6th International Conference on Astrodynamics Tools and Technique (ICATT)

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS

LI Xiangyu, Qiao Dong, Cui Pingyuan

Beijing Institute of Technology Institute of Deep Space Exploration Technology 15 March 2016

Contents

I. Introduction

II. Concept of Indirect Planetary Capture

III. Orbit Selection for Periodic Orbit

IV. Simulation and Comparisons

V. Conclusion

I. Introduction

Planetary Capture

A key process in planet exploration mission

Interplanetary Trajectory

Capture Trajectory

Design

Planetary Capture

Mission Orbits

Plays an important role in the trajectory design

Fuel Consumption

Flight System Design

Interplanetary Trajectory Design

Midcourse Correction

 r_p

 \mathcal{V}_{∞}

I. Introduction

Current Capture Strategy

Direct Capture

Single impulsive maneuver at periapsis

Aerocapture

Take advantage of the aerodynamic force to reduce the velocity

Precise guidance and control

 Δv

Protection for high heat rate and overload

Ballistic Capture Exploits the gravitational force of planets to capture a spacecraft

Low energy Capture

Fuel Saving

Multi capture opportunities Long transfer time

Fall when v_{∞} is high

I. Introduction

Circular Restricted Three body Problem (CRTBP)

- Libration(Lagrange) Points
- Periodic orbits
- Stable/Unstable Manifolds

-5

0.994

0.996

0.998

Х

II. Concept of Indirect Planetary Capture Concept Use periodic orbit as a park orbit Connect with interplanetary trajectory by stable manifolds Connect with mission orbit by unstable manifolds 5 × 10⁻³ Periodic Parking Orbit Hyperbolic Stable Trajectory Manifold ΔV_2 ×10⁻⁵ 20 $\succ 0$ 10 L2 Mar 0 1.0002 Unstable ΔV Mission Orbit Manifold

1.002

1.004

1.006

II. Concept of Indirect Planetary Capture

Process

Three impulsive maneuver First periapsis maneuver $\Delta v_1 \propto v_\infty$ Perturbation to generate unstable manifolds Δv_2 Initial guess and correction Second Periapsis maneuver $\Delta v_3 \propto a, e$

Process

Three impulsive maneuver First periapsis maneuver

Perturbation to generate unstable manifolds

Second Periapsis maneuver

II. Concept of Indirect Planetary Capture

Maneuver

```
Three impulsive maneuver

First periapsis maneuver

\Delta v_1 \propto v_{\infty}

Perturbation to generate unstable manifolds

\Delta v_2 Initial guess and correction

Second Periapsis maneuver
```

```
\Delta v_3 \propto a, e
```

Design

- Construct the periodic parking orbit
- Generate proper unstable manifolds same periapsis distance as mission orbit
- Generate proper stable manifolds for interplanetary design and midcourse correction

III. Orbit Selection for Periodic Orbit

Orbit Selection

- Two criteria
 - Energy constrain

First maneuver Δv_1 as low as possible

Periapsis of stable manifolds should close to the surface of Mars

State constrain

The periapsis distance of natural unstable manifolds should close to that of mission orbits

III. Orbit Selection for Periodic Orbit

Sun-Mars System Planar Orbits

- Planar Lyapunov orbit
 - > L1 orbit from $A_y = 7.3 \times 10^4 km$ to $A_y = 7.5 \times 10^5 km$
 - > L2 orbit from $A_y = 1.0 \times 10^5 km$ to $A_y = 1.5 \times 10^6 km$

Periapsis distance of stable manifolds

III. Orbit Selection for Periodic Orbit Planar Orbits

Periapsis distance of unstable manifolds from 3589km to 30000km

Candidate parking orbits

L1 orbit from $A_y = 5.5 \times 10^5 km$

Periapsis State

Periapsis phase angle θ

Y

III. Orbit Selection for Periodic Orbit

Sun-Mars System Spatial Orbits

Vertical Lyapunov orbit

Large periapsis distance Infeasible

Halo orbit

> L1 orbit from $A_z = 2.7 \times 10^4 km$ to $A_z = 6.6 \times 10^4 km$

> L2 orbit from $A_z = 3.7 \times 10^4 km$ to $A_z = 6.5 \times 10^5 km$

Periapsis distance of stable manifolds

III. Orbit Selection for Periodic Orbit Halo Orbits

Periapsis distance of unstable manifolds from 3589km to 30000km

×10³

3

2.5

1.5

^Deriapsis distance of Unstable Manifold r_{pu} (Km)

Candidate parking orbits

L1 orbit from $A_z = 2.9 \times 10^5 km$ to $A_z = 6.6 \times 10^5 km$ L2 orbit from $A_z = 2.9 \times 10^5 km$ to $A_z = 6.5 \times 10^5 km$

L2 Halo Orbit Amplitude A_{zl 2} (Km)

3

4

5

6

 $\times 10^5$

2

III. Orbit Selection for Periodic Orbit

Halo Orbits

Periapsis State

Orbital InclinationiPeriapsis phase angle θ Periapsis Spatial angle β

III. Orbit Selection for Periodic Orbit Halo Orbits

Periapsis State

Perlapsis Spatial angle /

L2: $\theta = 190^{\circ}$

16

 $182^{\circ} \sim 202^{\circ}$

III. Orbit Selection for Periodic Orbit

Halo Orbits

Periapsis State

Orbital InclinationiPeriapsis phase angle θ Periapsis Spatial angle β

Direct capture

$$\Delta v_d = \sqrt{v_\infty^2 + \frac{2\mu}{r_p}} - \sqrt{\frac{(1+e)\mu}{r_p}}$$

Indirect capture
 First impulsive maneuver

$$\Delta v_1 = \sqrt{v_\infty^2 + \frac{2\mu}{r_{ps}}} - v_{ps}$$

$$r_{ps} \approx 3589 km$$

Third impulsive maneuver

$$\Delta v_3 = v_{pu} - \sqrt{\frac{(1+e)\mu}{r_p}}$$
$$\Delta v = \Delta v_1 + \Delta v_2 + \Delta v_3$$

$$r_p = a(1-e)$$

 $r = \alpha(1 \circ \alpha)$

Perturbation velocity

 $\Delta v_2 \propto 1m/s$

Capture Time

$$T = T_s + T_p + T_u$$

- T_s Stable manifold transfer time
- T_p Parking time
- T_{u} Unstable manifold transfer time

- Mission Orbit I
 - 200km circular orbit
- Parking orbit

L2 planar Lyapunov orbit

$$A_{y} = 5.7 \times 10^{5} km$$

\mathcal{V}_∞ (km/s)	Direct Capture Δv_d (km/s)	Indirect capture		$\Delta v_d - \Delta v$
		Δv (km/s)	T (day)	(km/s)
1.88	1.780	1.779		0.001
2.09	1.859	1.858	775.37	0.001
3.39	2.492	2.487		0.005

Low orbit capture:

Cost the same velocity as direct capture

Provides a chance to explore the space environment in the vicinity of Mars and Lagrange points without extra velocity increment

- Mission Orbit I
 - 200km circular orbit
- Parking orbit

L2 planar Lyapunov orbit

$$A_{y} = 5.7 \times 10^5 \, km$$

Mission Orbit II

800km*60000km elliptic orbit

Parking orbit

L2 Halo orbit $A_z = 4.6 \times 10^5 km$

\mathcal{V}_∞ (km/s)	Direct Capture Δv_d (km/s)	Indirect capture		$\Delta v_d - \Delta v$
		Δv (km/s)	T (day)	(km/s)
1.88	0.518	0.493		0.025
2.09	0.602	0.572	696.85	0.030
3.39	1.272	1.205		0.067

Middle orbit capture:

- As the periapsis of mission orbit increases, the indirect capture requires less velocity than direct capture
- > Save more fuel for higher excess velocity v_{∞}

- Mission Orbit II
 800km*60000km elliptic orbit
- Parking orbit

L2 Halo orbit $A_z = 4.6 \times 10^5 km$

- Mission Orbit III
 20000km circular orbit
- Parking orbit

L1 Halo orbit $A_z = 3.4 \times 10^5 km$

\mathcal{V}_∞ (km/s)	Direct Capture	Indirect capture		$\Delta v_d - \Delta v$
	Δv_d (km/s)	Δv (km/s)	T (day)	(km/s)
1.88	1.329	0.897		0.432
2.09	1.481	0.976	691.03	0.505
3.39	2.540	1.609		0.931

High orbit capture:

- Save more than 30% velocity
- \succ Keep the same efficiency in high \mathcal{V}_∞

- Mission Orbit III
 20000km circular orbit
- Parking orbit

L1 Halo orbit $A_z = 3.4 \times 10^5 km$

Mission Orbit IV

Elliptic orbit e = 0.9 with different periapsis distances

Parking orbit

L1 Lyapunov orbit

> Cost is approximately constant regardless of the periapsis distance

V. Conclusion

- Indirect capture could save velocity increment than direct capture at the cost of long transfer time
- Shows better efficiency for high altitude and high v_{∞} orbit insertion
- Extra scientific returns
- Increases transfer flexibility
- Reduce gravity loss

