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ABSTRACT 

 

The SIRIUS project aims to develop a set of Flight 

Dynamics (FD) products that will be used operationally in 

the control centers of the upcoming CNES missions. It 

mainly covers three different layers: the mathematical low 

level libraries (PATRIUS), intended to be used either in an 

operational environment or in expert studies; the flight 

dynamics algorithms, implementing the operational 

functionalities (SIRIUS-DV); and the FD applications, that 

include the assembly of the algorithms to build stand-alone 

applications – with dedicated GUI - and the infrastructure 

services (such as time, messages, logging, …) needed in an 

operational FDS. 

Due to its unique architectural conception, SIRIUS 

provides a higher level of flexibility (so as to be easily 

adapted to any future mission, almost in a “plug and play” 

manner) and scalability (the effort to add new functionalities 

is reduced) with respect to other state-of-the-art systems. 

The choice of technologies used in the line of products also 

guarantees its non-obsolescence up to - at least - twenty 

years from now. This paper focuses in the second layer, the 

software applications implementing the flight dynamics 

algorithms. 

 

Index Terms— SIRIUS, flight dynamics, scenario 

 

1. INTRODUCTION 

 

The development of a Flight Dynamics System involves 

different layers, from the most basic mathematical libraries 

up to the FD applications themselves running in an 

operational control center, with support functions (logging, 

time, visualization…). 

After analyzing the lessons learned over the last few 

decades in the development of such systems, CNES has 

decided to try a different approach in the development of 

their new products, making a clear and clean separation 

between the development of the computational layer and the 

development of the supporting services. Two different 

contracts have been issued, with a very limited interaction 

between them, mostly given by the definition of the 

interfaces (both for the data and the services). Figure 1 

shows this division. 

 

Figure 1 - Elements to build a FDS 

Hence, to build the FD application, clear interfaces 

between all the elements are defined by CNES, constituting 

the logical architecture of the system. Even if this paper is 

mainly focused in the development of the “FD algorithms” 

part, it’s very interesting to explain here at least how the 

computational part (from now on called “FD service”) of the 

FD applications will be created.  

Each FD service can call other services as part of its 

own computation; however, it will only know their 

interfaces, the implementation of the called services being 

therefore totally exchangeable. For instance, the service in 

charge of the orbit restitution will call the propagation 

service and also the function to resolve the linear system, 

but the implementation of both sub-services will be totally 

unknown for the parent service.  

All the services are stateless, so its results are 

completely defined by the provided inputs, allowing – 

among other things - an easier automation. The role of each 

service is therefore fully defined by its interface (inputs and 

outputs), and each possible implementation of the service 

shall comply with this role. Moreover, the interface of each 

service is very simple, since its defined by one single 

method, whose arguments are the list of inputs that are 

common to all the possible implementations of the service, a 

structure containing the specific parameters of each 

implementation (which is abstract, so as to guarantee their 

exchangeability) and the response structure containing all 

the output data.  
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Figure 2 - Assembling a FD application 

The Figure 2 shows an example on how a FD service 

with three different stages (each one being a FD service) 

would be assembled. For a given mission, some specific 

implementations of each service (in the figure, <i>, <j> and 

<k>) will be used, but any of them could be easily replaced 

by any other implementation (<x>, <y>…) that complies 

with the defined interface.  

This architecture of the FDS allows on one hand a high 

degree of flexibility (all the implementations of a given 

service are exchangeable) and scalability (the effort to add 

new functionalities is reduced), and on the other hand allows 

a clear separation between the development of the 

computational layer and the rest of the system. Moreover, 

the choice of technologies also guarantees its non-

obsolescence up to - at least - twenty years from now. 

 

2. TECHNICAL DOMAINS OF THE FD 

ALGORITHMS 

 

The FD algorithms are divided in several technical domains, 

which are briefly explained in the following sub-sections. 

 

2.1. Conversions 

This domain handles the conversion of orbital and attitude 

data within the FD. It contains functionalities to perform the 

conversion of dates (format, time scale…), orbital 

parameters type (cartesian, keplerian, circular, 

equinoctial…), orbital parameters frame (IERS 2003 and 

2010 conventions), conversion to mean elements, attitude 

parameters type (quaternion, Euler angles, matrix…) and 

attitude frame conversion. 

 

2.2. Ephemeris Generation 

This domain is in charge of providing the functionalities to 

compute the dynamic state of the satellite at a given date, at 

a given event or over a period of time. The concepts of the 

core service of this domain – the Productive Propagator – 

are explained in section 5. 

 

2.3. Events 

This domain regroups the functionalities involved in the 

computation and treatment of the events and phenomena 

needed for the mission. A wide range of events and 

phenomena are available (orbital elements, antenna 

visibility, attitude events, events between different satellites, 

external events to the FD…) and due to the architecture of 

the system, more can be easily added.  

It also handles the post-processing of events 

(combination of several events) and phenomena (logical 

operators, such as the union, intersection…). 

 

2.4. Scenario 

It includes several services in charge of handling and 

analyzing the data scenario (the details on this data are 

found in section 3): generation of N dispersed scenarios 

(number and parameters to disperse are completely defined 

by the operator), creation of several alternative scenarios 

from a point on (to simulate, for instance, a switch into 

survival mode), comparison between different scenarios 

(orbit, attitude…). 

 

2.5. Orbitography 

One of the core domains of any FDS, it includes all the 

functionalities needed for the orbit determination.  

The most relevant services are the one in charge of 

computing the theoretical measurements (and their partial 

derivatives with respect to the estimated parameters), all the 

measurement functions (angular, Doppler, PVT), the 

measurement treatment (verify their validity), the 

measurement simulation, the LSF solver, the orbit 

restitution service (Least-Squares method), the orbit 

determination qualification (to check the results of the 

determination) and the collision risk assessment. 

 

2.6. Orbital Maneuvers 

Another main domain of all the FDS, it involves all the 

functionalities linked to the maneuver computation, from the 

definition of the maneuvers strategy to the computation of 

the station keeping maneuvers (in longitude, local time and 

eccentricity), the simulation of a user-defined maneuver, or 

the optimization of the rendezvous maneuvers. It also 

includes other supporting services as the one in charge of 

treating the TM to build the observed maneuvers, and that 

responsible of computing the propulsion parameters. 

 

2.7. Guidance & Programming 

This domain handles the computation and prediction of the 

attitude (attitude laws, slew computation…) within the FDS. 

It also includes the functionalities required to program the 

satellite, such as building the programming plan, the 

verification of mission constraints and the computation of 

the allowed slots to perform FD activities. 

 



2.8. Mission 

This domain includes services such as the one in charge of 

computing the reference orbit using analytical models (to 

simulate the orbit computed on-board when the spacecraft is 

in autonomous mode) and the one responsible of computing 

the trajectory to follow in order to go from an initial orbit to 

a targeted one. 

 

2.9. Interfaces 

In charge of consuming the external information (EOP, 

satellite data base, TM…) to create the data handled by the 

FD services. This domain is also responsible of the 

generation of the operational products (orbit/attitude files…) 

that are exchanged with the other subsystems and/or entities. 

 

2.10. Calibration 

This domain is in charge of performing the calibration and 

computation of the satellite inertias and also the calibration 

of the thrusters, mainly by processing the TM information 

received when these activities are carried out on-board. 

 

2.11. Scenario Processings 

In charge of handling the different parts of the data 

scenario, such as trajectory, attitude, maneuvers, MCI 

(mass, center of gravity and inertia), thrusters, tanks and 

solar arrays. This domain is explained in more detail in 

section 4. 

 

3. THE DATA SCENARIO 

 

As already mentioned, the scenario is the central data of the 

FD algorithms. It contains all the information (both past and 

future) of the satellite dynamic state for one (and only one) 

spacecraft, including its programming plan. It is static and it 

is only defined by the time (i.e., the transitions between 

activities are not given by events). We can define several 

scenarios for a given satellite, the nominal one and as many 

alternative scenarios as desired (to simulate a switch to 

survival mode, to simulate the effects of not performing a 

maneuver…). The nominal scenario represents, at a given 

date, the best knowledge that we have of the whole mission, 

in the past (for instance, the trajectory coming from the orbit 

determination) and in the future (the propagated trajectory). 

It must be remarked that this data has no associated 

operation (its treatment is performed by the processings, 

section 4), and it represents the evolution in parallel (but not 

independent) of the different domains (trajectory, attitude, 

maneuvers…).  

The most basic elements of the scenario are the 

activities, each one of them associated to a given domain. 

For instance, we can define trajectory activities (numerical 

propagation, keplerian propagation, GPS almanac 

propagation, PV ephemeris treatment…), maneuver 

activities (impulsive maneuver, continuous maneuver…), 

attitude activities (reference attitude, slew, guidance laws…) 

and so on. The activities contain all the information needed 

to simulate the model that they represent, and they are all 

independent from one another (they can however make 

reference to another feed/blend). We’ll also need to handle 

coherent sets of activities (for instance, different maneuvers 

activities – impulsive/continuous…- refer to the same 

maneuver), hence there’s also a notion of group. 

The activities are organized (in chronological order) in 

feeds, which represent a temporal axis that may potentially 

cover the whole lifetime of the satellite. Each feed is 

dedicated to a given domain, defined by the type of 

activities it can include (for instance, the maneuver feed can 

only contain maneuver activities). We can however define 

several feeds for a domain (following the same example, 

there can be a feed for the impulsive maneuvers, another 

one for the continuous ones…). The activities in a feed 

cannot overlap, but they may allow gaps within (again, the 

maneuver feed allows it since not at every date we’ll have a 

maneuver, while the trajectory feed won’t allow it since we 

need to know the trajectory of the spacecraft at every 

moment). The feeds can also be grouped in bunches, a 

simple aggregation of coherent feeds (for instance, the 

orbital bunch groups the trajectory, mass and tanks feeds, 

while the maneuver bunch groups all the maneuver feeds). 

Finally, the higher elements in the hierarchy are the 

blends, whose objective is giving the best global vision of 

the state for a given domain via a synthesis of the different 

feeds. Several ways are defined to handle the synthesis of 

the feeds into a blend: by fragments, the blend is composed 

of time intervals, each one pointing to a single feed; by 

priority, the blend is constituted of all the possible feeds of 

the domain, the feed to be used at a given date is defined by 

the available information at that date and a priority order 

which is part of the definition of the data; by selection, the 

definition of the blend contains the activity to choose (for 

instance, used in the maneuver blend, where all the type of 

maneuver activities are present and the operator selects the 

one to be used depending on the need).  

The following figure (Figure 3) shows a simplified 

example of the concepts explained in this section. We have 

a trajectory blend with two fragments, the first one pointing 

to the feed number 2 and the second one pointing to the feed 

number 1. This means that for any date within the interval of 

the first fragment, we’ll use the information of the Feed 2 to 

obtain our best knowledge of the satellite trajectory 

(respectively with the second fragment and the feed 1). Each 

trajectory feed contains several activities and in particular 

we can see that the “Numerical Activity 1” (NA_1) has a 

reference to the “Impulsive Maneuvers feed”, while the 

“Numerical Activity 2” (NA_2) points to the “Continuous 

Man Feed”. This means that in the simulation of the NA_1 

we’ll consider the maneuvers present in the impulsive feed, 

while in the simulation of the NA_2 we’ll take into account 



the continuous ones. We also show a group for the second 

maneuver activities. 

 
Figure 3 - Blends, feeds, activities 

Finally, it must be noted that the contents of the scenario 

(list of blends, bunches, feeds) are defined in an abstract 

way, so each mission can (and must) decide its own 

structure of the data.  

 

4. SCENARIO PROCESSINGS 

 

The scenario processing covers the functionality needed to 

simulate the different elements that compose the scenario. 

Given that the scenario is organized in activities, feeds and 

blends, the same division is followed in the processing 

(there’s one processing per activity type, one per feed type 

and one per blend type).  

They’re also divided in domains (trajectory, attitude, 

maneuvers, tanks, solar arrays, MCI and thrusters), each one 

defining the interface that the processing must implement. 

As mentioned before, there can be dependencies between 

the different processings. For instance, the processing of the 

trajectory feed is based in the processing of the activities 

within the feed; but the processing of a given trajectory 

activity may also depend, for instance, on the processing of 

a maneuvers feed and on the processing of the mass 

characteristics feed. The following sub-sections give an 

overview of the processing for each domain. 

 

4.1. Trajectory Processing 

Basically, they provide the trajectory state (position, 

velocity) of the spacecraft at a given date. In the case of the 

blend processing, the computation date defines the fragment 

to be used, and hence the associated feed; it then invokes the 

feed processing to obtain the trajectory. Respectively, in the 

case of the feed processing, the computation date allows the 

selection of the activity to be used to simulate the trajectory 

of the satellite. Please, remember that we must be able to 

know the satellite’s orbit at any moment, so if no activity 

exists at the required date, an error is raised. Once the 

activity is selected, the feed processing invokes the 

processing of the activity. The activity processing is finally 

specific for each type of activity. For a numerical activity, a 

numerical propagation with the defined integrator, forces 

and models is performed to obtain the trajectory state at the 

desired date; for the keplerian activity, a simple keplerian 

propagation is performed; for the ephemeris activity, the 

trajectory state is obtained by interpolation in the ephemeris 

data contained in the activity, and so on. 

 

4.2. Attitude Processing 

They provide the attitude state (orientation, angular velocity, 

and – eventually - its derivatives) of the spacecraft at a 

given date. In the case of the blend processing, the different 

feed processings are invoked at the computation date in 

decreasing order (so if the one with the highest priority 

doesn’t exists for the date, the next one is invoked and so 

on). From the feed processing on, the same logic as that 

explained in the trajectory processing applies here (but 

accounting for the fact that an attitude feed may have gaps 

in the activities it contains). Once again, the actual treatment 

of each activity depends on its type (interpolation in a given 

attitude ephemeris, computation of the attitude from the 

defined guidance law…). 

 

4.3. Tanks Processing 

They provide the state of the tanks (propellant mass, 

temperature, pressure) of the spacecraft at a given date. The 

same logic as that of the trajectory processing applies here 

for all the levels (blend, feed and activity). 

 

4.4. Solar Array Processing 

They provide the state of the solar arrays (orientation) of the 

spacecraft at a given date. Same logic as that of the attitude 

processing applies here. 

 

4.5. MCI Processing 

They provide the MCI (mass, center of gravity and inertia) 

state of the spacecraft at a given date. Same logic as that of 

the trajectory processing applies here (except for the fact 

that there’s no blend processing, given that only one MCI 

feed is defined). 

 

4.6. Maneuver Processing 

They provide the delta-V produced by an impulsive 

maneuver or the force produced by a spread maneuver over 

a given interval. In this case, the blend processing knows the 

type of maneuver that must be handled, and it therefore 

invokes the corresponding feed processing. The feed 

processing then invokes the processing of the activity that is 

active at the computation date/interval. It may happen that 

no activity (that is to say, no maneuver) is modeled at the 

computation date, and in that case the feed processing will 

send a null output (but no error is raised). 
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4.7. Thruster Processing 

They provide the thruster state (force, flow rate, throughput) 

for a given thruster at a given date. Same logic as that of the 

trajectory processing applies here. 

 

5. PRODUCTIVE PROPAGATOR 

 

The productive propagator is one of the core elements of the 

FD algorithms. Its function is the production of any 

parameter at a given date using the dynamic state of the 

satellite provided by the treatment of the scenario (hence, 

computed by the scenario processings). It relies on the 

PATRIUS propagator [1] in master mode, and in particular 

makes use of two mechanisms: EventDetector, so as to 

compute the required parameters when an event is detected 

and StepHandler, so as to compute the parameters at certain 

dates. 

Its inputs are the computation interval (optional), a list of 

date descriptors (each one containing a list of output 

parameters descriptor) and a list of event descriptors (each 

one also containing a list of parameter descriptors). The date 

descriptors define the dates at which the parameters will be 

computed. Several types are defined (and others can be 

easily included) such as fixed dates defined by the user, 

dates in a given interval with a fixed step, dates coming 

from an input set of records (TM, ephemeris…) and dates 

associated to a given phenomenon (with a given step within 

the phenomenon period). The event descriptors define the 

events at which dates the operator requests the generation of 

the output parameters (for instance, computation of the local 

time at each equator crossing). Finally, the output 

parameters descriptors define the parameters that will be 

computed (PV elements in a given reference frame, the 

satellite angular momentum…) and also provides the 

description of the required scenario descriptors (trajectory 

feed, maneuver blend…). The Figure 4 represents this 

architecture of data.  

Respectively, the outputs of this service are a list of 

output ephemeris (one per date descriptor and per event 

descriptor) containing each one a list of records (one per 

output descriptor) composed by the output descriptor itself 

(so as to be able to identify which parameters it contains) 

and the list of values of each computed parameter (X, Y, 

Z…). 

Each output parameter descriptor is associated to a given 

part, the element in charge of actually performing the 

computation of the required parameters. Each part is created 

via a dedicated Factory that uses as input the output 

parameter descriptor. Hence, the data itself defines the 

expected behavior, allowing a generic treatment within the 

Productive Propagator (that is to say, the algorithm of this 

service doesn’t need to “know” which parameters it is 

actually computing). Each part must implement an interface 

with several methods, basically a “compute” one (in charge 

of performing the actual computation) and another one in 

charge of giving the list of descriptors (feeds/blends) of the 

scenario (trajectory, attitude…) containing the data that it 

needs to perform its computation. 

 

Figure 4 - Productive Propagator input definition 

The duality and separation of roles between the 

simulation/propagation of the dynamic state (performed by 

the scenario processing) and the output parameters 

computation (performed by the associated part) must be 

remarked. For a given execution of the productive 

propagator, the output parameters that are to be computed 

define the elements of the scenario (trajectory state, attitude 

state, thruster state…) that are needed and also the 

descriptors that will be used to compute them.  For each date 

(defined either via the dates or event descriptors), the 

propagator provides the scenario state at the date by using 

the corresponding scenario processing. Once the scenario 

state is known for the date, the different computation parts 

are invoked using this state as input and they do their job 

filling the output parameters structure. 

To fix the ideas, let’s consider an example where the 

operator wants to compute the local time at each equator 

crossing and also the ephemeris of angular momentum of 

the satellite over an interval at fixed dates. For the first 

output, an event descriptor (equator crossing) will be used 

while for the second one a date descriptor is needed. The 

first output requires the knowledge of the satellite’s orbit 

and to do so it will use the information of the trajectory 

blend. The second output requires knowing the attitude 

(angular velocity) and inertia of the satellite, so it will use an 

attitude feed and a MCI feed. For each date, the computation 

of the scenario state (in this case, trajectory, attitude and 

MCI states) will be performed by the associated scenario 

processings (trajectory blend processing, attitude feed 

processing, MCI feed processing). Afterwards, the two parts 

responsible to fill the output parameters will be invoked: the 

first one will use the trajectory state to compute the local 

time; the second one will use the angular velocity and the 

inertia data from the attitude and MCI states to compute the 

angular momentum. For instance, it’s the part’s 

responsibility to perform any frame/type conversion needed. 
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Once again, this architecture provides a very flexible and 

easy way to evolve the system, since we can add as many 

output parameters (i.e. computation parts) as desired without 

modifying at all neither the scenario processing nor the 

implementation of the productive propagator (provided that 

the part is compliant with the defined interfaces). 

 

6. DEVELOPMENT PROCESS 

 

The development of the FD algorithms relies on a data 

model managed by the CNES domain experts and which is 

updated gradually as the development advances. It contains 

the definition of all the data that are used in the algorithms, 

the definition of the interfaces (inputs/outputs) of each 

algorithm and the software requirements that the 

implementations must meet. Using this model as input, the 

implementations of both the data and algorithms interfaces 

are automatically generated (using a code generator that is 

also part of the SIRIUS line of products), which serve as 

starting point for the development carried out by the team. 

The SIRIUS-DV algorithms are developed in Java using 

an Agile/SCRUM methodology with sprints (realization 

iterations) lasting four weeks. The functionalities to be 

developed in a given sprint are presented (at the beginning 

of each sprint) to the team by the CNES domain experts. 

During the sprint a constant communication flow is 

established between both parties in order to ensure the 

understanding – and hence the quality – of the tasks to be 

done (the development team being physically located at 

CNES premises).  

The lifecycle of each story is presented in Figure 5. First 

of all, the story must be prepared, the model and 

specifications are modified by CNES experts and verified by 

both CNES and GMV team, so as to be sure that all the 

required elements are ready to start the implementation. 

Afterwards, the stories are included in the sprint backlog 

during the planning poker meeting (considering the 

estimated effort and the relative priorities). Afterwards, the 

implementation, testing, documentation, validation and 

verification activities are performed by the GMV team. 

Once this step is done, the CNES experts verify that all the 

produced elements (implementation, tests, and documents) 

are in line with the expectations. They provide comments 

which are answered and/or implemented by the team. Once 

everything is in line, the story is declared as finished.  

 

 

Figure 5 - Story life cycle 

 

At the end of each sprint, those functionalities that are 

finished are presented to the users by the development team, 

so a fully usable product is available once a month, with 

increased functionalities over time. 

 

7. CONCLUSIONS 

 

This paper has given an overview of the development of the 

new FD algorithms that will be used in the upcoming 

missions operated by CNES. The different domains in 

which the system is divided have been described. The main 

data treated in the algorithms, the scenario, which contains 

all the information (past and future) of a given satellite over 

its whole lifetime has been presented.  The mechanisms to 

handle this data, scenario processings, have been described 

with more detail. The architecture of one of the main FD 

services (the productive propagator) and its relation with the 

scenario processing has also been discussed in the paper.  

Finally, a brief description of the development process, 

based in an Agile/SCRUM methodology has been provided. 
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