

SIRIUS-DV : CNES NEW FLIGHT DYNAMICS ALGORITHMS

Iván LLAMAS, Yannick TANGUY, Michel LACOTTE, Jean-Jacques WASBAUER

15/03/2016

• INTRODUCTION

- THE SCENARIO
- SCENARIO PROCESSINGS
- PRODUCTIVE PROPAGATOR
- **DEVELOPMENT PROCESS**

Ccnes

INTRODUCTION (I) : MAIN GUIDELINES

- New approach in the development of a FDS
 - Clear division between computation layer and FD supporting services
 - 2 different contracts
- Development driven by CNES
 - Architecture definition
 - Decomposition and reuse of functions
- FD services
 - + A service can invoke other sub-services, and it only knows their interfaces
 - Stateless
 - Simple interface : Inputs (common arguments + specific parameter) + Response
- Why?
 - Flexibility
 - Easy to evolve
 - Limited coupling between computation layer and CC solutions

INTRODUCTION (II) : BUILDING A FDS

INTRODUCTION (III) : ASSEMBLING A FD SERVICE

Cones

SCENARIO (I) : THE CORE DATA

- Complex and structure data, without associated operations
- Describes the state and the evolution model of one satellite, over the whole lifetime
- Evolution in parallel (not independent) of the defined domains:
 - Trajectory
 - Attitude
 - Mass, inertias
 - **+** ...
- Composed by :
 - Activities : lowest level, per domain (trajectory, attitude)
 - + Feeds : Temporal axis, per domain
 - Blends : Synthesis of the feeds, best global vision
- Its structure is adapted/defined for every mission

SCENARIO (II) : EXAMPLE

Ccnes

SCENARIO PROCESSINGS (I) : GENERAL CONCEPTS

- Simulation of the states of the scenario
- Several levels :
 - Blend processing
 - » By fragments
 - » By priority
 - » By user selection
 - Feed processing
 - Activity processing
- Divided by the domains of the scenario
 - Trajectory, attitude, MCI, maneuvers, tanks, thrusters and solar arrays

SCENARIO PROCESSINGS (II) : TYPES

- Trajectory processing: Position/velocity at T
 - Blend : Searches the fragment and invokes the feed processing
 - + Feed : Searches the activity (error if not found) and invokes the activity processing
 - Activity : Depends on type (numerical, keplerian, ephemeris,...)
- Attitude processing: Attitude (and derivatives) at T
 - Blend : Searches the feed by priority
 - Rest as trajectory, but no error in feed processing
- Maneuver processing : Force/delta-V produced by the maneuver at T
 - Blend : Searches the maneuver by user choice.
 - + Feed : Searches the activity (no error) and invokes the activity processing
- MCI processing : Mass, center of gravity and inertia at T
- Tank processing : Tank state (propellant mass, Pressure, Temp) at T
- Thruster processing : Flow rate, force, throughput of thruster at T
 - Similar logic as for trajectory

PRODUCTIVE PROPAGATOR (I)

In charge of producing output ephemeris (list of time-stamped data) :

- At dates, as defined by the input list of DateDescriptor
 - » Fixed dates
 - » Given interval
 - » Interval of a phenomenon
- At events, as defined by the input list of EventDescriptor
- The output data are defined by OutputParametersDescriptor
 - Reference to scenario descriptors (blend/feed) needed in the computation
 - Dedicated « part » in charge of filling the data
- Algorithm:
 - The output parameters define the data from scenario that are needed.
 - The scenario processings are in charge of simulating (propagation) the scenario state with the required descriptors (feed/blend) at desired date.
 - + The part is invoked with this scenario state to compute and fill the output parameter

PRODUCTIVE PROPAGATOR (II)

Cones

DEVELOPMENT PROCESS

- Agile/SCRUM with 4-weeks sprints
- CNES builds the model (data, interfaces, requirements).
- The templates of the code are generated (using a code-generator).
- The code is implemented, tested and documented by GMV.
- CNES checks if everything is OK and closes the story.

Thank you for your attention ©

For further details : Iván LLAMAS Flight Dynamics and Operations BU - GMV e-mail : illamas@gmv.com

