration, ET
is the specified error tolerance in the simulation and δt is the
accepted time step of the current iteration. This particular
integration method is able to anticipate certain areas of the
spacecraft’s trajectory where more resolution may be needed.

12. SIMULATION VALIDITY

Once the supporting framework of the spacecraft’s simula-
tion is entirely constructed, it is important to verify that its
dynamics and utilities are behaving as they are supposed to
according to astrodynamical theory and user preferences.

12.1. Reference frames

Given that the framework of this study was developed such
that its core computations are primarily performed in terms
of barycentric coordinates, data can readily be constructed
with reference to any bodies of which this study restricts its
observance to, mainly Earth and the Sun. Such as it is, vi-
sualisations can easily be constructed with reference to either
barycentric or geocentric coordinate systems, as can be seen
in Figure 4 and Figure 7, respectively.

12.2. Insertion

Firstly, attention should be brought to the method by which
the spacecraft’s orbit was initiated, developed in Section 7.
Adhering to the fundamental principle’s that this study ad-
heres to, it was desired that the cubesat be inserted into a com-
pletely random orbit, with the only restrictions imposed being
that it is circular and within LEO. Noting that a perfectly cir-
cular orbit’s radial velocity should remain at zero in reference
to it’s primary attracting body, it can be seen in Figure 8 that

Fig. 7: Geocentric perspective of spacecraft’s orbit, integrated
with the RKF45 method.

the spacecraft’s range of radial geocentric velocities are mi-
nuscule in comparison to the magnitude of its overall geocen-
tric velocity (∼ 7.8 km/h) at anytime; though it should be
noted that Figure 8 was constructed using the Forward Euler
method, while in contrast the RKF45 method has constructed
a very fine line in Figure 7, indicating much less error.

Fig. 8: Radial Velocity vs. Geocentric Position, integrated
with the Forward Euler method.

12.3. Perturbations

The two non-conservative forces modelled in Section 10.2
were aerodynamic drag and solar radiation pressure. It can
be seen in Figure 9 that the spacecraft experiences its great-
est atmospheric drag at its closest approach to Earth just as
it should in accordance to Equation 17. Additionally, the in-
tended behaviour of the exponential scale density model con-
structed in Equation 18 can be seen in Figure 5; observe how
the curve of the aerodynamic drag shifts for each subsequent
altitude range. In addition to aerodynamic drag, the success
of the solar radiation pressure model formed in Equation 19
can be seen in Figure 6, where the imparted acceleration of
the spacecraft sharply drops off once it has been determined
that the spacecraft’s view of the sun is obscured.



Fig. 9: Aerodynamic Drag with Geocentric Position and Time

13. RENDEZVOUS

Assuming that the spacecraft has been inserted into a ran-
domly characterised orbit in order to simulate a CubeSat’s
lack of jurisdiction in regard to its orbital insertion, it is neces-
sary to bring attention to how the cubesat will fulfil its mission
goals by rendezvousing with a target debris object. In order to
do this it is necessary to simulate not only the cubesat’s mo-
tion, but also the plausible motion of the debris it intends to
seek out. It is entirely possible that the targeted space debris
within this simulation may have an elliptical orbit; however,
attention will only be brought debris remain in the confines of
LEO. It was chosen that this simulation include debris whose
orbits may be elliptical in order to give credence to the fact
that such problematic bodies often behave chaotically, origi-
nating from collisions that are becoming ever so frequent. In
this particular study, attention will be brought directly towards
the debris of Fengyun-1C, the Chinese weather satellite that
was destroyed in 2007 by China as part of an anti-satellite
missile test. This event created more dangerous orbital debris
than any other space mission in history [14].

13.1. Hill-Clohessy-Wiltshire equations

In the case that the spacecraft is fortunate enough to find itself
in close proximity to its orbital debris target where the space-
craft’s position with respect to its target δr is much smaller
than both the geocentric positions of the spacecraft rsc and
the orbital debris object rod, such that δr � {rsc, rod}, one
can what should be implemented the Hill-Clohessy-Wiltshire
(HCW) equations [15]:

δẍ− 3n2δx− 2nδẏ =
Tx
m

(49)

δÿ + 2nδẋ =
Ty
m

(50)

δz̈ + n2δz =
Tz
m

(51)

n =

√
µE
r3sc

(52)
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Fig. 10: Every debris fragment of Fengyun-1C as of January
1st, 2016.

where n is the spacecraft’s mean motion, rsc is the geocen-
tric position of the spacecraft, δx is the radial position of the
spacecraft relative to the target in the direction î, δz is the
cross-track position of the spacecraft relative to the target in
the direction k̂, δy is the along-track position of the cubesat
relative to the target in the direction ĵ, and [Tx, Ty, Tz]

T com-
posed the spacecraft’s thrust vector in LVLH space.

13.2. LVLH reference frame

These equation are constructed in the realm of the LVLH ref-
erence frame centred about the target, where direction vectors
describing the target’s frame from which the chaser’s relative
motion are formed accordingly:

î =
~r

‖~r‖
(53)

k̂ =
~h

‖~h‖
(54)

ĵ = k̂ × î (55)

where ~r denotes the target’s position vector with respect to
the inertial frame centred about Earth and ~h denotes the tar-
get’s angular momentum vector. The direction cosine matrix
converting from the geocentric reference frame centred about
Earth X̂ to the LVLH reference frame centred about the the
target space debris object x̂od can then be constructed accord-
ingly:

QX̂→ ˆxod
=

 îĵ
k̂

 =

. . . Î . . . Ĵ . . . K̂

. . . Î . . . Ĵ . . . K̂

. . . Î . . . Ĵ . . . K̂

 (56)



where [̂i, ĵ, k̂]T characterises the orientation of the LVLH
frame’s principles axes with respect to the geocentric frame
centred about Earth, denoted by {. . . Î , . . . Ĵ , . . . K̂}.

13.3. Two-impulse rendezvous

The closed form solutions of the Hill-Clohessy-Wiltshire
Equations are particularly useful in the implementation of
real-time control. From these equations, the required ∆~V ,
in the target’s reference frame, for the cubesat to rendezvous
with the object can be obtained and executed. The closed-
form solution to these equations, from which the required
∆~V will be obtained, can be constructed accordingly:

δ~r(δt) = Φrr(δt)δ~r0 + Φrv(δt)δ~v0 (57)

δ~v(δt) = Φvr(δt)δ~r0 + Φvv(δt)δ~v0 (58)

Φrr(δt) =

 4− 3 cosnδt 0 0
6(sinnδt− nδt) 1 0

0 0 cosnδt

 (59)

Φrv(δt) =


sinnδt
n

2(1−cosnδt)
n 0

2(cosnδt−1)
n

(4 sinnδt−3nδt)
n 0

0 0 sinnδt
n

 (60)

Φvr(δt) =

 3n sinnδt 0 0
6n(cosnδt− 1) 0 0

0 0 −n sinnδt

 (61)

Φvv(δt) =

 cosnδt 2 sinnδt 0
−2 sinnδt 4 cosnδt− 3 0

0 0 cosnδt

 (62)

where {δ~r0, δ~v0} and {δ~r, δ~v} are respectively defined as the
initial and time-variant LVLH referenced position and veloc-
ity vectors of the spacecraft, n is defined as it was in Equa-
tion 52 and δt is the elapsed time of the manoeuvre such that
δt = tf − t0.

These solutions can offer an idealised solution to the
spacecraft’s rendezvous with its targeted space debris object;
however, it can be seen in Figure 11 that these solutions may
result in drift. Drift of the solutions provided by the closed-
form of the HCW equations can arise when the orbit of the
spacecraft’s target does not entirely fit the criteria for use of
the HCW equations, namely: 1) the chaser’s orbit must be in
the ’neighbourhood’ of the target 2) the target’s orbit must
be circular and 3) the distance between the chaser and the
target are much smaller than either of their geocentric posi-
tions. Although these equations uncompromisingly require
specific conditions to be met, sometimes they may suffice
even if their criteria is not entirely met. The HCW equa-
tions can be periodically invoked through the course of the
spacecraft’s trajectory in conjunction with a sampling routine,
allowing these equations to operate somewhat accurately in
the situation that the target’s orbit is slightly elliptical, whilst
maintaining real-time operation.

Fig. 11: An example of the drift resulting in a solution pro-
vided by the HCW equations for a target whose characteristics
do not entirely fit the idealised criteria.

13.4. Dynamic greedy travelling salesperson problem

In order to give credence to the feasibility of utilising econom-
ical autonomous CubeSats to perform active debris removal,
it is germane to direct this study’s attention towards the use of
the closed form solution of the Hill-Clohessy-Wiltshire Equa-
tions, as they form the basis of many real-time autonomous
rendezvous control systems today.
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Fig. 12: This figure illustrates the method by which the space-
craft: 1) declares the space within its vicinity where the
HCW equation’s use would be permissible (grey ellipses), 2)
searches its space for neighbours (lines), and 3) computes the
cheapest neighbour to manoeuvre to (bold lines).

13.5. Problem

With the shear amount of debris in low Earth orbit, as can
be seen in Figure 10, it is not exactly clear how one should
proceed in order to perform active debris removal in an eco-



nomic and effective manner. Such as it is, it is necessary to
perform an in depth analysis in order to ensure the reduction
of propellant expenditure whilst maximising the amount of
debris fragments mitigated. The clearest way to proceed is to
construct a travelling salesperson problem. A travelling sales-
person problem essential asks: given a list of cities and their
relative distances, what is the is the shortest possible route
in order to visit each city exactly once? In the case of active
orbital debris mitigation, where each debris fragment symbol-
ises a city, the becomes much more complicated, as the cities
are not only dynamic with time, but also governed by physics
whose manifestation is quite foreign to the terrestrial realm.

Although the sophistication of today’s continually devel-
oping technological is quite remarkable, the on-board compu-
tational power of most spacecraft remains constrained by the
harsh space environment. Any significant orbital manoeuvre
performed by a spacecraft within low Earth orbit most likely
with the assistance of a ground command.

13.6. Development

Under the assumption that the spacecraft has found itself to be
fortunate enough to be initially situated upon an orbital debris
fragment, it is to:

1. Determine the space within its vicinity X3, in which the
implementation of the Hill-Clohessy-Wiltshire Equa-
tions would be permissible. (HCW Space)

(a) HCW Space acts as a function that determines
the space within the spacecraft’s vicinity X3 in
which a rendezvous manoeuvre through the use of
the Hill-Clohessy-Wiltshire Equations is permis-
sible under its assumptions, sometimes reffered to
as ’pruning’. These assumptions outlined in Sec-
tion 13.1

2. Search within that space for possible debris targets.
(NNS)

(a) NNS is a function that is able to rapidly re-
turn the most similar neighbours of any point
within a data set utilising a k-d tree, a space-
partitioning data structure for organising point in
a k-dimensional space. The function is read-
ily implemented by use of the Python class,
’scipy.spatial.KDTree’ [16]. This function is
invoked once the size of the spacecraft’s three
dimensional search space is minimised, as to
expedite the algorithms progress.

3. Compute the cost to rendezvous with each feasible de-
bris. (MCW2I)

(a) MCW2I returns the ∆V required for the space-
craft to rendezvous with a specified target debris
fragment from its initial position.

4. Rendezvous with the debris fragment requiring the
least ∆V .

5. Repeat 1-4 for each subsequent location

These steps are qualitatively summarised in Figure 12. Each
vertical cross bar denotes each of the spacecraft’s subsequent
locations [~rn, . . . , ~rN ], each ellipse represents the space-
craft’s vicinity in which it searches for feasible debris targets
at each of it’s subsequent locations, and the dotted trajectory
lines represent the trajectories that were under consideration
at each location. Additionally, this method is mathematically
formulated in Algorithm 1. Note, once the optimal jth debris
to rendezvous with is determined, the spacecraft repeats the
computations again from it’s new location, where it’s old final
position and velocity become its new position and velocity.

The position, velocity, and area of each Fengyun-1C de-
bris fragments can be obtained through two-line elements
as supplied by CelesTrack [17]. After the ephemerides of
the debris fragments are obtained, they will then need to be
converted from their Keplerian format to a more convenient
Cartesian format.

13.7. Results

Algorithm 1 was invoked for various rendezvous manoeuvre
leg durations ∆t and fuel capacities ∆Vcap. Through multi-
ple runs of this simulation, it was soon realised that the quasi
optimal transfer time was ∆t ≈ 3 hrs. It can be seen in Table
2, with a ∆V allowance of 220m/s, significant mitigation of
debris can take place in a mere 3 hrs, the highest two accu-
mulated areas were 14.185 m2 and 16.031 m2.

It seems as though the optimal way in which to mitigate
orbital debris may not be aggressive. Observing Figure 14, in
particular, gives off the thought that the spacecraft was just in
the right places at the right time; which is indeed true. How-
ever, this also encourages that thought that perhaps today’s
efforts to mitigate orbital debris need to shift their methods to
a different paradigm. The attempts to mitigate debris should
develop a more opportunistic attitude. Meaning that, instead
of chasing the debris, let the debris come to the spacecraft.

14. ORBITAL DECAY

Assuming that the spacecraft has successfully achieved ren-
dezvous with one or more orbital debris objects, it would then
execute it’s final task. Once the spacecraft has collected as
much debris as possible on its limitations, it would then de-
ploy its drag sail. Once its drag sail deploys, its planaform
area perpendicular to the flow would dramatically increase
from a mere 0.01 m2 to a colossal 3m2. From the moment of
drag sail deployment onward, the spacecraft’s drag increases
drastically, and therefor it’s time to decay (TD) decreases sig-
nificantly.



Algorithm 1: Computes the cheapest feasible ac-
tive debris removal tour from each debris fragment.
HCW Space computes the feasible search space,
NNS assembles a list of n feasible targets via a near-
est neighbour search, and HCW2I computes the ∆V
required to rendezvous from one debris to another.

Data:
Debris’ Ephemerides→ {~ri, ~vi}∀i ∈ I = [i, . . . , N ]
Propellant Capacity→ ∆Vcap
Leg Duration→ ∆t
Epoch→ t0
Result:
Indicies of Feasible Tour Sequences from Various
Starting Debris S = {Si, . . . , SN} = {[. . . ], . . . , [. . . ]}
begin

S = {. . . }
for i ∈ I do
{~r0, ~v0} ← {~ri, ~vi}(t0)
s = [. . . ]
repeat

X3 ← HCW Space(~r0, ~v0)
{~rj , ~vj} ← NNS(X3)∀j ∈ J = [j, . . . , n]
for j ∈ J do
{~rf , ~vf} ← {~rj , ~vj}(t0)
∆V ← HCW2I(~r0, ~v0, ~rf , ~vf ,∆t)
if ∆V < ∆Vopt or j = 0 then

∆Vopt ← ∆V
jopt ← j

∆Vspent ← ∆Vspent + ∆Vopt
Append(jopt)→ s
{~r0, ~v0} ← {~rjopt , ~vjopt}
t0 = t0 + ∆t

until ∆Vspent > ∆Vcap
Append(s)→ S

return S

Using the RKF45 method of numerical integration with
an adaptive time step, simulating the spacecraft’s deorbitation
becomes quite expedient in comparison to the performance of
the forward Euler method. Such as it is, the time it takes for
a 5 kilogramme cubesat to decay is easily tabulated in Table
3 for various starting altitudes, with and without the drag sail
deployed. The efficacy of utilising passive aerodynamic drag
to deorbit space debris is obvious from observing the table’s
values.

15. CONCLUSIONS

After having analysed the results of this study, several things
can be concluded. Most significantly, it begs the question of
whether the act of mitigating orbital debris should be oppor-
tunistic rather than targeted. With the technological capability
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Fig. 13: This figure illustrates the variety of different solu-
tions that Algorithm 1 will return with a delta-V budget of
∆Vcap = 5400m/s when HCW Space is not called. This
causes the spacecraft to seek rendezvous purely based on who
the closest neighbour is. Thus, the more debris visited per
∆V , the more likely the data point is a feasible solution.

of most on-board spacecraft computers today, the most opti-
mal complex targeted trajectories are simply just not easily
attainable for a CubeSat in the realm of autonomy, as of yet.
Because CubeSats have an incredibly small physical area in
comparison to other spacecraft, they make great candidates
for opportunistic orbital debris mitigation, as they can loiter
without having to spend any considerable propellant to main-
tain themselves (granted a collision does not occur).

16. FUTURE WORK

In the very near future the global optimisation methods will be
implemented in this simulation. In order to do this, the simu-
lation’s structure will need to be altered and made more effi-
cient. Furthermore it is desired that the code built to form this
simulation be parallelised to use multiple CPU cores to ren-
der individual simulations expeditious or utilise the method
of GPU computing.

It is the ultimate goal for this simulation to simulate not
only the cubesat’s astrodynamics, but also each of its subsys-
tems and their interactions with each other. This will include
power consumption, propellant consumption, attitude control,
environmental torques, communications, etc. This will allow
optimal path planning and intelligent decision making with
respect to multiple subsystems’ criteria. It is then that further
optimisation in the context of rendezvous may be conducted.
Ultimately this simulation will culminate to form a full-blown
cubesat testbed.
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Table 2: Feasible HCW Rendezvous Tours with ∆Vcap =
220m/s and ∆t = 3hrs

1st Debris→ 2nd Debris
International Designator ∆Vspent [m/s] Adeb [m2]

1999-025AY 1999-025BMF 159.8777 1.752
1999-025BQ 1999-025ANC 206.9559 1.752

1999-025AEF 1999-025BXU 132.8574 1.752
1999-025AJX 1999-025BRF 197.5427 1.752
1999-025AZV 1999-025ZM 142.8967 0.277
1999-025BLJ 1999-025CT 182.6922 7.688

1999-025BMF 1999-025AY 199.7687 1.752
1999-025CAH 1999-025BLV 213.9889 7.688
1999-025CBT 1999-025ALT 99.7949 6.402
1999-025CFR 1999-025DLT 105.7221 14.185
1999-025DDV 1999-025DYC 126.0361 16.031
1999-025DVV 1999-025AZB 129.6952 8.249

Table 3: Drag Sail Orbital Decay Comparison

AD = 0.01 [m2] AD = 3 [m2]
Altitude [km] Time to Deorbit TD [hrs]

200 136.56 2.42
250 1185.61 7.24
300 21806.44 21.36
350 80219.76 79.23
400 275637.64 275.76
450 275637.62 928.84
500 887488.56 2968.56
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Fig. 14: ∆Vcap = 220m/s

Fig. 15: This figure shows the variety of feasible trajectories
with a potential delta-V of ∆Vcap = 220m/s in which the
spacecraft can rendezvous with at least one additional debris
fragment after it has departed from it original fragment.
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