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= Uncertainty propagation is a crucial issue in spaceflight dynamics
» Space surveillance and tracking
* Reentry and casualty area computation
* Robust design of space trajectories and systems

= Most spaceflight mechanics problems involve nonlinear behavior

Need of efficient tools for nonlinear propagation of uncertainties

03/17/2016
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-esa PROPOSED APPROACH
Monte Carlo
& low computational burden & computationally intensive
& low accuracy & high accuracy

~—

Can we find a compromise technique?

= We need a technique to:

 Improve accuracy of linearized models

* Reduce computational cost of classical
Monte Carlo

03/17/2016 3
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>esa PROPOSED APPROACH
Monte Carlo
& low computational burden & computationally intensive
& low accuracy & high accuracy

~—

Can we find a compromise technique?

= We need a technique to:

Differential Algebra

 Improve accuracy of linearized models D

* Reduce computational cost of classical )
Monte Carlo ~JAST
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= Differential Algebra (DA) is an automatic differentiation technique
Algebra of :> Algebra of
real numbers Taylor polynomials

= DA can be implemented in a computer environment (DACE)

= Given any sufficiently regular function f(x)
+ Initialize x as a DA variable: [x] =T + dx

- Evaluate f inthe DA framework:

Taylor expansion of f around @

f([z]) =T (o) ‘> up to an arbitrary order k
o

03/17/2016 5
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= Given any dynamics

__——————————___
— — —
— -

—

= Any numerical integrator is based on the evaluation of f and
its algebraic manipulation

* |nitialize &g as DA vector Taylor expansion
* Perform operations in DA ~> of ¢ w.rt. g

= Uncertainty propagation can benefit from DA in different ways

03/17/2016 6



\./

INAMICA

INNOVATING TECHNOLOGY
\

7>esa EXPANSION OF THE FLow oF ODES

7

Z

e

= Given any dynamics

__——————————___
— — —
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xo + 0xg

= Any numerical integrator is based on the evaluation of f and
its algebraic manipulation

* |nitialize &g as DA vector Taylor expansion
* Perform operations in DA ~> of ¢ w.rt. g

= Uncertainty propagation can benefit from DA in different ways
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= Given any dynamics

e e o e o e
— — —
—

o + 0T 7;'3f (6zo)

= Any numerical integrator is based on the evaluation of f and
its algebraic manipulation

* |nitialize &g as DA vector Taylor expansion
* Perform operations in DA ~> of ¢ w.rt. g

= Uncertainty propagation can benefit from DA in different ways
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LINEAR COVARIANCE PROPAGATION

— o
i _—
—

7:131f (5.’130) — (I)(tf, to)

= If all computations are performed to order 1, the final Taylor expansion
7:1:1;- (0xp) coincides with the state-transition matrix ®(¢ ¢, ¢()

s

Perform a single DA
integration with
expansion order 1

.

N\

J

03/17/2016
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&\&esa LINEAR COVARIANCE PROPAGATION
CB(]._ ——————————————————— = wf

= If all computations are performed to order 1, the final Taylor expansion
7:1:1;- (0xp) coincides with the state-transition matrix ®(¢ ¢, ¢()

( ) ( )

Perform a single DA Extract the STM from
integration with the Taylor polynomial
expansion order 1 map

. J . J

03/17/2016 10
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Ty + 0xg 7;1f(5a:0) = O(ty,10)

= If all computations are performed to order 1, the final Taylor expansion
7:1:1;- (0xp) coincides with the state-transition matrix ® (¢, t)

4 N\ 4 N\ 4 N\
Perform a single DA Extract the STM from Mcaopvg:'?alnnég-al
integration with the Taylor polynomial |
expansion order 1 map Cf — ® CO (I)T
. J . J . J
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&\&esa LINEAR COVARIANCE PROPAGATION
CB(]._ ——————————————————— = wf

= If all computations are performed to order 1, the final Taylor expansion
7:1:1;- (0xp) coincides with the state-transition matrix ® (¢, t)

4 N\ 4 N\ 4 N\
Perform a single DA Extract the STM from Mcaopvg:'?alnnég-al
integration with the Taylor polynomial |
expansion order 1 map Cf — ® CO (I)T
. J . J . J

No need of variational equations!

03/17/2016 12
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@cesa DA-BASED MONTE CARLO
x = f(x,t)
xZr
TO o mmmmm =
o
o + 5:130/
_ ]

03/17/2016 13
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x = f(x,t)
xZr
TO o mmmmm =
P e
o + 0z A ~ Te, (00)

= Any pointwise integration can be replaced by the evaluation of the
polynomial T, (dx)

~

Saving in computational time w.r.t. classical MC

03/17/2016 14
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Compute high
order expansion

of the flow

03/17/2016 15
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@:esa DA-BASED MONTE CARLO
Generate
random
samples
Compute high
order expansion
of the flow
xr=J(x,t
I _______f_(___)____ wf
-~~~ 7T >
A -
o + 5%0 (\7;f (5w0)

03/17/2016 16
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Generate
random

samples
Compute high Evaluate
order expansion . expansion at
of the flow samples
TO) e mmmmmmmm——m N f
*« " ___ ®
o T T T -
xo + 0xg “_ \Ef (0zo)
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@=esa DA-BASED MONTE CARLO
Generate
random
samples
Compute high Evaluate c
. . ompute moments
order expansion . expansion at . STBEE
of the flow samples
xr=Jf(x,t
I ______f.g_l_) _____ wf
- """ _____ = >0
o e T T 3
Lo -|-5J,‘0 - (\7:13]” ((5330)

03/17/2016 18
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@-esa DA-BASED MONTE CARLO
[ Generate ]
random
samples
Evaluate c t t
expansion at . omp‘c‘)fep'ggme“ S
samples
= t
Lo ____-- w_ __f_(Tl _) ______ ):Bf
P _
xo + 0 V T, (00)
‘ Same polynomial can be used to map different uncertainties\
|

03/17/2016 19
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@cesa POLYNOMIAL BOUNDER
r = f(x,t)
xZr
TQ _emmmmmm o =
/
o + 0xq \’Ezf (0zo)
_ ]
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r = f(x,t)
" b
m%— """"""""""" TT->e / Bounds of
T..(0x
xo + 0xg z; (02)

= Use polynomial bounders to estimate the range of the propagated

uncertainties by bounding 7, (dx)

03/17/2016
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g-esa POLYNOMIAL BOUNDER
L = f(il?, t)
£
m(l- """"""""""" TT=~e / Bounds of
)
xo + dxg Tz (00)

= Use polynomial bounders to estimate the range of the propagated
uncertainties by bounding 7, (0x)

Rescale the domain .
. Perform a single DA Compute the range
[ of each[_\1/a1riable to ] . [ integration ] . [ of the polynomial

= Useful in some applications to verify constraints satisfaction (no
need to map a statistical distribution)

03/17/2016 22
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d-esa DIFFERENTIAL ALGEBRA SPACE TOOLBOX

Z

1=

)/AST = DA Computational Engine );&CE

Implements Taylor DA arithmetic to

Diff tial Al
ifferential Algebra handle polynomial operations

Space Toolbox

/ Uncertainty Propagation Tool\ = Software Framework

(UPT) Provides all routines to perform DA
based propagation in astrodynamics

[ Software Framework (SF) \

DA Computational » Uncertainty Propagation Tool
Engine (DACE) Provides all routines and an interface

\\ // for DA-based propagation of

uncertainties

03/17/2016 23
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d-esa DACE MODULE OVERVIEW

Z

= The DA Computational Engine (DACE) contains the implementation
of the basic DA routines

= DACE Core routines: Fortran 95
* Initialization, Memory management, error handling, DA operations

- Each routine approximates the result of an operation by its Taylor exp.
= [Interfaces: C++, MATLAB
( )

DACE Core routines

DACE Language Interfaces

interface

03/17/2016 24
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SF MoDULE OVERVIEW

= The SF includes more advanced features:
* DA operations between vectors and/or matrices of DA
* DA implementation of the numerical integration schemes
« Dynamical models and guidance models

7

\_

03/17/201 6\

D

SF Core Routines \( Astrodynamics
Algebraic ] Algebraic State / Guidance Model )
Matrix Vector Vector *  Lift-Off
5y * Pitch Push-Over
: *  Gravity Turn
Dynamical Propagator » Bilinear Tangent
Model \.* Custom )
v y
“stroModeI )
R2BP, CR3BP, nBP
* Re-entry/Ascent
Y, Rel. Dynamics, Rendezvous
* Euler
SPICE <—\ \.* Custom )
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= The UPT is aimed at performing uncertainty propagations and
statistical analyses

= The UPT comes with a set of Matlab routines to:
 Easily interface with the SF (run DA based computations)
* Managing simulation results
« Easy graphical representations of the performed analyses

|
UPT Interface Functions UPT MEX Core Routines [=1——> SF :
|

UPT Analysis Functions UPT I/O Functions

03/17/2016 26
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Standard user Developer
q Uncertaint b 4 N 4 R
ncertainty
Propagation Tool Sl ;;amework DACE
(UPT) (SF)
\ y \_ J & J
Uncertainty Implementation of Use of DA
propagation in various custom DA-based operations for any
dynamical systems in astrodynamics custom application
space-related applications
applications

03/17/2016 27
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¢-esa APPLICATIONS: TWO-BoODY DYNAMICS

7

= |nitial conditions

Initial Conditions

15000 - 2-Body Orbit
State Value o Units
r, 7.5e3 5e-2 km
ry 0.0 S5e-2 km .
r, 0.0 0.0 km ;i :
Vy 0.0 0.0 km/s e
vy 8.9286 0.0 km/s
Vv, 0.0 0.0 km/s
—25000 —26000 —ISKOOO —1600)(: [km]—sboo 0 50‘00 10(;00
Propagation Time
T,=0.0
. Te = 30.8 orbital periods

03/17/2016 28
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7

= DA based Monte Carlo

4 4
1 x10 | | | 11 x10 —
0 o DAMC-1 s
DAMC-2 3 s
At DAMC-4  [{ 1.2}
DAMC-8
g standard MC 3 "\
=, -1.2 1 £-1.3 N
> § > ——DAMC-1 N Y
o — - DAMC-2 S e i
1.3} o 8 ° 1.4}~ DAMC-4 i
< %0 R DAMC-8
N - standard MC
-1.4 ; ' ' -1.5 : : ' :
-2 -1.5 -1 -0.5 0 -2 -1.5 -1 -0.5
X [km] %107 / X [km] 107
[ Final distribution ] Final covariance
‘ ellipsoids \
. N
03/17/2016
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d-esa APPLICATIONS: TWO-BODY DYNAMICS

7

= DA based Monte Carlo

Computational cost increases
for higher orders

10% . . . . . . 102 g , A\
—®— position error
- @ velocity error 7r
102 -
N
s
= 100
(S
10
107

1 2 3 4 5 6\ 7 8 1 2 4 6 8
Order

Accuracy can be tuned with
the polynomial order

03/17/2016 30
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7

= DA based Monte Carlo

2
10* 102 10 ——
" —®—order 1
+
e polsmf)n error ordor 2
velocity error 101 ®— order 4/ 4
10% —— order 8
L 0
10
— ®.. "W’
g =
=0 T £
W 5
o W
1072
-2
10
107 T10‘4

1 2 3 4 5 6\ 7 8
Order

Accuracy can be tuned with

N
samples
the polynomial order ]
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@-esa APPLICATIONS: RE-ENTRY DYNAMICS

7

= Re-entry dispersion analysis for a ballistic re-entry vehicle

Equations of motion Reference frame
(7 = wvsinvy AV
B = v €COS 7y COS Y 21 i ,/('\//\ N
7 oS ¢ </ v p
. v COS 7y sin 1) N \ .
(S = T N. R i \>
< D N e
. _ . ) 4
U — —gsiny — , Y
_ Lcoso v2 cos Y Ao N
vy = — gcosy + e 4
m r x
(67
¢ Lsinoc  v?tan § cos~ycost
v = —
m cos r
\ v h
Exponential density model is used: p = pge £ (NRLMSISE available)

03/17/2016 32
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= Hayabusa re-entry*

Initial Conditions Model Parameters

State Value o Units Parameter Value o Units
h 201.992 0.1085 km Cp 1.30 3.3% -
o -124.28 0.0074 deg o 0 - -
-27.33 0.008 deg m 18 - kg
\ 12.035 0.002 km/s S 0.126 - m?
Y -12.35 0.0044  deg/s Po 1.217 6.6%  kg/m3
U] -22.06 0.0119  deg/s B 8.5 - km

Propagation Time

T, =2010-06-13, 13:51:11.47 UTC
*Cassel et al., 2011

. Tz =2010-06-13, 15:00:00.00 UTC

03/17/2016 Propagation stopped at 25 km! 3
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= DA based Monte Carlo ( DAMC-k more efficient than |
classical MC for large number
of samples
10° - , , - - \ 10’ —— -

—e—order 1] ]
—— order 2| 1
—4&—order 4| 1

—®— position error
——®— velocity error| + 19

1 15 2 25 3 \ 35 4 10" 102 10°
Order

N
Errors decrease samples
with higher orders

.

03/17/2016 34
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= Covariance Propagation

Parachute deployment dispersion Pgrachute erloyment dispersion

27 -30.05
. «  DAMC (éx,, 6C_, op,)
26 B LD (9, 9C, dpy)
«  DAMC (6x,)
251 B L0 %)
= o)
£ 04 3 -30.1}
= o v
23t° o DAMC (dx,, 6C,, op,) |
I LD (5%, 6C,, 3p,)
22 . DAMC (9, -
I 0 (%) 7 /
21 : -30 : - A -
-30.15 -30.1 -30.05 -115.7 -1156 -1155 -1154

5 [deg] '\ a [deg]

Uncertainty on density p, and drag coefficient C, ®p increased dispersion

03/17/2016 35
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= Polynomial Bounder

€LB

Xf,LB

_ Imin(xf,DAMC) - xf,LBl

Imin(x¢,pamc) — %f,us]

€uB

#samples | max(eo) | max(eye)

101
102
103
104
10°

03/17/2016

Xf,UB

8.457e-03
3.215e-03
1.338e-03
7.859e-04
3.355e-04

4.104e-03
1.979e-03
8.025e-04
4.634e-04
4.457e-04

Parachute deployment dispersion

o DAMC final
] distribution
€25
.C
24 S
-30.05 s
0 [deq]

Bounds obtained
through PB

e
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= The dynamical models available in the DAST are:

- Two-Body

* Three-Body
* N-body

* Re-entry

* Relative

* Attitude

* Ascent

* Rendezvous
« Custom

]» Multi-phase approach

03/17/2016 37



W,

INNOVATING TECHNOLOGY

@cesa MULTI-PHASE: ASCENT DYNAMICS
Phase A Phase B Phase C Phase D

Lift-Off & | p—. ; /

Pitch Push- Over ,\ . '\ Bi-Linear Tangent

Change in
guidance law

\ :Change in Iaunc::her

f -\ Gravity Turn iProperties
' (stage jettlsoned)

Change in
guidance Iaw

03/17/2016 38
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é-esa MULTI-PHASE: ASCENT DYNAMICS
T(mmpA?pB)pC)pD)
o . . . o
Phase A Phase B Phase C Phase D
Lift-Off & | . ; /
Pitch Push- Over ,\ . '\ Bi-Linear Tangent
\ :Change in Iaunc::her Change in

f Gravity Turn (Properties guidance law
: (stage jettlsoned)

Change in
guidance Iaw

03/17/2016 39
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TA(wé,pA) TB(QS‘(?,pB) TC’(w(C)japC) TD(ZBODapD)
. . : ; .
Phase A Phase B Phase C Phase D
Lift-Off & | - g /
Pitch Push- Over ,\ | Bi-Linear Tangent

Change in
guidance law

\ | :Change in Iaunc::her

Gravity Turn |Properties
(stage jettlsoned)

Change in
guidance Iaw

03/17/2016 10
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= VEGA launcher

—— Nominal trajectory

Samples

Altitude [km]

90
60
30

-30
-60 .
Longitude [deg] 180 -90 Latitude [deg]

03/17/2016

d-csa MULTI-PHASE: ASCENT DYNAMICS

Dispersion after phase D

—_—
W
(e

Altitude [km]

—_
O
(o)X}

45 _
Latitude [deg] 44 -56 - :
Dispersion
Dispersion after phase D at Orblt
-0.9 ; : . .
B Cov. from DAMC 5 Insertion
0.92'-COV. from LD E
50040
)
2096 *
E
S -0.98 ERNE S * - & 5 T PR
b T T
-1.02 : i i i
50 100 150 200 250 300

Altitude [km]

41
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= DAST is an efficient tool for nonlinear uncertainty propagation:

* Propagations can be run on several ready-to-use dynamical models
and any DA-compatible custom dynamical model

« More efficient than standard Monte Carlo for typical number of samples
 Analytical information available at the end of the propagation

= Note: method based on Size of uncertainty set and order
Taylor approximations shall guarantee sufficient accuracy

= |If inear methods are sufficiently accurate for your application,
you may not need to increase order, however...

..DA relieves you from the “pain” of writing variational equations

03/17/2016 42
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