
SIRIUS-DV : CNES NEW FLIGHT

DYNAMICS ALGORITHMS

Iván LLAMAS, Yannick TANGUY, Michel LACOTTE,

Jean-Jacques WASBAUER

 15/03/2016

07/03/2016 1

S
U

M
M

A
R

Y
  INTRODUCTION

 THE SCENARIO

 SCENARIO PROCESSINGS

 PRODUCTIVE PROPAGATOR

 DEVELOPMENT PROCESS

07/03/2016 2

INTRODUCTION (I) : MAIN GUIDELINES

 New approach in the development of a FDS

 Clear division between computation layer and FD supporting services

 2 different contracts

 Development driven by CNES

 Architecture definition

 Decomposition and reuse of functions

 FD services

 A service can invoke other sub-services, and it only knows their interfaces

 Stateless

 Simple interface : Inputs (common arguments + specific parameter) + Response

 Why?

 Flexibility

 Easy to evolve

 Limited coupling between computation layer and CC solutions

07/03/2016 3

INTRODUCTION (II) : BUILDING A FDS

4

PATRIUS

Framework
FDS

Widgets IHMs

FD Applications

FDS

FD algorithms

D
ataSto

re

V
isu

alizatio
n

In
frastru

cu
re

M
issio

n

O
p

e
ratio

n
s

Se
rvice

s

A
u

to
m

atio
n

Code generator
ISIS product line

SIRIUS product line

Final product for a mission

INTRODUCTION (III) : ASSEMBLING A FD SERVICE

07/03/2016 5

SCENARIO (I) : THE CORE DATA

 Complex and structure data, without associated operations

 Describes the state and the evolution model of one satellite, over the whole
lifetime

 Evolution in parallel (not independent) of the defined domains:
 Trajectory

 Attitude

 Mass, inertias

 …

 Composed by :
 Activities : lowest level, per domain (trajectory, attitude)

 Feeds : Temporal axis, per domain

 Blends : Synthesis of the feeds, best global vision

 Its structure is adapted/defined for every mission

07/03/2016 6

SCENARIO (II) : EXAMPLE

07/03/2016 7

SCENARIO PROCESSINGS (I) : GENERAL CONCEPTS

 Simulation of the states of the scenario

 Several levels :

 Blend processing

» By fragments

» By priority

» By user selection

 Feed processing

 Activity processing

 Divided by the domains of the scenario

 Trajectory, attitude, MCI, maneuvers, tanks, thrusters and solar arrays

07/03/2016 8

SCENARIO PROCESSINGS (II) : TYPES

 Trajectory processing: Position/velocity at T

 Blend : Searches the fragment and invokes the feed processing

 Feed : Searches the activity (error if not found) and invokes the activity processing

 Activity : Depends on type (numerical, keplerian, ephemeris,…)

 Attitude processing: Attitude (and derivatives) at T

 Blend : Searches the feed by priority

 Rest as trajectory, but no error in feed processing

 Maneuver processing : Force/delta-V produced by the maneuver at T

 Blend : Searches the maneuver by user choice.

 Feed : Searches the activity (no error) and invokes the activity processing

 MCI processing : Mass, center of gravity and inertia at T

 Tank processing : Tank state (propellant mass, Pressure, Temp) at T

 Thruster processing : Flow rate, force, throughput of thruster at T

 Similar logic as for trajectory

07/03/2016 9

PRODUCTIVE PROPAGATOR (I)

 In charge of producing output ephemeris (list of time-stamped data) :

 At dates, as defined by the input list of DateDescriptor

» Fixed dates

» Given interval

» Interval of a phenomenon

 At events, as defined by the input list of EventDescriptor

 The output data are defined by OutputParametersDescriptor

 Reference to scenario descriptors (blend/feed) needed in the computation

 Dedicated « part » in charge of filling the data

 Algorithm:

 The output parameters define the data from scenario that are needed.

 The scenario processings are in charge of simulating (propagation) the scenario

state with the required descriptors (feed/blend) at desired date.

 The part is invoked with this scenario state to compute and fill the output parameter

07/03/2016 10

PRODUCTIVE PROPAGATOR (II)

07/03/2016 11

DEVELOPMENT PROCESS

 Agile/SCRUM with 4-weeks sprints

 CNES builds the model (data, interfaces, requirements).

 The templates of the code are generated (using a code-generator).

 The code is implemented, tested and documented by GMV.

 CNES checks if everything is OK and closes the story.

07/03/2016 12

Thank you for your attention 

For further details :

 Iván LLAMAS

 Flight Dynamics and Operations BU - GMV

 e-mail : illamas@gmv.com

 07/03/2016 13

