
SIRIUS-DV: The new Flight Dynamics algorithms for the future CNES missions

GMV SIRIUS-DV Team
(1)

, Yannick Tanguy
(2)

, Michel Lacotte
(2)

, Jean-Jacques Wasbauer
(2)

(1) GMV AD 17 rue Hermès 31520 Ramonville St. Agne, France

(2) CNES, 18 av. Edouard Belin 31401 Toulouse Cedex 9, France
e-mail: illamas@gmv.com, Yannick.Tanguy@cnes.fr, Michel.Lacotte@cnes.fr, Jean-Jacques.Wasbauer@cnes.fr

ABSTRACT

The SIRIUS project aims to develop a set of Flight

Dynamics (FD) products that will be used operationally in

the control centers of the upcoming CNES missions. It

mainly covers three different layers: the mathematical low

level libraries (PATRIUS), intended to be used either in an

operational environment or in expert studies; the flight

dynamics algorithms, implementing the operational

functionalities (SIRIUS-DV); and the FD applications, that

include the assembly of the algorithms to build stand-alone

applications – with dedicated GUI - and the infrastructure

services (such as time, messages, logging, …) needed in an

operational FDS.

Due to its unique architectural conception, SIRIUS

provides a higher level of flexibility (so as to be easily

adapted to any future mission, almost in a “plug and play”

manner) and scalability (the effort to add new functionalities

is reduced) with respect to other state-of-the-art systems.

The choice of technologies used in the line of products also

guarantees its non-obsolescence up to - at least - twenty

years from now. This paper focuses in the second layer, the

software applications implementing the flight dynamics

algorithms.

Index Terms— SIRIUS, flight dynamics, scenario

1. INTRODUCTION

The development of a Flight Dynamics System involves

different layers, from the most basic mathematical libraries

up to the FD applications themselves running in an

operational control center, with support functions (logging,

time, visualization…).

After analyzing the lessons learned over the last few

decades in the development of such systems, CNES has

decided to try a different approach in the development of

their new products, making a clear and clean separation

between the development of the computational layer and the

development of the supporting services. Two different

contracts have been issued, with a very limited interaction

between them, mostly given by the definition of the

interfaces (both for the data and the services). Figure 1

shows this division.

Figure 1 - Elements to build a FDS

Hence, to build the FD application, clear interfaces

between all the elements are defined by CNES, constituting

the logical architecture of the system. Even if this paper is

mainly focused in the development of the “FD algorithms”

part, it’s very interesting to explain here at least how the

computational part (from now on called “FD service”) of the

FD applications will be created.

Each FD service can call other services as part of its

own computation; however, it will only know their

interfaces, the implementation of the called services being

therefore totally exchangeable. For instance, the service in

charge of the orbit restitution will call the propagation

service and also the function to resolve the linear system,

but the implementation of both sub-services will be totally

unknown for the parent service.

All the services are stateless, so its results are

completely defined by the provided inputs, allowing –

among other things - an easier automation. The role of each

service is therefore fully defined by its interface (inputs and

outputs), and each possible implementation of the service

shall comply with this role. Moreover, the interface of each

service is very simple, since its defined by one single

method, whose arguments are the list of inputs that are

common to all the possible implementations of the service, a

structure containing the specific parameters of each

implementation (which is abstract, so as to guarantee their

exchangeability) and the response structure containing all

the output data.

mailto:illamas@gmv.com
mailto:Yannick.Tanguy@cnes.fr
mailto:Michel.Lacotte@cnes.fr
mailto:Jean-Jacques.Wasbauer@cnes.fr

Figure 2 - Assembling a FD application

The Figure 2 shows an example on how a FD service

with three different stages (each one being a FD service)

would be assembled. For a given mission, some specific

implementations of each service (in the figure, <i>, <j> and

<k>) will be used, but any of them could be easily replaced

by any other implementation (<x>, <y>…) that complies

with the defined interface.

This architecture of the FDS allows on one hand a high

degree of flexibility (all the implementations of a given

service are exchangeable) and scalability (the effort to add

new functionalities is reduced), and on the other hand allows

a clear separation between the development of the

computational layer and the rest of the system. Moreover,

the choice of technologies also guarantees its non-

obsolescence up to - at least - twenty years from now.

2. TECHNICAL DOMAINS OF THE FD

ALGORITHMS

The FD algorithms are divided in several technical domains,

which are briefly explained in the following sub-sections.

2.1. Conversions

This domain handles the conversion of orbital and attitude

data within the FD. It contains functionalities to perform the

conversion of dates (format, time scale…), orbital

parameters type (cartesian, keplerian, circular,

equinoctial…), orbital parameters frame (IERS 2003 and

2010 conventions), conversion to mean elements, attitude

parameters type (quaternion, Euler angles, matrix…) and

attitude frame conversion.

2.2. Ephemeris Generation

This domain is in charge of providing the functionalities to

compute the dynamic state of the satellite at a given date, at

a given event or over a period of time. The concepts of the

core service of this domain – the Productive Propagator –

are explained in section 5.

2.3. Events

This domain regroups the functionalities involved in the

computation and treatment of the events and phenomena

needed for the mission. A wide range of events and

phenomena are available (orbital elements, antenna

visibility, attitude events, events between different satellites,

external events to the FD…) and due to the architecture of

the system, more can be easily added.

It also handles the post-processing of events

(combination of several events) and phenomena (logical

operators, such as the union, intersection…).

2.4. Scenario

It includes several services in charge of handling and

analyzing the data scenario (the details on this data are

found in section 3): generation of N dispersed scenarios

(number and parameters to disperse are completely defined

by the operator), creation of several alternative scenarios

from a point on (to simulate, for instance, a switch into

survival mode), comparison between different scenarios

(orbit, attitude…).

2.5. Orbitography

One of the core domains of any FDS, it includes all the

functionalities needed for the orbit determination.

The most relevant services are the one in charge of

computing the theoretical measurements (and their partial

derivatives with respect to the estimated parameters), all the

measurement functions (angular, Doppler, PVT), the

measurement treatment (verify their validity), the

measurement simulation, the LSF solver, the orbit

restitution service (Least-Squares method), the orbit

determination qualification (to check the results of the

determination) and the collision risk assessment.

2.6. Orbital Maneuvers

Another main domain of all the FDS, it involves all the

functionalities linked to the maneuver computation, from the

definition of the maneuvers strategy to the computation of

the station keeping maneuvers (in longitude, local time and

eccentricity), the simulation of a user-defined maneuver, or

the optimization of the rendezvous maneuvers. It also

includes other supporting services as the one in charge of

treating the TM to build the observed maneuvers, and that

responsible of computing the propulsion parameters.

2.7. Guidance & Programming

This domain handles the computation and prediction of the

attitude (attitude laws, slew computation…) within the FDS.

It also includes the functionalities required to program the

satellite, such as building the programming plan, the

verification of mission constraints and the computation of

the allowed slots to perform FD activities.

2.8. Mission

This domain includes services such as the one in charge of

computing the reference orbit using analytical models (to

simulate the orbit computed on-board when the spacecraft is

in autonomous mode) and the one responsible of computing

the trajectory to follow in order to go from an initial orbit to

a targeted one.

2.9. Interfaces

In charge of consuming the external information (EOP,

satellite data base, TM…) to create the data handled by the

FD services. This domain is also responsible of the

generation of the operational products (orbit/attitude files…)

that are exchanged with the other subsystems and/or entities.

2.10. Calibration

This domain is in charge of performing the calibration and

computation of the satellite inertias and also the calibration

of the thrusters, mainly by processing the TM information

received when these activities are carried out on-board.

2.11. Scenario Processings

In charge of handling the different parts of the data

scenario, such as trajectory, attitude, maneuvers, MCI

(mass, center of gravity and inertia), thrusters, tanks and

solar arrays. This domain is explained in more detail in

section 4.

3. THE DATA SCENARIO

As already mentioned, the scenario is the central data of the

FD algorithms. It contains all the information (both past and

future) of the satellite dynamic state for one (and only one)

spacecraft, including its programming plan. It is static and it

is only defined by the time (i.e., the transitions between

activities are not given by events). We can define several

scenarios for a given satellite, the nominal one and as many

alternative scenarios as desired (to simulate a switch to

survival mode, to simulate the effects of not performing a

maneuver…). The nominal scenario represents, at a given

date, the best knowledge that we have of the whole mission,

in the past (for instance, the trajectory coming from the orbit

determination) and in the future (the propagated trajectory).

It must be remarked that this data has no associated

operation (its treatment is performed by the processings,

section 4), and it represents the evolution in parallel (but not

independent) of the different domains (trajectory, attitude,

maneuvers…).

The most basic elements of the scenario are the

activities, each one of them associated to a given domain.

For instance, we can define trajectory activities (numerical

propagation, keplerian propagation, GPS almanac

propagation, PV ephemeris treatment…), maneuver

activities (impulsive maneuver, continuous maneuver…),

attitude activities (reference attitude, slew, guidance laws…)

and so on. The activities contain all the information needed

to simulate the model that they represent, and they are all

independent from one another (they can however make

reference to another feed/blend). We’ll also need to handle

coherent sets of activities (for instance, different maneuvers

activities – impulsive/continuous…- refer to the same

maneuver), hence there’s also a notion of group.

The activities are organized (in chronological order) in

feeds, which represent a temporal axis that may potentially

cover the whole lifetime of the satellite. Each feed is

dedicated to a given domain, defined by the type of

activities it can include (for instance, the maneuver feed can

only contain maneuver activities). We can however define

several feeds for a domain (following the same example,

there can be a feed for the impulsive maneuvers, another

one for the continuous ones…). The activities in a feed

cannot overlap, but they may allow gaps within (again, the

maneuver feed allows it since not at every date we’ll have a

maneuver, while the trajectory feed won’t allow it since we

need to know the trajectory of the spacecraft at every

moment). The feeds can also be grouped in bunches, a

simple aggregation of coherent feeds (for instance, the

orbital bunch groups the trajectory, mass and tanks feeds,

while the maneuver bunch groups all the maneuver feeds).

Finally, the higher elements in the hierarchy are the

blends, whose objective is giving the best global vision of

the state for a given domain via a synthesis of the different

feeds. Several ways are defined to handle the synthesis of

the feeds into a blend: by fragments, the blend is composed

of time intervals, each one pointing to a single feed; by

priority, the blend is constituted of all the possible feeds of

the domain, the feed to be used at a given date is defined by

the available information at that date and a priority order

which is part of the definition of the data; by selection, the

definition of the blend contains the activity to choose (for

instance, used in the maneuver blend, where all the type of

maneuver activities are present and the operator selects the

one to be used depending on the need).

The following figure (Figure 3) shows a simplified

example of the concepts explained in this section. We have

a trajectory blend with two fragments, the first one pointing

to the feed number 2 and the second one pointing to the feed

number 1. This means that for any date within the interval of

the first fragment, we’ll use the information of the Feed 2 to

obtain our best knowledge of the satellite trajectory

(respectively with the second fragment and the feed 1). Each

trajectory feed contains several activities and in particular

we can see that the “Numerical Activity 1” (NA_1) has a

reference to the “Impulsive Maneuvers feed”, while the

“Numerical Activity 2” (NA_2) points to the “Continuous

Man Feed”. This means that in the simulation of the NA_1

we’ll consider the maneuvers present in the impulsive feed,

while in the simulation of the NA_2 we’ll take into account

the continuous ones. We also show a group for the second

maneuver activities.

Figure 3 - Blends, feeds, activities

Finally, it must be noted that the contents of the scenario

(list of blends, bunches, feeds) are defined in an abstract

way, so each mission can (and must) decide its own

structure of the data.

4. SCENARIO PROCESSINGS

The scenario processing covers the functionality needed to

simulate the different elements that compose the scenario.

Given that the scenario is organized in activities, feeds and

blends, the same division is followed in the processing

(there’s one processing per activity type, one per feed type

and one per blend type).

They’re also divided in domains (trajectory, attitude,

maneuvers, tanks, solar arrays, MCI and thrusters), each one

defining the interface that the processing must implement.

As mentioned before, there can be dependencies between

the different processings. For instance, the processing of the

trajectory feed is based in the processing of the activities

within the feed; but the processing of a given trajectory

activity may also depend, for instance, on the processing of

a maneuvers feed and on the processing of the mass

characteristics feed. The following sub-sections give an

overview of the processing for each domain.

4.1. Trajectory Processing

Basically, they provide the trajectory state (position,

velocity) of the spacecraft at a given date. In the case of the

blend processing, the computation date defines the fragment

to be used, and hence the associated feed; it then invokes the

feed processing to obtain the trajectory. Respectively, in the

case of the feed processing, the computation date allows the

selection of the activity to be used to simulate the trajectory

of the satellite. Please, remember that we must be able to

know the satellite’s orbit at any moment, so if no activity

exists at the required date, an error is raised. Once the

activity is selected, the feed processing invokes the

processing of the activity. The activity processing is finally

specific for each type of activity. For a numerical activity, a

numerical propagation with the defined integrator, forces

and models is performed to obtain the trajectory state at the

desired date; for the keplerian activity, a simple keplerian

propagation is performed; for the ephemeris activity, the

trajectory state is obtained by interpolation in the ephemeris

data contained in the activity, and so on.

4.2. Attitude Processing

They provide the attitude state (orientation, angular velocity,

and – eventually - its derivatives) of the spacecraft at a

given date. In the case of the blend processing, the different

feed processings are invoked at the computation date in

decreasing order (so if the one with the highest priority

doesn’t exists for the date, the next one is invoked and so

on). From the feed processing on, the same logic as that

explained in the trajectory processing applies here (but

accounting for the fact that an attitude feed may have gaps

in the activities it contains). Once again, the actual treatment

of each activity depends on its type (interpolation in a given

attitude ephemeris, computation of the attitude from the

defined guidance law…).

4.3. Tanks Processing

They provide the state of the tanks (propellant mass,

temperature, pressure) of the spacecraft at a given date. The

same logic as that of the trajectory processing applies here

for all the levels (blend, feed and activity).

4.4. Solar Array Processing

They provide the state of the solar arrays (orientation) of the

spacecraft at a given date. Same logic as that of the attitude

processing applies here.

4.5. MCI Processing

They provide the MCI (mass, center of gravity and inertia)

state of the spacecraft at a given date. Same logic as that of

the trajectory processing applies here (except for the fact

that there’s no blend processing, given that only one MCI

feed is defined).

4.6. Maneuver Processing

They provide the delta-V produced by an impulsive

maneuver or the force produced by a spread maneuver over

a given interval. In this case, the blend processing knows the

type of maneuver that must be handled, and it therefore

invokes the corresponding feed processing. The feed

processing then invokes the processing of the activity that is

active at the computation date/interval. It may happen that

no activity (that is to say, no maneuver) is modeled at the

computation date, and in that case the feed processing will

send a null output (but no error is raised).

TIME

Trajectory

Blend

Trajectory

Feed 1

Trajectory

Feed 2

Numerical Activity 1 PV Ephmeris Activity Numerical Activity 2

Reference Orbit Activity Keplerian Activity

Fragment 1 Fragment 2

Impulsive

Man Feed

Continuous

Man Feed
Man1 Man3Man2

Maneuver

Group

4.7. Thruster Processing

They provide the thruster state (force, flow rate, throughput)

for a given thruster at a given date. Same logic as that of the

trajectory processing applies here.

5. PRODUCTIVE PROPAGATOR

The productive propagator is one of the core elements of the

FD algorithms. Its function is the production of any

parameter at a given date using the dynamic state of the

satellite provided by the treatment of the scenario (hence,

computed by the scenario processings). It relies on the

PATRIUS propagator [1] in master mode, and in particular

makes use of two mechanisms: EventDetector, so as to

compute the required parameters when an event is detected

and StepHandler, so as to compute the parameters at certain

dates.

Its inputs are the computation interval (optional), a list of

date descriptors (each one containing a list of output

parameters descriptor) and a list of event descriptors (each

one also containing a list of parameter descriptors). The date

descriptors define the dates at which the parameters will be

computed. Several types are defined (and others can be

easily included) such as fixed dates defined by the user,

dates in a given interval with a fixed step, dates coming

from an input set of records (TM, ephemeris…) and dates

associated to a given phenomenon (with a given step within

the phenomenon period). The event descriptors define the

events at which dates the operator requests the generation of

the output parameters (for instance, computation of the local

time at each equator crossing). Finally, the output

parameters descriptors define the parameters that will be

computed (PV elements in a given reference frame, the

satellite angular momentum…) and also provides the

description of the required scenario descriptors (trajectory

feed, maneuver blend…). The Figure 4 represents this

architecture of data.

Respectively, the outputs of this service are a list of

output ephemeris (one per date descriptor and per event

descriptor) containing each one a list of records (one per

output descriptor) composed by the output descriptor itself

(so as to be able to identify which parameters it contains)

and the list of values of each computed parameter (X, Y,

Z…).

Each output parameter descriptor is associated to a given

part, the element in charge of actually performing the

computation of the required parameters. Each part is created

via a dedicated Factory that uses as input the output

parameter descriptor. Hence, the data itself defines the

expected behavior, allowing a generic treatment within the

Productive Propagator (that is to say, the algorithm of this

service doesn’t need to “know” which parameters it is

actually computing). Each part must implement an interface

with several methods, basically a “compute” one (in charge

of performing the actual computation) and another one in

charge of giving the list of descriptors (feeds/blends) of the

scenario (trajectory, attitude…) containing the data that it

needs to perform its computation.

Figure 4 - Productive Propagator input definition

The duality and separation of roles between the

simulation/propagation of the dynamic state (performed by

the scenario processing) and the output parameters

computation (performed by the associated part) must be

remarked. For a given execution of the productive

propagator, the output parameters that are to be computed

define the elements of the scenario (trajectory state, attitude

state, thruster state…) that are needed and also the

descriptors that will be used to compute them. For each date

(defined either via the dates or event descriptors), the

propagator provides the scenario state at the date by using

the corresponding scenario processing. Once the scenario

state is known for the date, the different computation parts

are invoked using this state as input and they do their job

filling the output parameters structure.

To fix the ideas, let’s consider an example where the

operator wants to compute the local time at each equator

crossing and also the ephemeris of angular momentum of

the satellite over an interval at fixed dates. For the first

output, an event descriptor (equator crossing) will be used

while for the second one a date descriptor is needed. The

first output requires the knowledge of the satellite’s orbit

and to do so it will use the information of the trajectory

blend. The second output requires knowing the attitude

(angular velocity) and inertia of the satellite, so it will use an

attitude feed and a MCI feed. For each date, the computation

of the scenario state (in this case, trajectory, attitude and

MCI states) will be performed by the associated scenario

processings (trajectory blend processing, attitude feed

processing, MCI feed processing). Afterwards, the two parts

responsible to fill the output parameters will be invoked: the

first one will use the trajectory state to compute the local

time; the second one will use the angular velocity and the

inertia data from the attitude and MCI states to compute the

angular momentum. For instance, it’s the part’s

responsibility to perform any frame/type conversion needed.

Dates Descriptor Events Descriptor

Output Parameter

Descriptor

Eclipse

Nodes

...

Fixed Dates

From Phenomena

...

PV Descriptor

...

Part

Part

Factory

* *

Once again, this architecture provides a very flexible and

easy way to evolve the system, since we can add as many

output parameters (i.e. computation parts) as desired without

modifying at all neither the scenario processing nor the

implementation of the productive propagator (provided that

the part is compliant with the defined interfaces).

6. DEVELOPMENT PROCESS

The development of the FD algorithms relies on a data

model managed by the CNES domain experts and which is

updated gradually as the development advances. It contains

the definition of all the data that are used in the algorithms,

the definition of the interfaces (inputs/outputs) of each

algorithm and the software requirements that the

implementations must meet. Using this model as input, the

implementations of both the data and algorithms interfaces

are automatically generated (using a code generator that is

also part of the SIRIUS line of products), which serve as

starting point for the development carried out by the team.

The SIRIUS-DV algorithms are developed in Java using

an Agile/SCRUM methodology with sprints (realization

iterations) lasting four weeks. The functionalities to be

developed in a given sprint are presented (at the beginning

of each sprint) to the team by the CNES domain experts.

During the sprint a constant communication flow is

established between both parties in order to ensure the

understanding – and hence the quality – of the tasks to be

done (the development team being physically located at

CNES premises).

The lifecycle of each story is presented in Figure 5. First

of all, the story must be prepared, the model and

specifications are modified by CNES experts and verified by

both CNES and GMV team, so as to be sure that all the

required elements are ready to start the implementation.

Afterwards, the stories are included in the sprint backlog

during the planning poker meeting (considering the

estimated effort and the relative priorities). Afterwards, the

implementation, testing, documentation, validation and

verification activities are performed by the GMV team.

Once this step is done, the CNES experts verify that all the

produced elements (implementation, tests, and documents)

are in line with the expectations. They provide comments

which are answered and/or implemented by the team. Once

everything is in line, the story is declared as finished.

Figure 5 - Story life cycle

At the end of each sprint, those functionalities that are

finished are presented to the users by the development team,

so a fully usable product is available once a month, with

increased functionalities over time.

7. CONCLUSIONS

This paper has given an overview of the development of the

new FD algorithms that will be used in the upcoming

missions operated by CNES. The different domains in

which the system is divided have been described. The main

data treated in the algorithms, the scenario, which contains

all the information (past and future) of a given satellite over

its whole lifetime has been presented. The mechanisms to

handle this data, scenario processings, have been described

with more detail. The architecture of one of the main FD

services (the productive propagator) and its relation with the

scenario processing has also been discussed in the paper.

Finally, a brief description of the development process,

based in an Agile/SCRUM methodology has been provided.

8. REFERENCES

[1] PATRIUS User Manual (SIRIUS-SUM-DV-10037-THA).

Story Preparation

- Description

- Model, specifications

- Data

Planning Poker

- Technical Discussion

- Priorities, estimation

- Sprint backlog definition

Development & Test

- Development

- Testing

- Documentation

- Verification

CNES validation

- Code/test verification

- Documentation verification

Story finished

CNES + GMV

GMV

CNES

